Multiscale Accessibility—A New Perspective of Space Structuration
Abstract
:1. Introduction
2. Developments in Accessibility Research: A Conceptual Perspective
2.1. The origins of the Accessibility Concept and the Foundations of Structuration of Spatial Organization
2.2. Spatial Interaction
2.2.1. Accessibility Research and Physical Organization of Space—The Physical–Morphological Approach
2.2.2. Movement Flows and Functional Organization of Space—The Functional Approach
2.3. Configurational Approach, Space Syntax and Accessibility
2.4. A Multiscale Accessibility Examination
3. Discussion
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Batty, M. Accessibility: In Search of a Unified Theory. Environ. Plan. B Plan. Des. 2009, 36, 191–194. [Google Scholar] [CrossRef]
- Gil Solá, A.; Vilhelmson, B.; Larsson, A. Understanding Sustainable Accessibility in Urban Planning: Themes of Consensus, Themes of Tension. J. Transp. Geogr. 2018, 70, 1–10. [Google Scholar] [CrossRef]
- Hansen, W.G. How Accessibility Shapes Land Use. J. Am. Inst. Plan. 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Miller, E.J. Accessibility: Measurement and Application in Transportation Planning. Transp. Rev. 2018, 38, 551–555. [Google Scholar] [CrossRef]
- Morris, J.M.; Dumble, P.L.; Wigan, M.R. Accessibility Indicators for Transport Planning. Transp. Res. Part A Gen. 1979, 13, 91–109. [Google Scholar] [CrossRef]
- Vickerman, R.W. Accessibility, Attraction, and Potential: A Review of Some Concepts and Their Use in Determining Mobility. Env. Plan. A 1974, 6, 675–691. [Google Scholar] [CrossRef] [Green Version]
- Alawadi, K.; Khaleel, S.; Benkraouda, O. Design and Planning for Accessibility: Lessons from Abu Dhabi and Dubai’s Neighborhoods. J. Hous. Built Environ. 2021, 36, 487–520. [Google Scholar] [CrossRef]
- Bielik, M.; König, R.; Schneider, S.; Varoudis, T. Measuring the Impact of Street Network Configuration on the Accessibility to People and Walking Attractors. Netw. Spat. Econ. 2018, 18, 657–676. [Google Scholar] [CrossRef]
- Chen, Z.; Yeh, A.G.-O. Accessibility Inequality and Income Disparity in Urban China: A Case Study of Guangzhou. Ann. Am. Assoc. Geogr. 2019, 109, 121–141. [Google Scholar] [CrossRef]
- El-Geneidy, A.M.; Levinson, D.M. Access to Destinations: Development of Accessibility Measures. In Access to Destinations Study; Minnesota Department of Transportation: Minneapolis, MN, USA, 2006. [Google Scholar]
- Geurs, K.T.; van Wee, B. Accessibility Evaluation of Land-Use and Transport Strategies: Review and Research Directions. J. Transp. Geogr. 2004, 12, 127–140. [Google Scholar] [CrossRef]
- Handy, S.; Niemeier, D.A. Measuring Accessibility: An Exploration of Issues and Alternatives. Environ. Plan. A 1997, 29, 1175–1194. [Google Scholar] [CrossRef]
- Markovich, J. Accessibility, Equity and Transport. In Moving Towards Low Carbon Mobility; Edward Elgar Publishing: Cheltenham, UK, 2013; pp. 26–42. ISBN 978-1-78100-723-5. [Google Scholar]
- Gutiérrez, J.; Urbano, P. Accessibility in the European Union: The Impact of the Trans-European Road Network. J. Transp. Geogr. 1996, 4, 15–25. [Google Scholar] [CrossRef]
- Horner, M.W. Exploring Metropolitan Accessibility and Urban Structure. Urban Geogr. 2004, 25, 264–284. [Google Scholar] [CrossRef]
- Law, S.; Versluis, L. How Do UK Regional Commuting Flows Relate to Spatial Configuration? In Proceedings of the 10th International Space Syntax Symposium, London, UK, 13–17 July 2015; Volume 74, pp. 1–21. [Google Scholar]
