Greenhouse Gas Fluxes from Selected Soil Fertility Management Practices in Humic Nitisols of Upper Eastern Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Setup
2.3. Soil GHG Fluxes Measurement
2.4. Greenhouse Gases Concentration Calculations
2.5. Soil Measurements
2.6. Maize Biomass Measurement
2.7. Greenhouse Gases Yield-Scaled Emissions (YSE) and Emission Factors (EFs)
2.8. The Net-Global Warming Potential (GWP) and Greenhouse Gas Intensity (GHGI)
2.9. Data Analysis
3. Results
3.1. Soil and Site Meteorological Measurements
3.2. Soil Greenhouse Gases Emissions
3.3. Soil Inorganic Nitrogen
3.4. Maize Biomass Measurements
3.5. Greenhouse Gases Yield-Scaled Emissions (YSE) and Emission Factors (EFs)
3.6. Soil Organic Carbon Stocks Change, Net-Global Warming Potential (Net-GWP) and Greenhouse Gas Intensity (GHGI)
3.7. Annual Soil GHG Fluxes and Environmental Factors Correlation
4. Discussion
4.1. Soil Greenhouse Gases Emissions
4.2. Biomass Production
4.3. Greenhouse Gases Yield-Scaled Emissions (YSE) and Emission Factors (EFs)
4.4. Soil Organic Carbon Stocks Change, Net Global Warming Potential (Net-GWP), and Greenhouse Gas Intensities (GHGI)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.Y.; Hu, C.S.; Ming, H.; Zhang, Y.M.; Li, X.X.; Dong, W.X.; Oenema, O. Concentration profiles of CH4, CO2 and N2O in soils of a wheat-maize rotation ecosystem in North China plain, measured weekly over a whole year. Agric. Ecosyst. Environ. 2013, 164, 260–272. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Ferrara, A.F.; House, J.; Federici, S.; Rossi, S.; Prosperi, P. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Chang. Biol. 2015, 21, 2655–2660. [Google Scholar] [CrossRef] [Green Version]
- Paul, B.; Frelat, R.; Birnholz, C.; Ebong, C.; Gahigi, A.; Groot, J.C.J.; Herrero, M.; Kagabo, D.M.; Notenbaert, A.; Vanlauwe, B.; et al. Agricultural intensification scenarios, household food availability and greenhouse gas emissions in Rwanda: Ex-ante impacts and tradeoffs. Agric. Syst. 2017, 163, 16–26. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does organic farming reduce environmental impacts? A meta-analysis of European research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Mangalassery, S.; Sjögersten, S.; Sparkes, D.L.; Sturrock, C.J.; Craigon, J.; Mooney, S.J. To what extent can tillage lead to a reduction in greenhouse gas emissions from temperate soils? Sci. Rep. 2014, 4, 4586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butterbach-Bahl, K.; Dannenmann, M. Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Curr. Opin. Environ. Sustain. 2011, 3, 389–395. [Google Scholar] [CrossRef]
- Vargas, V.P.; Cantarella, H.; Martins, A.A.; Soares, J.R.; Carmo, J.B.; Andrade, C.A. Sugarcane crop residue increases N2O and CO2 emissions under high soil moisture conditions. Sugar Tech. 2014, 16, 174–179. [Google Scholar] [CrossRef]
