Synergizing Microbial Enriched Municipal Solid Waste Compost and Mineral Gypsum for Optimizing Rice-Wheat Productivity in Sodic Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enrichment of MSW Compost
2.2. Site Characterization
2.2.1. Climatic Features
2.2.2. Soil Characteristics
2.2.3. Irrigation Water Quality
2.2.4. Experimental Design and Treatment Details
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Enriched MSW Compost and Gypsum on Growth and Yield of Rice and Wheat
3.2. Effect of Enriched MSW Compost and Gypsum on Nutrient Content in Grain and Straw of Rice and Wheat
3.3. Effect of Enriched MSW Compost and Gypsum on Nutrient Uptake in Grain and Straw of Rice and Wheat
4. Grain Qualities
4.1. Ionic Accumulation
4.2. Nutrient Contents and Heavy metals
5. Economics of Technology
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rengasamy, P. Salinity in the landscape: A growing problem in Australia. Geotimes 2008, 53, 34–39. [Google Scholar]
- FAO. Land and Plant Nutrition Management Service. 2008. Available online: htpp://www.fao.org/ag/agl/agll/spush (accessed on 27 January 2022).
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: London, UK, 2012. [Google Scholar]
- Choudhary, M.; Sharma, P.C.; Jat, H.S.; Nehra, V.; McDonald, A.J.; Garg, N. Crop residue degradation by fungi isolated from conservation agriculture fields under rice–wheat system of North-West India. Int. J. Recycl. Org. Waste Agric. 2012, 5, 349–360. [Google Scholar] [CrossRef] [Green Version]
- Yan, N.; Marschner, P. Microbial activity and biomass recover rapidly after leaching of saline soils. Biol. Fertil. Soils 2013, 49, 367–371. [Google Scholar] [CrossRef]
- Mandal, A.K.; Sharma, R.C.; Singh, G. Assessment of salt affected soils in India using GIS. Geo. Int. 2009, 24, 437–456. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Responses of soil properties and grain yields to deep ripping and gypsum application in a compacted loamy sand soil contrasted with a sandy clay loam soil in Western Australia. Aust. J. Agric. Res. 2003, 4, 273–282. [Google Scholar] [CrossRef]
- Dhanushkodi, V.; Subrahmaniyan, K. Soil Management to increase rice yield in salt affected coastal soil—A Review. Int. J. Res. Chem. Environ. 2012, 2, 1–5. [Google Scholar]
- Singh, Y.P.; Arora, S.; Mishra, V.K.; Dixit, H.; Gupta, R.K. Composting of municipal solid waste and farm wastes for its use as amendment in sodic soil. J. Soil Water Cons. 2017, 16, 172–177. [Google Scholar] [CrossRef]
- Singh, Y.P.; Arora, S.; Mishra, V.K.; Dixit, H.; Gupta, R.K. Conjoint use of chemical amendments and municipal solid waste compost for amelioration of degraded sodic soil. J. Indian Soc. Soil Sci. 2018, 66, 392–398. [Google Scholar] [CrossRef]
- Singh, Y.P.; Arora, S.; Mishra, V.K.; Dixit, H.; Gupta, R.K. Effect of organic and inorganic amendments on amelioration of sodic soil and sustaining rice (Oryza sativa)-wheat (Triticum aestivum) productivity. Indian J. Agri. Sci. 2018, 88, 1455–1462. [Google Scholar]
- Singh, Y.P.; Arora, S.; Mishra, V.K.; Dixit, H.; Gupta, R.K. Plant and Soil Responses to the Combined Application of Organic Amendments and Inorganic Fertilizers in Degraded Sodic Soils of Indo-Gangetic Plains. Commun. Soil Sci. Plant Anal. 2019, 50, 2640–2654. [Google Scholar] [CrossRef]
- Hoornweg, D.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management; Urban Development and Local Government Unit; World Bank: Washington, DC, USA, 2012; p. 8. Available online: http://hdl.handle.net/10986/17388 (accessed on 27 January 2022).