- Serra, M.; Pinho, P. Tackling the Structure of Very Large Spatial Systems-Space Syntax and the Analysis of Metropolitan Form. J. Space Syntax 2013, 4, 178–196. [Google Scholar]
- Vandenbulcke, G.; Steenberghen, T.; Thomas, I. Mapping Accessibility in Belgium: A Tool for Land-Use and Transport Planning? J. Transp. Geogr. 2009, 17, 39–53. [Google Scholar] [CrossRef]
- Agrawal, W.A.; Schlossberg, M.; Irvin, K. How Far, by Which Route and Why? A Spatial Analysis of Pedestrian Preference. J. Urban Des. 2008, 13, 81–98. [Google Scholar] [CrossRef]
- Delice, Y.; Özen, H.; Amirnazmiafshar, E. Analyzing Modal Shift Based on Critical Travel Time for Different Trip Purposes in Medium-Sized City. In Proceedings of the International Conference on Transportation and Development 2019, Alexandria, VA, USA, 9–12 June 2019; American Society of Civil Engineers: Alexandria, VA, USA, 2019; pp. 269–279. [Google Scholar]
- Kang, C.-D. The Effects of Spatial Accessibility and Centrality to Land Use on Walking in Seoul, Korea. Cities 2015, 46, 94–103. [Google Scholar] [CrossRef]
- Lee, S.; Yoo, C.; Seo, K.W. Determinant Factors of Pedestrian Volume in Different Land-Use Zones: Combining Space Syntax Metrics with GIS-Based Built-Environment Measures. Sustainability 2020, 12, 8647. [Google Scholar] [CrossRef]
- Ton, D.; Duives, D.C.; Cats, O.; Hoogendoorn-Lanser, S.; Hoogendoorn, S.P. Cycling or Walking? Determinants of Mode Choice in the Netherlands. Transp. Res. Part A Policy Pract. 2019, 123, 7–23. [Google Scholar] [CrossRef]
- Yang, R.; Yan, H.; Xiong, W.; Liu, T. The Study of Pedestrian Accessibility to Rail Transit Stations Based on KLP Model. Procedia Soc. Behav. Sci. 2013, 96, 714–722. [Google Scholar] [CrossRef] [Green Version]
- Harvey, D. Explanation in Geography; Edward Arnold: London, UK, 1969. [Google Scholar]
- Watson, M.K. The Scale Problem in Human Geography. Geogr. Annaler. Ser. B Hum. Geogr. 1978, 60, 36–47. [Google Scholar] [CrossRef]
- Meentemeyer, V. Geographical Perspectives of Space, Time, and Scale. Landsc. Ecol. 1989, 3, 163–173. [Google Scholar] [CrossRef]
- Herod, A. Scale; Routledge: London, UK, 2010. [Google Scholar]
- Batty, M. On Scale and Size. Environ. Plan. B Urban Anal. City Sci. 2020, 47, 359–362. [Google Scholar] [CrossRef]
- von Thünen, J.H. Die Isolierte Staat, 1826. In Beziehung auf Landwirtshaft und Nationalökonomie; Hall, P.G., Ed.; Wartenberg, C.M., Translator; Pergamon Press: New York, NY, USA, 1966. [Google Scholar]
- Dauphiné, A. Theories of Geographical Locations. In Geographical Models with Mathematica; Elsevier: Amsterdam, The Netherlands, 2017; pp. 115–128. ISBN 978-1-78548-225-0. [Google Scholar]
- Portugali, J. Complexity, Cognition and the City. In Springer Complexity; Springer: Heidelberg, NY, USA, 2011; ISBN 978-3-642-19450-4. [Google Scholar]
- Weber, A. Theory of the Location of Industries; Friedrich, C.J., Ed.; The University of Chicago Press: Chicago, IL, USA, 1929. [Google Scholar]
- Burgess, E.W. The Growth of the City. In The City; Park, R.E., Burgess, E.W., McKenzie, R.D., Eds.; University of Chicago Press: Chicago, IL, USA, 1925; pp. 47–62. [Google Scholar]
- Hoyt, H. The Structure and Growth of Residential Neighborhoods in American Cities; Federal Housing Administration: Washington, DC, USA, 1939.