- Serrano-Silva, N.; Sarria-Guzmán, Y.; Dendooven, L.; Luna-Guido, M. Methanogenesis and methanotrophy in soil: A review. Pedosphere 2014, 24, 291–307. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Musafiri, C.M.; Macharia, J.M.; Kiboi, M.N.; Ng’etich, O.K.; Shisanya, C.A.; Okeyo, J.M.; Mugendi, D.N.; Okwuosa, E.A.; Ng’etich, F.K. Soil greenhouse gas fluxes from maize cropping system under different soil fertility management technologies in Kenya. Agric. Ecosyst. Environ. 2020, 301, 107064. [Google Scholar] [CrossRef]
- Ortiz-Gonzalo, D.; de Neergaard, A.; Vaast, P.; Suárez-Villanueva, V.; Oelofse, M.; Rosenstock, T.S. Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems. Sci. Total Environ. 2018, 626, 328–339. [Google Scholar] [CrossRef]
- Pelster, D.; Rufino, M.C.; Rosenstock, T.; Mango, J.; Saiz, G.; Diaz Pines, E.; Baldi, G.; Butterbach-Bahl, K. Smallholder farms in eastern African tropical highlands have low soil greenhouse gas fluxes. Biogeosciences 2017, 14, 187–202. [Google Scholar] [CrossRef] [Green Version]
- UNFCCC. Aggregate Effect of the Intended Nationally Determined Contributions. 2015. In Transforming our World: The 2030 Agenda for Sustainable Development; United Nations General Assembly: New York, NY, USA, 2016. [Google Scholar]
- Macharia, M.J.; Pelster, E.D.; Ngetich, K.F.; Shisanya, A.C.; Mucheru-Muna, M.; Mugendi, N.D. Soil greenhouse gas fluxes from maize production under different soil fertility management practices in East Africa. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005427. [Google Scholar] [CrossRef]
- Musafiri, C.M.; Macharia, J.M.; Kiboi, M.N.; Ng’etich, O.K.; Shisanya, C.A.; Okeyo, J.M.; Mugendi, D.N.; Okwuosa, E.A.; Ng’etich, F.K. Comparison between observed and DeNitrification-DeComposition model-based nitrous oxide fluxes and maize yields under selected soil fertility management technologies in Kenya. Plant Soil 2021, 460, 395–413. [Google Scholar] [CrossRef]
- Mucheru-Muna, M.; Pypers, P.; Mugendi, D.; Kung, J.; Mugwe, J.; Merckx, R.; Vanlauwe, B. A staggered maize–legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crop Res. 2010, 115, 132–139. [Google Scholar] [CrossRef]
- Kiboi, M.N.; Ngetich, K.F.; Fliessbach, A.; Muriuki, A.; Mugendi, D.N. Soil fertility inputs and tillage influence on maize crop performance and soil water content in the Central Highlands of Kenya. Agric. Water Manag. 2019, 217, 316–331. [Google Scholar] [CrossRef]
- Mucheru-Muna, M.; Mugendi, D.; Pypers, P.; Mugwe, J.; Kung’u, J.; Vanlauwe, B.; Merckx, R. Enhancing maize productivity and profitability using organic inputs and mineral fertilizer in Central Kenya small-hold farms. Exp. Agric. 2014, 50, 250–269. [Google Scholar] [CrossRef] [Green Version]
- Onono, P.A.; Wawire, N.W.H.; Ombuki, C. The response of maize production in Kenya to economic incentives. Int. J. Sustain. Dev. 2013, 2, 530–543. [Google Scholar]
- Ngome, A.F.; Becker, M.; Mtei, K.M.; Mussgnug, F. Fertility management for maize cultivation in some soils of Western Kenya. Soil Tillage Res. 2011, 117, 69–75. [Google Scholar] [CrossRef]