- Central Pollution Control Board. Management of Municipal Solid Waste; Ministry of environment and forest: New Delhi, India, 2004. [Google Scholar]
- Walter, I.; Martinez, F.; Cuevas, G. Plant and soil responses to the application of composted MSW in a degraded, semiarid shrub land in central Spain. Compos. Sci. Util. 2006, 14, 147–154. [Google Scholar] [CrossRef]
- Lakhdar, A.; Hafsi, C.; Rabhi, M.; Debez, A.; Montemurro, F.; Abdelly, C.; Jedidi, N.; Querghi, Z. Application of municipal solid waste compost reduces the negative effects of saline water in Hordeum maritime L. Bioresour. Technol. 2008, 99, 7160–7167. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Vanza, M.; Mehta, R.; Bhuva, C.; Patel, P. Halophilic microbes for bio-remediation of salt affected soils. Afr. J. Microbiol. Res. 2014, 8, 3070–3078. [Google Scholar]
- Arora, S.; Singh, Y.P.; Vanza, M.; Sahni, D. Bioremediation of saline and sodic soils through halophilic bacteria to enhance agricultural production. J. Soil Water Cons. 2016, 15, 302–305. [Google Scholar] [CrossRef]
- Arora, S.; Singh, Y.P.; Singh, A.K. (Eds.) Bioremediation of Salt Affected Soils: An Indian Perspective; Springer International Publishing: Cham, Switzerland, 2017; p. 356. [Google Scholar]
- Day, P.R. Particle fractionation and particle-size analysis. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling; Black, C.A., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1965; pp. 545–567. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, 9.1, 2nd ed.; Klute, A., Ed.; American Society of Agronomy-Soil Science Society of America: Madison, WI, USA, 1986; pp. 363–382. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Private Limited: New Delhi, India, 1973. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of Degtijareff method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for estimation of available nitrogen in soils. Current Sci. 1965, 25, 259–263. [Google Scholar]
- Olsen, S.R.; Dean, L.R. Phosphorus. In Methods of Soil Analysis; Norman, A.G., Ed.; Agronomy Monographs, American Society of Agronomy: Madison, WI, USA, 1965; Volume 9, pp. 920–926. [Google Scholar]
- Hanway, J.J.; Heidel, H. Soil analysis methods as used in Iowa state college soil testing laboratory. Iowa Agri. 1952, 54, 1–31. [Google Scholar]
- Cheng, K.L.; Bray, R.H. Determination of calcium and magnesium in soil and plant material. Soil Sci. 1951, 72, 449–458. [Google Scholar] [CrossRef]
- Schoonover, W.R. Examination of Soils for Alkali; University of California, Extension Service: Berkeley, CA, USA, 1952. [Google Scholar]
- Dubey, R.C.; Maheshwari, D.K. Practical Microbiology; S. Chand and Co. Ltd.: New Delhi, India, 2002; pp. 21–47. [Google Scholar]
- APHA. Standard Methods for the Examination of Waters and Wastewaters; APHA AWAA-WEF: Washington, DC, USA, 1988. [Google Scholar]
- Singh, D.; Chhonkar, P.K.; Dwivedi, B.S. Manual on Soil, Plant and Water Analysis; Westville Publishing House: New Delhi, India, 2007; p. 199. [Google Scholar]
- Humphries, E.C. Mineral Components and Ash Analysis. In Moderne Methoden der Pflanzenanalyse/Modern Methods of Plant Analysis; Paech, K., Tracey, M.V., Eds.; Springer: Berlin/Heidelberg, Germany, 1956. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Dicky, D.A. Principles and Procedures of Statistics: A Biological Approach, 3rd ed.; McGraw Hill Book: New York, NY, USA, 1997. [Google Scholar]
- Muhammad, I.; Hassan, A.U.; Muhammad, I.; Ehsan, E.V. Response of wheat growth and yield to various levels of compost and organic manure. Pak. J. Bot. 2008, 40, 2135–2141. [Google Scholar]
