VGEs as a New Platform for Urban Modeling and Simulation
Abstract
:1. Introduction
2. Virtual Geographic Environments and Their Features
2.1. Evolution of Virtual Geographic Environments
2.2. The Definition of Virtual Geographic Environments
2.3. Features of Virtual Geographic Environments
2.3.1. Data and Models as Dual Cores
2.3.2. Coupling Human Activities
2.3.3. Multi-Type Representations
2.3.4. Supporting Geo-Collaboration
2.3.5. Interaction across Physical Environments and Virtual Environments
3. Framework of VGE-Based Urban System Modeling and Simulation
- (1)
- Urban geo-data component.
- (2)
- Urban geo-model component.
- (3)
- Urban simulation component.
- (4)
- Urban geo-visualization component.
- (5)
- Urban geo-collaboration.
4. Case Studies
4.1. VGE-Based Collaborative Modeling and Simulation of Air Pollution Dispersion in the PRD Urban Agglomeration
4.1.1. Background
4.1.2. The Architecture
4.1.3. Results
4.2. School Fire Emergency Crowd Evacuation Simulation
4.2.1. Background
4.2.2. The Architecture
4.2.3. Results
5. Conclusions and Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aguilera, F.; Ossio, F. Residential archetypes in urban energy simulation models in Chile: Determining factors of residential energy consumption. Rev. De La Constr. 2017, 16, 527–536. [Google Scholar] [CrossRef] [Green Version]
- Wilson, N.; Fourie, C.J.; Delmistro, R. Mathematical and simulation techniques for modelling urban train networks. S. Afr. J. Ind. Eng. 2016, 27, 109–119. [Google Scholar]
- LiÉVano MartÍNez, F.; Olaya Morales, Y. Agent-Based Simulation Approach to Urban Dynamics Modeling. Dyna 2012, 79, 34–42. [Google Scholar]
- Yan, Y.; Liu, T.; Wang, N.; Yao, Y. Urban sprawl and fiscal stress: Evidence from urbanizing China. Cities 2022, 126, 103699. [Google Scholar] [CrossRef]
- Ding, W.L.; Zhu, X.J.; Xu, B.; Xu, Y.; Chen, K.; Wan, Z.X. The Interactive Modeling Method of Virtual City Scene Based on Building Codes. Ksii Trans. Internet Inf. Syst. 2021, 15, 74–89. [Google Scholar]
- Kim, S.; Kim, D.; Choi, S. CityCraft: 3D virtual city creation from a single image. Vis. Comput. 2020, 36, 911–924. [Google Scholar] [CrossRef]
- Wang, B.; Li, H.J.; Rezgui, Y.; Bradley, A.; Ong, H.N. BIM Based Virtual Environment for Fire Emergency Evacuation. Sci. World J. 2014, 589016. [Google Scholar] [CrossRef]
- Rashid, K.M.; Louis, J.; Fiawoyife, K.K. Wireless electric appliance control for smart buildings using indoor location tracking and BIM-based virtual environments. Autom. Constr. 2019, 101, 48–58. [Google Scholar] [CrossRef]
- Haq, M.A. SMOTEDNN: A Novel Model for Air Pollution Forecasting and AQI Classification. Cmc-Comput. Mater. Contin. 2022, 71, 1403–1425. [Google Scholar]
- Kobarfard, M.; Ola, R.F.; Zarghami, M.; Akbarpour, A. Evaluating the uncertainty of urban flood model using glue approach. Urban Water J. 2022, 19, 600–615. [Google Scholar] [CrossRef]
- Wu, W.H.; Li, J.H.; Yi, W.F.; Zheng, X.P. Modeling Crowd Evacuation via Behavioral Heterogeneity-Based Social Force Model. IEEE Trans. Intell. Transp. Syst. 2022. [Google Scholar] [CrossRef]
- Abel, J.R.; Gabe, T.M. Human Capital and Economic Activity in Urban America. Reg. Stud. 2011, 45, 1079–1090. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Zhi, Y.; Sui, Z.W.; Liu, Y. Intra-Urban Human Mobility and Activity Transition: Evidence from Social Media Check-In Data. PLoS ONE 2014, 9, e97010. [Google Scholar]