- Okeyo, I.A.; Mucheru-Muna, M.; Mugwe, J.; Ngetich, K.F.; Mugendi, D.N.; Diels, J.; Shisanya, C.A. Effects of selected soil and water conservation technologies on nutrient losses and maize yields in the central highlands of Kenya. Agric. Water Manag. 2014, 137, 52–58. [Google Scholar] [CrossRef]
- Jaetzold, R.; Schmidt, H.; Hornet, Z.B.; Shisanya, C.A. Natural Conditions and Farm Information. Eastern Province. In Farm Management Handbook of Kenya, 2nd ed.; Ministry of Agriculture/GTZ: Nairobi, Kenya, 2007; Volume 11. [Google Scholar]
- Kiboi, M.N.; Ngetich, K.F.; Mugendi, D.N.; Muriuki, A.; Adamtey, N.; Fliessbach, A. Microbial biomass and acid phosphomonoesterase activity in soils of the Central Highlands of Kenya. Geoderma Reg. 2018, 15, e00193. [Google Scholar] [CrossRef]
- Macharia, J.; Mugwe, J.; Mucheru-Muna, M.; Mugendi, D. Socioeconomic Factors Influencing Levels of Knowledge in Soil Fertility Management in the Central Highlands of Kenya. J. Agric. Sci. Technol. 2014, 4, 701–711. [Google Scholar] [CrossRef]
- Mucheru-Muna, M.; Mugendi, D.; Kung’u, J.; Mugwe, J.; Bationo, A. Effects of organic and mineral fertilizer inputs on maize yield and soil chemical properties in a maize cropping system in Meru South District, Kenya. Agrofor. Syst. 2007, 69, 189–197. [Google Scholar] [CrossRef]
- Fertilizer Use Recommendation Project (FURP). Description of First Priority Trial Site in the Various Districts; Embu District, Kenya National Agricultural Research Laboratories: Nairobi, Kenya, 1987; Volume 24. [Google Scholar]
- Rosenstock, T.S.; Mpanda, M.; Pelster, D.E.; Butterbach-Bahl, K.; Rufino, M.C.; Thiong’o, M.; Mutuo, P.; Abwanda, S.; Rioux, J.; Kimaro, A.A.; et al. Greenhouse gas fluxes from agricultural soils of Kenya and Tanzania. J. Geophys. Res. Biogeosci. 2016, 121, 1568–1580. [Google Scholar] [CrossRef] [Green Version]
- Chadwick, D.R.; Cardenas, L.; Misselbrook, T.H.; Smith, K.A.; Rees, R.M.; Watson, C.J.; McGeough, K.L.; Williams, J.R.; Cloy, J.M.; Thorman, R.E.; et al. Optimizing chamber methods for measuring nitrous oxide emissions from plot-based agricultural experiments. Eur. J. Soil. Sci. 2014, 65, 295–307. [Google Scholar] [CrossRef]
- Arias-Navarro, C.; Díaz-Pinés, E.; Kiese, R.; Rosenstock, T.S.; Rufino, M.C.; Stern, D.; Neufeldt, H.; Verchot, L.V.; Butterbach-Bahl, K. Gas pooling: A sampling technique to overcome spatial heterogeneity of soil carbon dioxide and nitrous oxide fluxes. Soil Biol. Biochem. 2013, 67, 20–23. [Google Scholar] [CrossRef]
- Pavelka, M.; Acosta, M.; Kiese, R.; Altimir, N.; Brümmer, C.; Crill, P.; Darenova, E.; Fuß, R.; Gielen, B.; Graf, A.; et al. Standardisation of chamber technique for CO2, N2O and CH4 fluxes measurements from terrestrial ecosystems. Int. Agrophys. 2018, 32, 569–587. [Google Scholar] [CrossRef]
- Parkin, T.B.; Venterea, R.T.; Hargreaves, S.K. Calculating the detection limits of chamber-based soil greenhouse gas flux measurements. J. Environ. Qual. 2012, 41, 705–715. [Google Scholar] [CrossRef] [Green Version]
- Barton, L.; Wolf, B.; Rowlings, D.; Scheer, C.; Kiese, R.; Grace, P.; Stefanova, K.; Butterbach-Bahl, K. Sampling frequency affects estimates of annual nitrous oxide fluxes. Sci. Rep. 2015, 5, 15912. [Google Scholar] [CrossRef] [Green Version]