- Alonso, W. Location and Land Use: Toward a General Theory of Land Rent; Harvard University Press: Cambridge, MA, USA, 1964. [Google Scholar]
- Mann, P. An Approach to Urban Sociology; Routlege: London, UK, 1965. [Google Scholar]
- Dear, M.; Flusty, S. Postmodern Urbanism. Ann. Assoc. Am. Geogr. 1998, 88, 50–72. [Google Scholar] [CrossRef]
- Pacione, M. Models of Urban Land Use Structure in Cities of the Developed World. Geogr. Assoc. 2001, 86, 97–119. [Google Scholar]
- Pacione, M. The Internal Structure of Cities in the Third World. Geography 2001, 86, 189–209. [Google Scholar]
- Pacione, M. Urban Geography—A Global Perspective, 3rd ed.; Routledge: London, UK, 2009. [Google Scholar]
- Harris, C.D.; Ullman, E.L. The Nature of Cities. Annu. Am. Acad. Political Sci. 1945, 242, 7–17. [Google Scholar] [CrossRef]
- Vance, J.E.J. Geography and Urban Evolution in the San Fransisco Bay Area; Institute of Goverment, University of California: Berkeley, CA, USA, 1964. [Google Scholar]
- Copus, A.K. From Core-Periphery to Polycentric Development: Concepts of Spatial and Aspatial Peripherality. Eur. Plan. Stud. 2001, 9, 539–552. [Google Scholar] [CrossRef]
- De Goei, B.; Burger, M.J.; Van Oort, F.G.; Kitson, M. Functional Polycentrism and Urban Network Development in the Greater South East, United Kingdom: Evidence from Commuting Patterns, 1981–2001. Reg. Stud. 2010, 44, 1149–1170. [Google Scholar] [CrossRef]
- Hall, P.; Pain, K. The Polycentric Metropolis: Learning from Mega-City Regions in Europe; Earthscan: London, UK, 2006; ISBN 978-1-84407-329-0. [Google Scholar]
- Pain, K. Examining ‘Core–Periphery’ Relationships in a Global City-Region: The Case of London and South East England. Reg. Stud. 2008, 42, 1161–1172. [Google Scholar] [CrossRef]
- Zhong, C.; Schläpfer, M.; Müller Arisona, S.; Batty, M.; Ratti, C.; Schmitt, G. Revealing Centrality in the Spatial Structure of Cities from Human Activity Patterns. Urban Stud. 2017, 54, 437–455. [Google Scholar] [CrossRef] [Green Version]
- Christaller, W. Die Zentralen Orte in Suddeutschland. In Jena: Gustav Fischer, 1933; Baskin, C.W., Translator; Prentice-Hall: Hoboken, NJ, USA, 1966. [Google Scholar]
- Ullman, E.L. A Theory of Location for Cities. Am. J. Sociol. 1941, 46, 853–864. [Google Scholar] [CrossRef]
- Lösch, A. The Nature of Economic Regions. South. Econ. J. 1938, 5, 71. [Google Scholar] [CrossRef]
- Lösch, A. The Economics of Location; Yale University Press: New Haven, CT, USA, 1954. [Google Scholar]
- Beavon, K.S.O.; Mabin, A.S. The Lösch System of Market Areas: Derivation and Extension. Geogr. Anal. 2010, 7, 131–152. [Google Scholar] [CrossRef]
- Beckmann, M.J.; McPherson, J.C. City Size Distribution in A Central Place Hierarchy: An Alternative Approach. J. Reg. Sci. 1970, 10, 25–33. [Google Scholar] [CrossRef]
- Berry, B.J.L.; Garrison, W.L. Recent Developments in Central Place Theory. Pap. Proc. Reg. Sci. Assoc. 1958, 4, 107–120. [Google Scholar] [CrossRef]
- Berry, B.J.L.; Pred, A. Central Place Studies: A Bibliography of Theory and Applications; Regional Science Research Institute: Philadelphia, PA, USA, 1961. [Google Scholar]
- Boventer, E. Walter Christaller’s Central Places and Peripheral Areas: The Central Place Theory in Retrospect. J. Reg. Sci. 1969, 9, 117–124. [Google Scholar] [CrossRef]
- Colwell, P.F. Central Place Theory and The Simple Economic Foundations of The Gravity Model. J. Reg. Sci. 1982, 22, 541–546. [Google Scholar] [CrossRef]