- Van Asten, P.J.A.; Van’tzelfde, J.A.; Vander Zee, A.T.M.S.E.; Hammecker, C. The effect of irrigated rice cropping on the alkalinity of two alkaline rice soils in the Sahel. Geoderma 2004, 119, 233–247. [Google Scholar] [CrossRef]
- Singh, Y.P.; Arora, S.; Mishra, V.K.; Bharadwaj, A.K. Regaining the agricultural potential of sodic soils and improved smallholder food security through integration of gypsum, pressmud and salt tolerant varieties. Agroecol. Sustain. Food Syst. 2021, 46, 410–431. [Google Scholar] [CrossRef]
- Sidiras, N.; Bilalis, D.; Vavoulidou, E. Effect of tillage and fertilization on some selected physical properties of soils (0–30cm) depth and on the root growth dynamic of winter barley (Hordeum vulgare cv. Niki). J. Agron. Crop Sci. 2002, 187, 167–176. [Google Scholar] [CrossRef]
- Gondek, K.; Filipek-Mazur, B. The effect of mineral treatment and amendments by organic and organo mineral fertilizers on crop yield, plant nutrient status and soil properties. Plant Soil Environ. 2005, 54, 34–45. [Google Scholar]
- Cha-um, S.; Pokasombat, Y.; Kirdmanee, C. Remediation of salt-affected soil by gypsum and farmyard manure—Importance for the production of Jasmine rice. Aust. J. Crop Sci. 2011, 4, 458–465. [Google Scholar]
- Muhammad, D.; Khattak, R.A. Wheat yield and chemical composition as influenced by integrated use of gypsum, pressmud and FYM in saline sodic soil. J. Chem. Soc. Pak. 2011, 33, 82–86. [Google Scholar]
- Uwasawa, M.; Sangtong, P.; Cholitkul, W. Behavior of phosphorous in paddy soils of Thailand. I. Contents of inorganic, organic and available soil P in relation to rice plant P nutrition. Soil Sci. Plant Nutr. 1988, 34, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Willet, I.R. Causes and prediction of changes in extractable phosphorous during flooding. Aust. J. Soil Res. 1989, 27, 45–54. [Google Scholar] [CrossRef]
- Maaz, T.; Pan, W. Residual fertilizer, crop sequence, and water availability impact rotational nitrogen balances. Agron. J. 2017, 109, 2839–2862. [Google Scholar] [CrossRef]
- Dhakal, C.; Lange, K. Crop yield response functions in nutrient application: A review. Agron. J. 2021, 113, 5222–5234. [Google Scholar] [CrossRef]
- Ponnamperuma, F.N. The chemistry of submerged soils. Adv. Agron. 1972, 24, 26–92. [Google Scholar]
- Bhattacharyya, P.; Ghosh, A.K.; Chakraborty, A.; Chakrabarti, K.; Tripathy, S.; Powell, M.A. Arsenic uptake by rice and accumulation in soil amended with municipal solid waste compost. Comm. Soil. Sci. Plant Anal. 2003, 34, 2779–2790. [Google Scholar] [CrossRef]
- Kropisz, A.; Russel, S. Effect of fertilization of light loamy soil with the Dano compost on microflora as well as on yields and chemical composition of lettuce and spinach. Rocz. Nauk. Rol. Ser. 1978, 103, 20–37. [Google Scholar]
- Ali, H.I.; Ismail, M.R.; Manan, M.M.; Saud, H.M. Rice straw compost used as a soil less media for organic tomato transplant production. Asian J. Microbiol. Biotechnol. Environ. Sci. 2003, 5, 31–36. [Google Scholar]
- King, L.D.; Leyshon, A.J.; Webber, L.R. Application of municipal refuse and liquid sewage sludge to agricultural land. II. Lysimeter study. J. Environ. Qual. 1977, 6, 67–71. [Google Scholar] [CrossRef]
- Duggan, J.C.; Wiles, C.C. Effect of municipal compost and nitrogen fertilizer on selected soils and plants. Compost. Sci. 1976, 17, 24–31. [Google Scholar]
- Imran, M.; Waqas, R.; Nazli, Z.H.; Shaharoona, B.; Arshad, M. Effect of recycled and value added organic waste on solubilization of rock phosphate in soil and its influence on maize growth. Int. J. Agri. Biol. 2011, 36, 138–156. Available online: http://www.fspublishers.org/ (accessed on 3 July 2021).