- Li, R.; Tong, D.Q. Constructing human activity spaces: A new approach incorporating complex urban activity-travel. J. Transp. Geogr. 2016, 56, 23–35. [Google Scholar] [CrossRef]
- Gonzalez, A.O.O.; Navarro, A.R.; Salgado, R.M.; Nicieza, C.G.; Fernandez, M.I.A. Urban development and human activity as factors in terrain instability in Tijuana. Eng. Fail. Anal. 2012, 19, 51–62. [Google Scholar] [CrossRef]
- Szolnoki, Z.; Farsang, A.; Puskas, I. Cumulative impacts of human activities on urban garden soils: Origin and accumulation of metals. Environ. Pollut. 2013, 177, 106–115. [Google Scholar] [CrossRef]
- Wandersee, S.M.; An, L.; Lopez-Carr, D.; Yang, Y.Q. Perception and decisions in modeling coupled human and natural systems: A case study from Fanjingshan National Nature Reserve, China. Ecol. Model. 2012, 229, 37–49. [Google Scholar] [CrossRef]
- Liu, H.M.; Fang, C.L.; Fang, K. Coupled Human and Natural Cube: A novel framework for analyzing the multiple interactions between humans and nature. J. Geogr. Sci. 2020, 30, 355–377. [Google Scholar] [CrossRef]
- Wu, C.F.; Chen, S.H.; Cheng, C.W.; Trac, L.V. Climate Justice Planning in Global South: Applying a Coupled Nature-Human Flood Risk Assessment Framework in a Case for Ho Chi Minh City, Vietnam. Water 2021, 13, 2021. [Google Scholar] [CrossRef]
- Wei, C.Y.; Jing, C.F.; Wang, S.Q.; Li, D.L. Urban Flood Visualization Framework Based on Spatial Grid. Sens. Mater. 2021, 33, 4579–4593. [Google Scholar] [CrossRef]
- Berger, M.; Bill, R. Combining VR Visualization and Sonification for Immersive Exploration of Urban Noise Standards. Multimodal Technol. Interact. 2019, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Zhi, G.Z.; Liao, Z.L.; Tian, W.C.; Wang, X.; Chen, J.X. A 3D dynamic visualization method coupled with an urban drainage model. J. Hydrol. 2019, 577, 123988. [Google Scholar] [CrossRef]
- Verster, B. Reimagining collaboration in urban planning through a social practice lens: Towards a conceptual framework. Town Reg. Plan. 2020, 76, 86–96. [Google Scholar] [CrossRef]
- Conti, D.d.M.; Guevara, A.J.d.H.; Heinrichs, H.; Silva, L.F.d.; Quaresma, C.C.; Beté, T.d.S. Collaborative governance towards cities sustainability transition. Urbe. Rev. Bras. De Gestão Urbana 2019, 11, e20190046. [Google Scholar] [CrossRef] [Green Version]
- Mariano, D.J.K.; Alves, C.d.M.A. The application of role-playing games and agent-based modelling to the collaborative water management in peri-urban communities. RBRH 2020, 25, e25. [Google Scholar] [CrossRef]
- Deren, L.; Wenbo, Y.; Zhenfeng, S. Smart city based on digital twins. Comput. Urban Sci. 2021, 1, 11. [Google Scholar] [CrossRef]
- Dembski, F.; Woessner, U.; Letzgus, M.; Ruddat, M.; Yamu, C. Urban Digital Twins for Smart Cities and Citizens: The Case Study of Herrenberg, Germany. Sustainability 2020, 12, 2307. [Google Scholar] [CrossRef] [Green Version]
- Schrotter, G.; Huerzeler, C. The Digital Twin of the City of Zurich for Urban Planning. Pfg-J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Bujari, A.; Calvio, A.; Foschini, L.; Sabbioni, A.; Corradi, A. A Digital Twin Decision Support System for the Urban Facility Management Process. Sensors 2021, 21, 8460. [Google Scholar] [CrossRef]