- Hsu, W.-T. Central Place Theory and City Size Distribution. Econ. J. 2012, 122, 903–932. [Google Scholar] [CrossRef]
- Keith, S.; Beavon, O. Central Place Theory: A Reinterpretation; Longman: London, UK, 1977. [Google Scholar]
- Parr, J.B.; Denike, K.G. Theoretical Problems in Central Place Analysis. Econ. Geogr. 1970, 46, 568. [Google Scholar] [CrossRef]
- Sonis, M. Central Place Theory after Christaller and Lösch: Some Further Explorations. In Space-Structure-Economy: A Tribute to August Lösch; Blum, U., Funck, R.H., Kowalski, J.S., Kuklinski, A., Rothengatter, W., von Thadden, G., Eds.; Nomos Verlagsgesellschaft mbH & Co KG: Baden-Baden, Germany, 2007; pp. 229–287. ISBN 978-3-8452-0183-2. [Google Scholar]
- Taylor, P.J. Cities, World Cities, Networks and Globalization; GaWC Research Bulletin 238: Loughborough, UK, 2007. [Google Scholar]
- Taylor, P.J.; Hoyler, M.; Verbruggen, R. External Urban Relational Process: Introducing Central Flow Theory to Complement Central Place Theory. Urban Stud. 2010, 47, 2803–2818. [Google Scholar] [CrossRef] [Green Version]
- Vionis, A.; Papantoniou, G. Central Place Theory Reloaded and Revised: Political Economy and Landscape Dynamics in the Longue Durée. Land 2019, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- North, D.C. Location Theory and Regional Economic Growth. J. Political Econ. 1955, 63, 243–258. [Google Scholar] [CrossRef]
- Capello, R. Location, Regional Growth and Local Development Theories. Aestimum 2011, 58, 1–25. [Google Scholar]
- Krugman, P. Increasing Returns and Economic Geography. J. Political Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Krugman, P. The Role of Geography in Development. Int. Reg. Sci. Rev. 1999, 22, 142–161. [Google Scholar] [CrossRef] [Green Version]
- Schürmann, C.; Talaat, A. Towards a European Peripherality Index. In Report for General Directorate XVI Regional Policy of the European Commission; Fakultät Raumplanung, Universität Dortmund: Dortmund, Germany, 2000; pp. 1–48. [Google Scholar]
- Spiekermann, K.; Neubauer, J. European Accessibility and Peripherality: Concepts, Models and Indicators; Nordregio Working Paper; Nordregio: Stockholm, Sweden, 2002; Volume 9, pp. 1–46. [Google Scholar]
- Giddens, A. The Constitution of Society: Outline of the Theory of Structuration; University of California Press: Berkeley, CA, USA, 1984. [Google Scholar]
- Bar-El, R.; Parr, J.B. Overreliance on the Core—Periphery Model? The Case of Israel. Environ. Plan. C Gov. Policy 2003, 21, 353–369. [Google Scholar] [CrossRef]
- Lanaspa, L.F.; Pueyo, F.; Sanz, F. The Public Sector and Core-Periphery Models. Urban Stud. 2001, 38, 1639–1649. [Google Scholar] [CrossRef]
- Cronon, W. Nature’s Metropolis: Chicago and the Great West; Norton: New York, NY, USA, 1991. [Google Scholar]
- Stewart, J.Q. Demographic Gravitation: Evidence and Applications. Sociometry 1948, 11, 31. [Google Scholar] [CrossRef]
- Condeço-Melhorado, A.; Reggiani, A.; Gutiérrez, J. Accessibility and Spatial Interaction: An Introduction. In Accessibility and Spatial Interaction; Edward Elgar Publishing: Cheltenham, UK, 2014; pp. 1–12. ISBN 978-1-78254-073-1. [Google Scholar]
- Wang, J. Economic Geography: Spatial Interaction. In International Encyclopedia of Geography: People, the Earth, Environment and Technology; Richardson, D., Castree, N., Goodchild, M.F., Kobayashi, A., Liu, W., Marston, R.A., Eds.; John Wiley & Sons, Ltd.: Oxford, UK, 2017; pp. 1–4. ISBN 978-0-470-65963-2. [Google Scholar]