- Han, H.S.; Supanjani, L.K.D. Effect of co-inoculation with phosphate and potassium solublizing bacteria on mineral uptake and growth of pepper and cocummber. Plant Soil Environ. 2006, 3, 130–136. [Google Scholar]
- Cha-um, S.; Vejchasarn, P.; Kirdmanee, C. An effective defensive response in Thai aromatic rice varieties (Oryza sativa L. spp. indica) to salinity. J. Crop Sci. Biotechnol. 2007, 10, 257–264. [Google Scholar]
- Zaka, M.A.; Mujeeb, F.; Sarwar, G.; Hassan, N.M.; Hassan, G. Agromelioration of saline sodic soil. OnLine J. Biol. Sci. 2003, 3, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Hanay, A.; Büyüksönmez, F.; Kızıloglu, F.M.; Canbolat, M.Y. Reclamation of saline-sodic soils with gypsum and MSW compost. Compost. Sci. Util. 2004, 12, 175–179. [Google Scholar] [CrossRef]
- Tejada, M.; Garcia, C.; Gonzalez, J.L.; Hernandez, M.T. Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil. Soil Biol. Biochem. 2006, 38, 1413–1421. [Google Scholar] [CrossRef]
- Zahid, L.; Niazi, M.F.K. Role of Ristech material in the reclamation of saline-sodic soils. Pak. J. Water Resour. 2006, 10, 43–49. [Google Scholar]
- MacLean, K.S.; Robinson, A.R.; MacConnell, H.H. The effect of sewage-sludge on the heavy metal content of soils and plant tissue. Commun. Soil Sci. Plant Anal. 1987, 18, 1303–1316. [Google Scholar] [CrossRef]
- Singh, R.P.; Agrawal, M. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 2007, 67, 2229–2240. [Google Scholar] [CrossRef]
- Hargreaves, J.C.; Adl, M.S.; Warman, P.R. A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 2008, 123, 1–4. [Google Scholar] [CrossRef]
- Smith, S.R. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste compost compared to sewage sludge. Environ. Int. 2009, 35, 142–156. [Google Scholar] [CrossRef]
- Singh, J.; Kalamdhad, A.S. Assessment of bioavailability and leachability of heavy metals during rotary drum composting of green waste (Water hyacinth). Ecol. Eng. 2013, 52, 59–69. [Google Scholar] [CrossRef]
- Alvarenga, P.; Mourinha, C.; Farto, M.; Santos, T.; Palma, P.; Sengo, J.; Morais, M.C.; Cunha-Queda, C. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors. Waste Manag. 2015, 40, 44–52. [Google Scholar] [CrossRef]
- Nayak, A.K.; Sharma, D.K.; Mishra, V.K.; Jha, S.K. Effect of phosphogypsum amendment on floride content of soil and plants under rice (Oryza sativa) and wheat (Triticum aestivum) system in sodic sols of Indo-gangetic plains. Indian J. Agric. Sci. 2009, 79, 615–619. [Google Scholar]