- Batty, M. Virtual geography. Futures 1997, 29, 337–352. [Google Scholar] [CrossRef]
- Jianhua, G.; Hui, L. Virtual Geographic Environments—Geographic Perspective of Online Virtual Reality; High Education Press: Beijing, China, 2001. [Google Scholar]
- Jia, F.L.; You, X.; Tian, J.P.; Song, G.M.; Xia, Q. Formal language for the Virtual Geographic Environment. Environ. Earth Sci. 2015, 74, 6981–7002. [Google Scholar] [CrossRef]
- Bingli, X.; Hui, L.; Chiu, L.; Hu, Y.; Zhu, J.; Hu, M.; Cui, W. Collaborative virtual geographic environments: A case study of air pollution simulation. Inf. Sci. 2011, 181, 2231–2246. [Google Scholar]
- Lin, H.; Hu, M.; Chen, M.; Zhang, F.; You, L.; Chen, Y. Cognitive Transformation from Geographic Information System to Virtual Geographic Environments. J. Geo-Inf. Sci. 2020, 22, 662–672. [Google Scholar]
- Lin, H.; Chen, M.; Lu, G. Virtual geographic environment: A workspace for computer-aided geographic experiments. Ann. Assoc. Am. Geogr. 2013, 103, 465–482. [Google Scholar] [CrossRef]
- You, L.; Lin, H. A Conceptual Framework For Virtual Geographic Environments Knowledge Engineering. In Proceedings of the 23rd Congress of the International-Society-for-Photogrammetry-and-Remote-Sensing (ISPRS), Prague, Czech Republic, 12–19 July 2016; pp. 357–360. [Google Scholar]
- Lin, H.; Xu, B.; Chen, Y.; Jing, Q.; You, L. The Virtual Geographic Environments: More Than the Digital Twin of the Physical Geographical Environments. In New Thinking in GIS; Higher Education Press: Beijing, China, 2022. [Google Scholar]
- Xu, B.; Lin, H.; Chiu, L.; Tang, S.; Cheung, J.; Hu, Y.; Zeng, L. VGE-CUGrid: An integrated platform for efficient configuration, computation, and visualization of MM5. Environ. Model. Softw. 2010, 25, 1894–1896. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, M.; Che, W.; Lin, H.; Fang, C. Framework for Virtual Cognitive Experiment in Virtual Geographic Environments. ISPRS Int. J. Geo-Inf. 2018, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Gong, J.; Li, W.; Xu, T.; Shen, S.; Liang, J.; Feng, Q.; Zhang, D.; Sun, J. Social Force Model-Based Group Behavior Simulation in Virtual Geographic Environments. ISPRS Int. J. Geo-Inf. 2018, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Rink, K.; Chen, C.; Bilke, L.; Liao, Z.L.; Rinke, K.; Frassl, M.; Yue, T.X.; Kolditz, O. Virtual geographic environments for water pollution control. Int. J. Digit. Earth 2018, 11, 397–407. [Google Scholar] [CrossRef]
- Gu, S.W.; Fang, C.Y.; Wang, Y.Q. Virtual Geographic Environment for WATLAC Hydrological Model Integration. In Proceedings of the IEEE 25th International Conference on Geoinformatics, Buffalo, NY, USA, 2–4 August 2017. [Google Scholar]
- Wang, W.H.; Xu, S.; Gong, J.H. Virtual geographic environment based intelligent simulation of SARS diffusion. In Proceedings of the International Conference on Management Science and Engineering, Sydney, Australia, 15–25 October 2005; pp. 682–686. [Google Scholar]
- Tang, L.Y.; Peng, X.M.; Chen, C.C.; Huang, H.Y.; Lin, D. Three-dimensional Forest growth simulation in virtual geographic environments. Earth Sci. Inform. 2019, 12, 31–41. [Google Scholar] [CrossRef]