- Wilson, A.G. A Statistical Theory of Spatial Distribution Models. Transp. Res. 1967, 1, 253–269. [Google Scholar] [CrossRef]
- Alexander, D.W.; Merkert, R. Applications of Gravity Models to Evaluate and Forecast US International Air Freight Markets Post-GFC. Transp. Policy 2021, 104, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Batty, M. Visualizing Aggregate Movement in Cities. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170236. [Google Scholar] [CrossRef] [PubMed]
- Batty, M.; Milton, R. A New Framework for Very Large-Scale Urban Modelling. Urban Stud. 2021, 58, 3071–3094. [Google Scholar] [CrossRef]
- Chen, Y. Urban Gravity Model Based on Cross-Correlation Function and Fourier Analyses of Spatio-Temporal Process. Chaos Solitons Fractals 2009, 41, 603–614. [Google Scholar] [CrossRef]
- Chen, Y. The Distance-Decay Function of Geographical Gravity Model: Power Law or Exponential Law? Chaos Solitons Fractals 2015, 77, 174–189. [Google Scholar] [CrossRef] [Green Version]
- Clarke, G.; Langley, R.; Cardwell, W. Empirical Applications of Dynamic Spatial Interaction Models. Comput. Environ. Urban Syst. 1998, 22, 157–184. [Google Scholar] [CrossRef]
- Hong, I.; Jung, W.-S.; Jo, H.-H. Gravity Model Explained by the Radiation Model on a Population Landscape. PLoS ONE 2019, 14, e0218028. [Google Scholar] [CrossRef]
- Masucci, A.P.; Serras, J.; Johansson, A.; Batty, M. Gravity versus Radiation Models: On the Importance of Scale and Heterogeneity in Commuting Flows. Phys. Rev. E 2013, 88, 022812. [Google Scholar] [CrossRef] [Green Version]
- Piovani, D.; Arcaute, E.; Uchoa, G.; Wilson, A.; Batty, M. Measuring Accessibility Using Gravity and Radiation Models. R. Soc. Open Sci. 2018, 5, 171668. [Google Scholar] [CrossRef] [Green Version]
- Wajdi, N.; Adioetomo, S.M.; Mulder, C.H. Gravity Models of Interregional Migration in Indonesia. Bull. Indones. Econ. Stud. 2017, 53, 309–332. [Google Scholar] [CrossRef] [Green Version]
- Yeghikyan, G.; Opolka, F.L.; Nanni, M.; Lepri, B.; Lio’, P. Learning Mobility Flows from Urban Features with Spatial Interaction Models and Neural Networks. In Proceedings of the 2020 IEEE International Conference on Smart Computing (SMARTCOMP 2020), Bologna, Italy, 14–17 September 2020. [Google Scholar]
- Anas, A. Discrete Choice Theory, Information Theory and the Multinomial Logit and Gravity Models. Transp. Res. Part B Methodol. 1983, 17, 13–23. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, S.; He, Z.; He, B.; Yu, H.; Ye, X.; Yang, H.; Zhang, X.; Chi, Z. Spatial Pattern and Evolution of Urban System Based on Gravity Model and Whole Network Analysis in the Huaihe River Basin of China. Discret. Dyn. Nat. Soc. 2018, 2018, 3698071. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; O’Kelly, M.E. Spatial Interaction Models: Formulations and Applications. In Studies in Operational Regional Science; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA, 1989; ISBN 978-0-7923-0021-2. [Google Scholar]
- Lukermann, F.; Porter, P.W. Gravity and Potential Models in Economic Geography. Ann. Assoc. Am. Geogr. 1960, 50, 493–504. [Google Scholar] [CrossRef]
- Ubøe, J. Aggregation of Gravity Models for Journeys to Work. Environ. Plan. A 2004, 36, 715–729. [Google Scholar] [CrossRef] [Green Version]
- Ullman, E.L. American Commodity Flow: A Geographical Interpretation of Rail and Water Traffic Based on Principles of Spatial Interchange; University of Washington Press: Seattle, DC, USA, 1957. [Google Scholar]