- Okalebo, J.R.; Gathua, K.W.; Woomer, P.L. Laboratory Methods of Soil and Plant Analysis: A Working Manual, 2nd ed.; Nairobi Office: Nairobi, Kenya, 2002; p. 21. [Google Scholar]
- Burton, D.; Zebarth, B.; Gillam, K.; MacLeod, J. Effect of split application of fertilizer nitrogen on N2O emissions from potatoes. Can. J. Soil. Sci. 2008, 88, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Facchi, A.; Baroni, G.; Boschetti, M.; Gandolfi, C. Comparing optical and direct methods for leaf area index determination in a maize crop. J. Agric. Eng. 2010, 1, 33–40. [Google Scholar] [CrossRef]
- IPCC. Climate Change (2014): Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Mosier, A.R.; Halvorson, A.D.; Reule, C.A.; Liu, X.J. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J. Environ. Qual. 2006, 35, 1584–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, Q.Y.; Yang, X.X.; Gao, C.; Wu, P.P.; Liu, J.J.; Xu, Y.; Shen, Q.R.; Zou, J.W.; Guo, S.W. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Glob. Chang. Biol. 2011, 17, 2196–2210. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Mishra, V.K.; Shukla, R.; Shukla, P.N. Inhibition of soil methane oxidation by fertilizer application: An intriguing but persistent paradigm. Environ. Pollut. Protect. 2018, 3, 57–69. [Google Scholar] [CrossRef]
- Banger, K.; Tian, H.; Lu, C. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Glob. Chang. Biol. 2012, 18, 3259–3267. [Google Scholar] [CrossRef]
- Chi, J.; Waldo, S.; Pressley, S.; O’Keeffe, P.; Huggins, D.; Stöckle, C.; Pan, W.L.; Brooks, E.; Lamb, B. Assessing carbon and water dynamics of no-till and conventional tillage cropping systems in the inland Pacific Northwest US using the eddy covariance method. Agric. For. Meteorol. 2016, 218–219, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Manucharova, N.A.; Yaroslavtsev, A.M.; Kornyushenko, E.G.; Stepanov, A.L.; Smagin, A.V.; Zvyagintsev, D.G.; Sudnitsyn, I.I. Methane production and growth of microorganisms under different moisture conditions in soils with added chitin and without it. Eurasian Soil Sci. 2007, 40, 860–865. [Google Scholar] [CrossRef]
- Tenesaca, C.G.; Al-Kaisi, M.M. In-field management of corn cob and residue mix: Effect on soil greenhouse gas emissions. Appl. Soil Ecol. 2015, 89, 59–68. [Google Scholar] [CrossRef]
- Kuzyakov, Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol. Biochem. 2006, 38, 425–448. [Google Scholar] [CrossRef]
- Birch, H.F. The effect of soil drying on humus decomposition and nitrogen availability. Plant. Soil. 1958, 10, 9–31. [Google Scholar] [CrossRef]
- Gelfand, I.; Cui, M.D.; Tang, J.W.; Robertson, G.P. Short-term drought response of N2O and CO2 emissions from mesic agricultural soils in the US Midwest. Agric. Ecosyst. Environ. 2015, 212, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Athira, M.; Jagadeeswaran, R.; Kumaraperumal, R. Influence of soil organic matter on bulk density in Coimbatore soils. Int. J. Chem. Stud. 2019, 7, 3520–3523. [Google Scholar]