- Yin, L.Z.; Zhu, J.; Li, Y.; Zeng, C.; Zhu, Q.; Qi, H.; Liu, M.W.; Li, W.; Cao, Z.Y.; Yang, W.J.; et al. A Virtual Geographic Environment for Debris Flow Risk Analysis in Residential Areas. ISPRS Int. J. Geo-Inf. 2017, 6, 377. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Z.; Fang, C.Y.; Wang, Y.Q. Design of Aquatic Ecological Security Evaluation System Based on Virtual Geographic Environment. In Proceedings of the 7th International Conference on Manufacturing Science and Engineering (ICMSE), Zhuhai, China, 11–12 March 2017; pp. 51–54. [Google Scholar]
- Li, Y.H.; Xu, Z.J.; Zhang, J.Q.; Zhao, M. An Urban Traffic Decision Analysis Platform Based On Virtual Geographic Environments (VGEs). In Proceedings of the IEEE 5th International Conference on Information Science, Computer Technology and Transportation (ISCTT), Shenyang, China, 13–15 November 2020; pp. 540–543. [Google Scholar]
- Zhu, J.; Yin, L.; Wang, J.; Zhang, H.; Hu, Y.; Liu, Z. Dam-Break Flood Routing Simulation and Scale Effect Analysis Based on Virtual Geographic Environment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 105–113. [Google Scholar] [CrossRef]
- Avagyan, A.; Manandyan, H.; Arakelyan, A.; Piloyan, A. Toward a disaster risk assessment and mapping in the virtual geographic environment of Armenia. Nat. Hazards 2018, 92, 283–309. [Google Scholar] [CrossRef]
- Ning, X.W.; Zhu, Q.; Zhang, H.; Wang, C.J.; Han, Z.J.; Zhang, J.X.; Zhao, W. Dynamic Simulation Method of High-Speed Railway Engineering Construction Processes Based on Virtual Geographic Environment. ISPRS Int. J. Geo-Inf. 2020, 9, 292. [Google Scholar] [CrossRef]
- Winde, F.; Hoffmann, E.; Espina, C.; Schuz, J. Mapping and modelling human exposure to uraniferous mine waste using a GIS-supported virtual geographic environment. J. Geochem. Explor. 2019, 204, 167–180. [Google Scholar] [CrossRef]
- Silva, D.S.E.; Fook, K.D.; dos Santos, A.L.S.; Borges, E.P.; Bezerra, D.D.S.; Conceicao, D.V. 3D Visualization and Simulation Module based on Virtual Geographic Environments for Sea Level Rise on Ponta da Areia Beach—Sao Luis, Maranhao, Brazil. In Proceedings of the 9th International Conference on Advanced Geographic Information Systems, Applications, and Services (GEOProcessing), Nice, France, 19–23 March 2017; pp. 81–84. [Google Scholar]
- Chen, M.; Lin, H.; Lu, G. Virtual geographic environments. In International Encyclopedia of Geography: People, the Earth, Environment and Technology: People, the Earth, Environment and Technology; Wiley: Hoboken, NJ, USA, 2016; pp. 1–11. [Google Scholar]
- Lin, H.; Chen, M.; Lu, G.; Zhu, Q.; Gong, J.; You, X.; Wen, Y.; Xu, B.; Hu, M. Virtual geographic environments (VGEs): A new generation of geographic analysis tool. Earth-Sci. Rev. 2013, 126, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Gong, J. Exploring virtual geographic environments. Geogr. Inf. Sci. 2001, 7, 1–7. [Google Scholar] [CrossRef]
- Wan, G.; Lin, H.; Zhu, Q.; Liu, Y. Virtual Geographical Environment. In Advances in Cartography and Geographic Information Engineering; Springer: Berlin/Heidelberg, Germany, 2021; pp. 443–477. [Google Scholar]
- Lü, G. Geographic analysis-oriented virtual geographic environment: Framework, structure and functions. Sci. China Earth Sci. 2011, 54, 733–743. [Google Scholar] [CrossRef]
- Chen, M.; Lin, H.; Kolditz, O.; Chen, C. Developing Dynamic Virtual Geographic Environments (VGEs) for Geographic Research; Springer: Berlin/Heidelberg, Germany, 2015; Volume 74, pp. 6975–6980. [Google Scholar]