- Dhakal, C.; Lange, K.; Parajulee, M.N.; Segarra, E. Dynamic optimization of nitrogen in plateau cotton yield functions with nitrogen carryover considerations. J. Agric. Appl. Econ. 2019, 51, 385–401. [Google Scholar] [CrossRef] [Green Version]
Parameters | Concentration | |
---|---|---|
Un-Enriched MSW Compost ± SD | Enriched MSW Compost ± SD | |
Bulk density (Mg m−3) | 0.78 ± 0.01 | 0.89 ± 0.01 |
Moisture (%) | 9.23 ± 0.21 | 11.12 ± 0.16 |
pHw (1:5) | 7.60 ± 0.24 | 7.86± 0.32 |
ECw (dS m−1) | 0.64 ± 0.26 | 1.22 ± 0.24 |
CEC [cmol (p+) kg−1 compost] | 186 ± 8.0 | 183 ± 11.0 |
Total C (%) | 25.47 ± 0.32 | 20.38 ± 0.26 |
Total N (%) | 0.64 ± 0.06 | 0.79 ± 0.04 |
C:N ratio | 39.80 ± 0.40 | 25.79 ± 0.35 |
Total P (%) | 0.41 ± 0.04 | 0.71 ± 0.04 |
Total K (%) | 0.57 ± 0.02 | 0.84 ± 0.04 |
Total Ca (mg kg−1) | 340.00 ± 26.2 | 406.00 ± 21.3 |
Total Mg (mg kg−1) | 195.00 ± 26.5 | 228.00 ± 23.5 |
Total Zn (mg kg−1) | 1620.00 ± 45.6 | 2115.00 ± 51.2 |
Bacterial population (cfu g−1 × 105) | 48 ± 4.0 | 75 ± 6.0 |
Fungal population (cfu g−1 × 105) | 45 ± 5.0 | 79 ± 4.0 |
Phosphate solubilizing microbes (cfu g−1 × 105) | 9.0 ± 3.0 | 53 ± 5.0 |
Total Ni (mg kg−1) | 49.12 ± 2.3 | 42.6 ± 4.1 |
Total Pb (mg kg−1) | 29.30 ± 4.0 | 24.3 ± 5.0 |
Total Cd (mg kg−1) | 7.30 ± 0.23 | 5.12 ± 0.11 |
Total Cr (mg kg−1) | 45.50 ± 1.2 | 40.23 ± 1.3 |
Soil Properties | Values | Soil Properties | Values |
---|---|---|---|
Sand (%) | 65.55 | Available P (kg ha−1) | 16.5 |
Silt (%) | 18.5 | Available K (kg ha−1) | 238 |
Clay (%) | 16 | Ca (mel−1) | 2.2 |
Textural class | Loam | Mg (mel−1) | 2.4 |
Bulk density (Mg m−3) | 1.57 | Na (mel−1) | 60.34 |
Porosity (%) | 46.4 | K (mel−1) | 2.29 |
Infiltration rate (mm day−1) | 2.1 | CO3 (mel−1) | 3.1 |
pH2 | 9.2 | HCO3 (mel−1) | 1.8 |
EC2 (dSm−1) | 1.14 | Cl (mel−1) | 4.8 |
ESP | 48 | GR (t ha−1) | 10 |
OC (%) | 0.3 | Bacterial count (Cfu g−1) | 1.3 × 106 |
Available N (kg ha−1) | 142.5 | Fungal count (Cfu g−1) | 0.2 × 105 |
Quality Parameters | Tube Well No. 1 | Tube Well No. 2 |
---|---|---|
EC (dSm−1) | 0.68 | 0.57 |
pH | 7.56 | 8.08 |
CO3 (mel−1) | 1.20 | 1.20 |
HCO3 (mel−1) | 4.00 | 3.20 |
Cl− (mel−1) | 2.10 | 1.50 |
SO4 (mel−1) | 0.00 | 0.00 |
Ca2+ Mg (mel−1) | 3.70 | 3.10 |
Na+ (mel−1) | 4.10 | 3.70 |
K+ (mel−1) | 0.12 | 0.12 |
RSC | 1.50 | 1.30 |
SAR | 3.00 | 2.90 |
Treatments | Rice | Wheat | |||||
---|---|---|---|---|---|---|---|
Plant Height (cm) | Productive Tillers hill−1 | Panicle Density (m2) | Dry Matter (g hill−1) | Plant Height (cm) | Spike Density (m2) | Dry Matter (g hill−1) | |
T1 | 111.22 | 9.65 | 286.0 | 93.59 | 69.2 | 363.41 | 647.3 |
T2 | 124.40 | 14.77 | 387.9 | 144.55 | 77.9 | 388.22 | 674.6 |
T3 | 123.43 | 11.65 | 345.0 | 123.63 | 76.12 | 341.30 | 623.3 |