- Korenková, L.K.; Urik, M. Soil moisture and its effect on bulk density and porosity of intact aggregates of three Mollic soils. Indian J. Agric. Sci. 2012, 82, 172–178. [Google Scholar]
- Skinner, C.; Gattinger, A.; Krauss, M.; Krause, H.M.; Mayer, J.; Van Der Heijden, M.G.; Mäder, P. The impact of long-term organic farming on soil-derived greenhouse gas emissions. Sci. Rep. 2019, 9, 1702. [Google Scholar] [CrossRef]
- Skinner, C.; Gattinger, A.; Muller, A.; Mäder, P.; Fließbach, A.; Stolze, M.; Ruser, R.; Niggli, U. Greenhouse gas fluxes from agricultural soils under organic and non-organic management—A global meta-analysis. Sci. Total Environ. 2014, 468, 553–563. [Google Scholar] [CrossRef]
- Mukumbuta, I.; Shimizu, M.; Jin, T.; Nagatake, A.; Hata, H.; Kondo, S.; Kawai, M.; Hatano, R. Nitrous and nitric oxide emissions from a cornfield and managed grassland: 11 years of continuous measurement with manure and fertilizer applications, and land-use change. Soil Sci. Plant Nutr. 2017, 63, 185–199. [Google Scholar] [CrossRef]
- Collins, H.P.; Alva, A.K.; Streubel, J.D.; Fransen, S.F.; Frear, C.; Chen, S.; Kruger, C.; Granatstein, D. Greenhouse gas emissions from an irrigated silt loam soil amended with anaerobically digested dairy manure. Soil Sci. Soc. Am. J. 2011, 75, 2206–2216. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, Y.; Li, T.; Sun, W.; Huang, Y. Net greenhouse gas balance in China’s croplands over the last three decades and its mitigation potential. Environ. Sci. Technol. 2014, 48, 2589–2597. [Google Scholar] [CrossRef]
- Mukumbuta, I.; Shimizu, M.; Hatano, R. Mitigating global warming potential and greenhouse gas intensities by applying composted manure in cornfield: A 3-year field study in an andosol soil. Agriculture 2017, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.L.; Grantz, D.A.; Jenerette, G.D. Multivariate regulation of soil CO2 and N2O pulse emissions from agricultural soils. Glob. Chang. Biol. 2016, 22, 1286–1298. [Google Scholar] [CrossRef]
- Ngetich, K.F.; Diels, J.; Shisanya, C.A.; Mugwe, J.N.; Mucheru-Muna, M.; Mugendi, D.N. Effects of selected soil and water conservation techniques on runoff, sediment yield and maize productivity under sub-humid and semi-arid conditions in Kenya. Catena 2014, 121, 288–296. [Google Scholar] [CrossRef]
- Partey, S.T.; Thevathasan, N.V.; Zougmoré, R.B.; Preziosi, R.F. Improving maize production through nitrogen supply from ten rarely-used organic resources in Ghana. Agrofor. Syst. 2018, 92, 375–387. [Google Scholar] [CrossRef]
- Kumari, R.; Singh, R.; Kumar, N. Effect of crop residue management on soil organic carbon, soil organic matter and crop yield: An overview. J. Appl. Nat. Sci. 2019, 11, 712–717. [Google Scholar] [CrossRef]
- Stella, T.; Mouratiadou, I.; Gaiser, T.; Berg-Mohnicke, M.; Wallor, E.; Ewert, F.; Nendel, C. Estimating the contribution of crop residues to soil organic carbon conservation. Environ. Res. Lett. 2019, 14, 094008. [Google Scholar] [CrossRef]