- Ullman, E.L. Geography as Spatial Interaction; University of Washington Press: Seattle, DC, USA, 1980. [Google Scholar]
- Wilson, A.G. Some New Forms of Spatial Interaction Model: A Review. Transp. Res. 1975, 9, 167–179. [Google Scholar] [CrossRef]
- Deboosere, R.; El-Geneidy, A. Evaluating Equity and Accessibility to Jobs by Public Transport across Canada. J. Transp. Geogr. 2018, 73, 54–63. [Google Scholar] [CrossRef]
- Graves, B.A. A Model for Assessment of Potential Geographical Accessibility: A Case for GIS. Online J. Rural Nurs. Health Care 2009, 9, 46–55. [Google Scholar] [CrossRef]
- Yang, D.-H.; Goerge, R.; Mullner, R. Comparing GIS-Based Methods of Measuring Spatial Accessibility to Health Services. J. Med. Syst. 2006, 30, 23–32. [Google Scholar] [CrossRef]
- Cortés, Y. Spatial Accessibility to Local Public Services in an Unequal Place: An Analysis from Patterns of Residential Segregation in the Metropolitan Area of Santiago, Chile. Sustainability 2021, 13, 442. [Google Scholar] [CrossRef]
- Talen, E.; Anselin, L. Assessing Spatial Equity: An Evaluation of Measures of Accessibility to Public Playgrounds. Env. Plan A 1998, 30, 595–613. [Google Scholar] [CrossRef] [Green Version]
- García-Palomares, J.C.; Gutiérrez, J.; Cardozo, O.D. Walking Accessibility to Public Transport: An Analysis Based on Microdata and GIS. Environ. Plan. B Plan. Des. 2013, 40, 1087–1102. [Google Scholar] [CrossRef]
- Karlström, A.; Mattsson, L.-G. Place, Space Syntax and Attraction-Accessibility. In Proceedings of the 7th International Space Syntax Symposium, Stockholm: KTH, Stockholm, Sweden, 8–11 June 2009; Volume 104, pp. 1–4. [Google Scholar]
- Shen, Y.; Karimi, K. Urban Function Connectivity: Characterisation of Functional Urban Streets with Social Media Check-in Data. Cities 2016, 55, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Araldi, A.; Fusco, G. From the Street to the Metropolitan Region: Pedestrian Perspective in Urban Fabric Analysis. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1243–1263. [Google Scholar] [CrossRef]
- Chen, A.; Yang, C.; Kongsomsaksakul, S.; Lee, M. Network-Based Accessibility Measures for Vulnerability Analysis of Degradable Transportation Networks. Netw. Spat Econ 2007, 7, 241–256. [Google Scholar] [CrossRef]
- Giuliano, G.; Redfearn, C.; Agarwal, A.; He, S. Network Accessibility and Employment Centres. Urban Stud. 2012, 49, 77–95. [Google Scholar] [CrossRef]
- Hou, Q.; Li, S.-M. Transport Infrastructure Development and Changing Spatial Accessibility in the Greater Pearl River Delta, China, 1990–2020. J. Transp. Geogr. 2011, 19, 1350–1360. [Google Scholar] [CrossRef]
- Tannous, H.O.; Major, M.D.; Furlan, R. Accessibility of Green Spaces in a Metropolitan Network Using Space Syntax to Objectively Evaluate the Spatial Locations of Parks and Promenades in Doha, State of Qatar. Urban For. Urban Green. 2021, 58, 126892. [Google Scholar] [CrossRef]
- Rofè, Y. Mobility, Accessibility, and Urban Form. In The New Companion to Urban Design; Banerjee, T., Loukaitou-Sideris, A., Eds.; Routledge: London, UK, 2019; pp. 599–611. ISBN 978-0-203-73193-2. [Google Scholar]
- Hillier, B.; Yang, T.; Turner, A. Normalising Least Angle Choice in Depthmap: And How It Opens up New Perspectives on the Global and Local Analysis of City Space. J. Space Syntax 2012, 3, 155–193. [Google Scholar]
- Yu, W. The Analysis and Delimitation of Central Business District Using Network Kernel Density Estimation. J. Transp. Geogr. 2015, 45, 32–47. [Google Scholar] [CrossRef]