T4 | 122.35 | 12.80 | 359.1 | 130.43 | 76.22 | 343.90 | 632.3 |
T5 | 123.40 | 13.42 | 381.0 | 144.55 | 77.90 | 391.31 | 681.4 |
T6 | 123.40 | 16.47 | 389.6 | 148.10 | 83.55 | 394.20 | 688.3 |
LSD (p = 0.05) | ns | 3.12 | 11.23 | 6.35 | ns | 6.23 | 8.63 |
Treatments | Rice | Wheat | |||||||
---|---|---|---|---|---|---|---|---|---|
Panicle Length (cm) | Spikelet Fertility (%) | Grains Panicle−1 | 1000 Grain Weight (g) | Grain Yield (t ha−1) | Length of Spike (cm) | Grains Spike−1 | 1000 Grain Weight (g) | Grain Yield (t ha−1) | |
T1 | 21.30 | 73.2 | 114.30 | 22.22 | 4.21 | 13.08 | 30.95 | 32.0 | 1.86 |
T2 | 25.37 | 87.5 | 132.22 | 26.62 | 5.27 | 18.78 | 33.70 | 41.8 | 3.25 |
T3 | 23.52 | 76.3 | 126.02 | 24.62 | 4.50 | 16.85 | 30.95 | 38.5 | 2.43 |
T4 | 23.77 | 81.2 | 129.62 | 23.55 | 4.70 | 17.20 | 32.20 | 30.4 | 2.47 |
T5 | 25.37 | 85.3 | 138.05 | 25.37 | 5.17 | 18.05 | 33.50 | 40.9 | 3.23 |
T6 | 25.52 | 85.8 | 138.30 | 25.95 | 5.45 | 19.55 | 35.10 | 43.1 | 3.92 |
LSD (p = 0.05) | 0.53 | 5.23 | 5.32 | ns | 0.43 | 0.63 | 3.12 | 2.13 | 0.21 |
Treatments | Rice | Wheat | ||||
---|---|---|---|---|---|---|
Zn (ppm) | Cu (ppm) | Fe (ppm) | Zn (ppm) | Cu (ppm) | Fe (ppm) | |
T1 | 10.93 | 3.66 | 147.04 | 34.20 | 12.36 | 38.62 |
T2 | 10.36 | 3.90 | 197.45 | 34.52 | 14.20 | 40.20 |
T3 | 11.22 | 4.23 | 233.43 | 36.20 | 16.20 | 42.32 |
T4 | 11.91 | 4.30 | 242.53 | 38.42 | 13.50 | 40.60 |
T5 | 12.80 | 4.90 | 296.06 | 41.30 | 117.20 | 41.20 |
T6 | 12.87 | 6.26 | 537.96 | 42.10 | 18.20 | 43.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, Y.P.; Arora, S.; Mishra, V.K.; Singh, A.K. Synergizing Microbial Enriched Municipal Solid Waste Compost and Mineral Gypsum for Optimizing Rice-Wheat Productivity in Sodic Soils. Sustainability 2022, 14, 7809. https://doi.org/10.3390/su14137809
Singh YP, Arora S, Mishra VK, Singh AK. Synergizing Microbial Enriched Municipal Solid Waste Compost and Mineral Gypsum for Optimizing Rice-Wheat Productivity in Sodic Soils. Sustainability. 2022; 14(13):7809. https://doi.org/10.3390/su14137809
Chicago/Turabian StyleSingh, Yash P., Sanjay Arora, Vinay K. Mishra, and Atul K. Singh. 2022. "Synergizing Microbial Enriched Municipal Solid Waste Compost and Mineral Gypsum for Optimizing Rice-Wheat Productivity in Sodic Soils" Sustainability 14, no. 13: 7809. https://doi.org/10.3390/su14137809
APA StyleSingh, Y. P., Arora, S., Mishra, V. K., & Singh, A. K. (2022). Synergizing Microbial Enriched Municipal Solid Waste Compost and Mineral Gypsum for Optimizing Rice-Wheat Productivity in Sodic Soils. Sustainability, 14(13), 7809. https://doi.org/10.3390/su14137809