- Venterea, R.T.; Maharjan, B.; Dolan, M.S. Fertilizer source and tillage effects on yield-scaled nitrous oxide emissions in a corn cropping system. J. Environ. Qual. 2011, 40, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
- Tully, K.L.; Abwanda, S.; Thiong’o, M.; Mutuo, P.M.; Rosenstock, T.S. Nitrous oxide and methane fluxes from urine and dung deposited on Kenyan pastures. J. Environ. Qual. 2017, 46, 921. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, F.; Zhang, H.; Liu, S. Effects of nitrogen application rates on net annual global warming potential and greenhouse gas intensity in double-rice cropping systems of the Southern China. Environ. Sci. Pollut. Res. 2016, 23, 24781–24795. [Google Scholar] [CrossRef]
- Guardia, G.; Tellez-Rio, A.; García-Marco, S.; Martin-Lammerding, D.; Tenorio, J.L.; Ibáñez, M.Á.; Vallejo, A. Effect of tillage and crop (cereal versus legume) on greenhouse gas emissions and Global Warming Potential in a non-irrigated Mediterranean field. Agric. Ecosyst. Environ. 2016, 221, 187–197. [Google Scholar] [CrossRef]
- Farooqi, Z.U.R.; Sabir, M.; Zeeshan, N.; Naveed, K.; Hussain, M.M. Enhancing carbon sequestration using organic amendments and agricultural practices. In Carbon Capture, Utilization and Sequestration; Ramesh, K., Agarwal, R.K., Eds.; InTech Open: London, UK, 2018; pp. 17–35. [Google Scholar] [CrossRef] [Green Version]
- Kiboi, M.N.; Ngetich, F.K.; Muriuki, A.; Adamtey, N.; Mugendi, D. The response of soil physicochemical properties to tillage and soil fertility resources in Central Highlands of Kenya. Ital. J. Agron. 2020, 15, 71–87. [Google Scholar] [CrossRef]
- Pratibha, G.; Srinivas, I.; Rao, K.V.; Shanker, A.K.; Raju, B.M.K.; Choudhary, D.K.; Rao, K.S.; Srinivasarao, C.; Maheswari, M. Net global warming potential and greenhouse gas intensity of conventional and conservation agriculture system in rainfed semi-arid tropics of India. Atmos. Environ. 2016, 145, 239–250. [Google Scholar] [CrossRef]
- Pilecco, G.E.; Chantigny, M.H.; Weiler, D.A.; Aita, C.; Thivierge, M.N.; Schmatz, R.; Chaves, B.; Giacomini, S.J. Greenhouse gas emissions and global warming potential from biofuel cropping systems fertilized with mineral and organic nitrogen sources. Sci. Total Environ. 2020, 729, 138767. [Google Scholar] [CrossRef] [PubMed]
- Thelen, K.D.; Fronning, B.E.; Kravchenko, A.; Min, D.H.; Robertson, G.P. Integrating livestock manure with a corn–soybean bioenergy cropping system improves short-term carbon sequestration rates and net global warming potential. Biomass Bioenergy 2010, 34, 960–966. [Google Scholar] [CrossRef]
- Yang, B.; Xiong, Z.; Wang, J.; Xu, X.; Huang, Q.; Shen, Q. Mitigating net global warming potential and greenhouse gas intensities by substituting chemical nitrogen fertilizers with organic fertilization strategies in rice-wheat annual rotation systems in China: A 3-year field experiment. Ecol. Eng. 2015, 81, 289–297. [Google Scholar] [CrossRef]
- Zhang, M.; Li, B.; Xiong, Z.Q. Effects of organic fertilizer on net global warming potential under an intensively managed vegetable field in southeastern China: A three-year field study. Atmos. Environ. 2016, 145, 92–103. [Google Scholar] [CrossRef]