- Parham, E.; Law, S.; Versluis, L. National Scale Modelling to Test UK Population Growth and Infrastructure Scenarios. In Proceedings of the 11th Space Syntax Symposium, Lisbon, Portugal, 3–7 July 2017; Volume 103, pp. 1–17. [Google Scholar]
- Zhang, X.; Du, S.; Zhang, J. How Do People Understand Convenience-of-Living in Cities? A Multiscale Geographic Investigation in Beijing. ISPRS J. Photogramm. Remote Sens. 2019, 148, 87–102. [Google Scholar] [CrossRef]
- Benenson, I.; Martens, K.; Rofé, Y.; Kwartler, A. Public Transport versus Private Car GIS-Based Estimation of Accessibility Applied to the Tel Aviv Metropolitan Area. Ann. Reg. Sci. 2011, 47, 499–515. [Google Scholar] [CrossRef] [Green Version]
- Miller, H.J.; Wu, Y.-H. GIS Software for Measuring Space-Time Accessibility in Transportation Planning and Analysis. GeoInformatica 2000, 4, 141–159. [Google Scholar] [CrossRef]
- van Wee, B.; Hagoort, M.; Annema, J.A. Accessibility Measures with Competition. J. Transp. Geogr. 2001, 9, 199–208. [Google Scholar] [CrossRef]
- Hillier, B.; Iida, S. Network Effects and Psychological Effects: A Theory of Urban Movement. In Proceedings of the 5th International Symposium on Space Syntax, Delft, The Netherlands, 13–17 June 2005; pp. 553–564. [Google Scholar]
- Omer, I.; Jiang, B. Can Cognitive Inferences Be Made from Aggregate Traffic Flow Data? Comput. Environ. Urban Syst. 2015, 54, 219–229. [Google Scholar] [CrossRef]
- Church, R.L.; Marston, J.R. Measuring Accessibility for People with a Disability. Geogr. Anal. 2003, 35, 83–96. [Google Scholar] [CrossRef]
- Zhang, Q.; Northridge, M.E.; Jin, Z.; Metcalf, S.S. Modeling Accessibility of Screening and Treatment Facilities for Older Adults Using Transportation Networks. Appl. Geogr. 2018, 93, 64–75. [Google Scholar] [CrossRef]
- Vale, D.S.; Saraiva, M.; Pereira, M. Active Accessibility: A Review of Operational Measures of Walking and Cycling Accessibility. J. Transp. Land Use 2016, 9, 209–235. [Google Scholar] [CrossRef]
- Berghauser Pont, M.; Stavroulaki, G.; Bobkova, E.; Gil, J.; Marcus, L.; Olsson, J.; Sun, K.; Serra, M.; Hausleitner, B.; Dhanani, A.; et al. The Spatial Distribution and Frequency of Street, Plot and Building Types across Five European Cities. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1226–1242. [Google Scholar] [CrossRef] [Green Version]
- Berghauser Pont, M.; Marcus, L. Innovations in Measuring Density. From Area and Location Density to Accessible and Perceived Density. Nord. J. Archit. Res. 2014, 2, 11–30. [Google Scholar]
- Bobkova, E.; Marcus, L.; Berghauser Pont, M.; Stavroulaki, I.; Bolin, D. Structure of Plot Systems and Economic Activity in Cities: Linking Plot Types to Retail and Food Services in London, Amsterdam and Stockholm. Urban Sci. 2019, 3, 66. [Google Scholar] [CrossRef] [Green Version]
- Marcus, L.; Berghauser Pont, M.; Stavroulaki, G.; Bobkova, J. Location-Based Density and Diversity—Adding Attraction Variables to Space Syntax. In Proceedings of the 24th ISUF 2017—City and Territory in the Globalization Age, Universitat Politècnica València, Valencia, Spain, 27 September 2017; p. 1. [Google Scholar]
- Carcach, C.A. Size, Accessibility and Crime in Regional Australia; Australian Institute of Criminology: Canberra, Australia, 2000; pp. 1–6. [Google Scholar]