- Lü, G.; Yu, Z.; Zhou, L.; Wu, M.; Sheng, Y.; Yuan, L. Data environment construction for virtual geographic environment. Environ. Earth Sci. 2015, 74, 7003–7013. [Google Scholar] [CrossRef]
- Yuan, L.; Lü, G.; Luo, W.; Yu, Z.; Yi, L.; Sheng, Y. Geometric algebra method for multidimensionally-unified GIS computation. Chin. Sci. Bull. 2012, 57, 802–811. [Google Scholar] [CrossRef] [Green Version]
- Goodchild, M.F.; Glennon, A. Representation and computation of geographic dynamics. In Understanding Dynamics of Geographic Domains; CRC Press: Boca Raton, FL, USA, 2008; pp. 31–48. [Google Scholar]
- Yuan, M.; Miller, H.; Han, J. Knowledge discovery of geographic dynamics in spatiotemporal data. In Geographic Data Mining and Knowledge Discovery, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 347–366. [Google Scholar]
- Napieralski, J.; Harbor, J.; Li, Y. Glacial geomorphology and geographic information systems. Earth-Sci. Rev. 2007, 85, 1–22. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, H.; Xiao, L.; Jing, Q.; You, L.; Ding, Y.; Hu, M.; Devlin, A.T. Versioned geoscientific workflow for the collaborative geo-simulation of human-nature interactions—A case study of global change and human activities. Int. J. Digit. Earth 2021, 14, 510–539. [Google Scholar] [CrossRef]
- MacEachren, A.M. Cartography and GIS: Extending collaborative tools to support virtual teams. Prog. Hum. Geogr. 2001, 25, 431–444. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Tan, L.; Ren, Y.; Li, F. Intelligent interaction with virtual geographical environments based on geographic knowledge graph. ISPRS Int. J. Geo-Inf. 2019, 8, 428. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Lin, H. Virtual Geographic Environments (VGEs): Originating from or beyond Virtual Reality (VR)? Taylor & Francis: Abingdon, UK, 2018; Volume 11, pp. 329–333. [Google Scholar]
- Lin, H.; Batty, M. Virtual geographic environments: A primer. In Virtual Geographic Environments; Science Press: Beijing, China, 2009; pp. 1–10. [Google Scholar]
- Kelly, R.A.; Jakeman, A.J.; Barreteau, O.; Borsuk, M.E.; ElSawah, S.; Hamilton, S.H.; Henriksen, H.J.; Kuikka, S.; Maier, H.R.; Rizzoli, A.E. Selecting among five common modelling approaches for integrated environmental assessment and management. Environ. Model. Softw. 2013, 47, 159–181. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Yu, P.; Gong, J.; Shen, S.; Huang, L.; Liang, J. Modeling, simulation and analysis of the evacuation process on stairs in a multi-floor classroom building of a primary school. Phys. A Stat. Mech. Its Appl. 2017, 469, 157–172. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Xu, B.; Chen, Y.; Li, W.; You, L.; He, J. VGEs as a New Platform for Urban Modeling and Simulation. Sustainability 2022, 14, 7980. https://doi.org/10.3390/su14137980
Lin H, Xu B, Chen Y, Li W, You L, He J. VGEs as a New Platform for Urban Modeling and Simulation. Sustainability. 2022; 14(13):7980. https://doi.org/10.3390/su14137980
Chicago/Turabian StyleLin, Hui, Bingli Xu, Yuting Chen, Wenhang Li, Lan You, and Jie He. 2022. "VGEs as a New Platform for Urban Modeling and Simulation" Sustainability 14, no. 13: 7980. https://doi.org/10.3390/su14137980
APA StyleLin, H., Xu, B., Chen, Y., Li, W., You, L., & He, J. (2022). VGEs as a New Platform for Urban Modeling and Simulation. Sustainability, 14(13), 7980. https://doi.org/10.3390/su14137980