- Deng, Q.; Hui, D.; Wang, J.; Yu, C.L.; Li, C.; Reddy, K.C.; Dennis, S. Assessing the impacts of tillage and fertilization management on nitrous oxide emissions in a cornfield using the DNDC model. J. Geophys. Res. Biogeosci. 2016, 121, 337–349. [Google Scholar] [CrossRef] [Green Version]
Soil Fertility Inputs | Abbreviations |
---|---|
No input—control | CtC |
Inorganic fertilizer | Mf |
Maize residue + inorganic fertilizer | RMf |
Maize residue + inorganic fertilizer + goat manure | RMfM |
Maize residue + Tithonia diversifolia + goat manure | RTiM |
Period | Treatment 1 | Bulk Density (g cm−3) | pH | Nitrogen (%) | Soil Organic Carbon (%) | C/N Ratio |
---|---|---|---|---|---|---|
Initial | CtC | 0.99 b | 4.87 b | 0.16 | 1.57 b | 10.0 |
Mf | 1.05 a | 4.57 b | 0.17 | 1.75 a | 10.1 | |
RMf | 0.95 c | 4.61 b | 0.16 | 1.68 ab | 10.1 | |
RMfM | 0.97 bc | 4.88 b | 0.17 | 1.69 ab | 10.3 | |
RTiM | 0.97 bc | 5.26 a | 0.17 | 1.83 a | 10.8 | |
p value | <0.0001 | 0.005 | 0.87 | 0.003 | 0.74 | |
Final | CtC | 0.91 | 4.57 b | 0.13 b | 1.52 e | 11.4 |
Mf | 0.89 | 4.25 c | 0.14 b | 1.53 d | 11.2 | |
RMf | 0.85 | 4.44 bc | 0.16 a | 1.86 b | 11.1 | |
RMfM | 1.00 | 5.0 a | 0.16 a | 1.84 c | 11.3 | |
RTiM | 0.80 | 5.17 a | 0.16 a | 2.03 a | 13.1 | |
p–value | 0.07 | <0.0001 | 0.005 | <0.0001 | 0.06 |
Season1 | Treatment 2 | CH4 (kg CH4-C ha−1) | CO2 (Mg CO2-C ha−1) | N2O (g N2O-N ha−1) |
---|---|---|---|---|
LR 19 | CtC | −0.59 ab | 1.45 c | 33.7 c |
Mf | −0.42 a | 1.48 c | 21.8 d | |
RMf | −0.65 ab | 1.58 c | 24.5 d | |
RMfM | −0.73 b | 2.64 b | 72.0 a | |
RTiM | −0.52 ab | 3.19 a | 52.2 b | |
p value | 0.0965 | <0.0001 | <0.0001 | |
SR 19 | CtC | −0.41 d | 3.14 c | 70.3 e |
Mf | −0.21 b | 4.10 bc | 148 c | |
RMf | −0.11 a | 3.16 c | 113 d | |
RMfM | −0.34 c | 4.75 b | 207 a | |
RTiM | −0.33 c | 5.83 a | 192 b | |
p value | <0.0001 | 0.0001 | <0.0001 | |
Annual | CtC | −1.00 b | 4.59 c | 104 e |
Mf | −0.64 a | 5.58 c | 170 c | |
RMf | −0.76 a | 4.75 c | 137 d | |
RMfM | −1.07 b | 7.40 b | 279 a | |
RTiM | −0.86 ab | 9.01 a | 244 b | |
p value | 0.008 | <0.0001 | <0.0001 | |
Seasonal p value 3 | <0.0001 | <0.0001 | <0.0001 | |
Interaction 4 | 0.0099 | 0.1311 | <0.0001 |
Season 1 | Treatment 2 | Biomass (Mg ha−1) | Total Biomass | |||
---|---|---|---|---|---|---|
Grain | Leaf | Stem | Root | |||
LR19 | CtC | 0.001 b | 0.46 b | 0.25 b | 0.11 b | 0.83 b |
Mf | 0.07 ab | 0.88 b | 0.29 b | 0.14 b | 1.38 b | |
RMf | 0.12 ab | 2.09 a | 1.05 a | 0.32 a | 3.58 a | |
RMfM | 0.30 a | 1.75 a | 0.82 a | 0.27 a | 3.14 a | |
RTiM | 0.20 ab | 1.87 a | 1.30 a | 0.30 a | 3.38 a | |
p value | 0.09 | 0.0009 | 0.0004 | 0.01 | 0.0005 | |
SR19 | CtC | 3.79 c | 2.47 b | 1.87 d | 0.44 d | 8.57 d |
Mf | 8.02 a | 3.75 a | 2.98 b | 0.51 c | 15.3 ab | |
RMf | 6.45 ab | 3.43 a | 2.83 b | 0.83 a | 13.6 bc | |
RMfM | 7.69 a | 3.72 a | 3.59 a | 0.79 ab | 15.8 a | |
RTiM | 5.38 bc | 3.40 a | 2.15 c | 0.75 b | 11.7 c | |
p value | 0.0014 | 0.0002 | <0.0001 | <0.0001 | <0.0001 | |
Seasonal p value 3 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Interaction 4 | 0.0002 | 0.003 | <0.0001 | 0.014 | <0.0001 |
Season 1 | Treatment 2 | 6th Leaf Stage | 10th Leaf Stage |
---|---|---|---|
LR 19 | CtC | 0.10 | 0.22 b |
Mf | 0.22 | 0.69 ab | |
RMf | 0.34 | 0.94 a | |
RMfM | 0.30 | 0.38 ab | |
RTiM | 0.25 | 0.49 ab | |
p-value | 0.67 | 0.02 | |
SR 19 | CtC | 1.60 b | 2.87 |
Mf | 2.52 a | 3.19 | |
RMf | 1.56 b | 2.14 | |
RMfM | 2.67 a | 3.24 | |
RTiM | 1.71 b | 3.08 | |
p-value | 0.001 | 0.58 | |
Seasonal p value 3 | <0.0001 | <0.0001 | |
Interaction 4 | 0.01 | 0.47 |
Treatment 1 | N2O YSE 2 [g N2O-N kg−1 Grain Yield] | N2O EF 3 [%] | ΔSOC 4 (Mg CO2-eq ha−1) | Net-GWP 5 (Mg CO2-eq ha−1) | Grain Yield 6 (Mg ha−1) | GHGI 7 (Kg CO2-eq kg−1 Grain Yield) |
---|---|---|---|---|---|---|
CtC | 0.029 c | −0.93 b | 3.39 b | 3.79 c | 0.90 ab | |
Mf | 0.021 d | 0.05 c | −0.46 c | 16.9 a | 8.09 a | 2.15 a |
RMf | 0.020 d | 0.02 d | 3.43 a | −12.6 c | 6.57 ab | −1.89 c |
RMfM | 0.035 b | 0.14 a | 2.82 a | −10.4 c | 7.98 a | −1.33 b |
RTiM | 0.043 a | 0.11 b | 3.99 a | −14.7 c | 5.58 b | −2.81 c |
p value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0011 | 0.0002 |
Parameter | CH4 | CO2 | N2O |
---|---|---|---|
(kg CH4-C ha−1) | (kgCO2-C ha−1) | (kg N2O-N ha−1) | |
Bulk density(g cm−3) | 0.07 1 | −0.65 ** | −0.58 * |
pH | −0.43 | 0.66 ** | 0.45 |
Carbon (%) | 0.13 | 0.38 | 0.27 |
Nitrogen (%) | 0.1 | 0.34 | 0.19 |
C/N ratio | 0.14 | 0.33 | 0.33 |
Root Biomass(Mg/ha) | 0.29 | 0.65 ** | 0.72 ** |
Soil moisture (WFPS %) | 0.1 | 0.72 ** | 0.87 ** |
Ammonium NH4+-N (mg N kg−1) | 0.05 | 0.44 | 0.2 |
Nitrate NO−3-N (mg N kg−1) | −0.67 ** | 0.24 | 0.29 |
Inorganic Nitrogen IN (mg N kg−1) | −0.35 | 0.42 | 0.29 |
LAI (Leaf Area Index) | 0.37 | 0.44 | 0.61 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Githongo, M.W.; Musafiri, C.M.; Macharia, J.M.; Kiboi, M.N.; Fliessbach, A.; Muriuki, A.; Ngetich, F.K. Greenhouse Gas Fluxes from Selected Soil Fertility Management Practices in Humic Nitisols of Upper Eastern Kenya. Sustainability 2022, 14, 1938. https://doi.org/10.3390/su14031938
Githongo MW, Musafiri CM, Macharia JM, Kiboi MN, Fliessbach A, Muriuki A, Ngetich FK. Greenhouse Gas Fluxes from Selected Soil Fertility Management Practices in Humic Nitisols of Upper Eastern Kenya. Sustainability. 2022; 14(3):1938. https://doi.org/10.3390/su14031938
Chicago/Turabian StyleGithongo, Miriam W, Collins M. Musafiri, Joseph M. Macharia, Milka N. Kiboi, Andreas Fliessbach, Anne Muriuki, and Felix K. Ngetich. 2022. "Greenhouse Gas Fluxes from Selected Soil Fertility Management Practices in Humic Nitisols of Upper Eastern Kenya" Sustainability 14, no. 3: 1938. https://doi.org/10.3390/su14031938
APA StyleGithongo, M. W., Musafiri, C. M., Macharia, J. M., Kiboi, M. N., Fliessbach, A., Muriuki, A., & Ngetich, F. K. (2022). Greenhouse Gas Fluxes from Selected Soil Fertility Management Practices in Humic Nitisols of Upper Eastern Kenya. Sustainability, 14(3), 1938. https://doi.org/10.3390/su14031938