- Conesa, A. The Accessibility Assessment and the Regional Range of Transit-Oriented Development: An Application of Schedule Accessibility Measures in the Nord Pas-de-Calais Region. J. Transp. Land Use 2018, 11, 119–141. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Jiang, Y. Measuring Accessibility of Urban Scales: A Trip-Based Interaction Potential Model. Adv. Eng. Inform. 2021, 48, 101293. [Google Scholar] [CrossRef]
- Serra, M.; Hillier, B.; Karimi, K. Exploring Countrywide Spatial Systems: Spatio-Structural Correlates at the Regional and National Scales. In Proceedings of the 10th International Space Syntax Symposium, London, UK, 13–17 July 2015; Volume 84, pp. 1–18. [Google Scholar]
- Vieira, R.S.; Haddad, E.A. An Accessibility Index for the Metropolitan Region of São Paulo. In The Rise of the City; Edward Elgar Publishing: Cheltenham, UK, 2015; pp. 242–258. ISBN 978-1-78347-536-0. [Google Scholar]
- Wachs, M.; Kumagai, T.G. Physical Accessibility as a Social Indicator. Socio-Econ. Plan. Sci. 1973, 7, 437–456. [Google Scholar] [CrossRef]
- Christiaanse, S. Rural Facility Decline: A Longitudinal Accessibility Analysis Questioning the Focus of Dutch Depopulation-Policy. Appl. Geogr. 2020, 121, 102251. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Y.; Miao, S.; Niu, X. Assessing Polycentric Urban Development in Shanghai, China, with Detailed Passive Mobile Phone Data. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 2656–2674. [Google Scholar] [CrossRef]
- Zhong, C.; Arisona, S.M.; Huang, X.; Batty, M.; Schmitt, G. Detecting the Dynamics of Urban Structure through Spatial Network Analysis. Int. J. Geogr. Inf. Sci. 2014, 28, 2178–2199. [Google Scholar] [CrossRef]
- Hall, P. Looking Backward, Looking Forward: The City Region of the Mid-21st Century. Reg. Stud. 2009, 43, 803–817. [Google Scholar] [CrossRef]
- Song, C.; Qu, Z.; Blumm, N.; Barabasi, A.-L. Limits of Predictability in Human Mobility. Science 2010, 327, 1018–1021. [Google Scholar] [CrossRef] [Green Version]
- González, M.C.; Hidalgo, C.A.; Barabási, A.-L. Understanding Individual Human Mobility Patterns. Nature 2008, 453, 779–782. [Google Scholar] [CrossRef]
- Louail, T.; Lenormand, M.; Cantu Ros, O.G.; Picornell, M.; Herranz, R.; Frias-Martinez, E.; Ramasco, J.J.; Barthelemy, M. From Mobile Phone Data to the Spatial Structure of Cities. Sci. Rep. 2015, 4, 5276. [Google Scholar] [CrossRef] [Green Version]
- Zhong, C.; Manley, E.; Müller Arisona, S.; Batty, M.; Schmitt, G. Measuring Variability of Mobility Patterns from Multiday Smart-Card Data. J. Comput. Sci. 2015, 9, 125–130. [Google Scholar] [CrossRef]
- Burger, M.J.; van der Knaap, B.; Wall, R.S. Polycentricity and the Multiplexity of Urban Networks. Eur. Plan. Stud. 2014, 22, 816–840. [Google Scholar] [CrossRef]
- Givoni, M. Assessing Core-Periphery Relation through Travel Patterns—The Case of Israel. Res. Transp. Econ. 2017, 63, 73–85. [Google Scholar] [CrossRef]
- Adrienko, N.; Adrienko, G. Spatial Generalization and Aggregation of Massive Movement Data. IEEE Trans. Vis. Comput. Graph. 2011, 17, 205–219. [Google Scholar] [CrossRef]
- Burger, M.; Meijers, E. Form Follows Function? Linking Morphological and Functional Polycentricity. Urban Stud. 2012, 49, 1127–1149. [Google Scholar] [CrossRef]
- Razin, E.; Charney, I. Metropolitan Dynamics in Israel: An Emerging “Metropolitan Island State”? Urban Geogr. 2015, 36, 1131–1148. [Google Scholar] [CrossRef]
- Thiemann, C.; Theis, F.; Grady, D.; Brune, R.; Brockmann, D. The Structure of Borders in a Small World. PLoS ONE 2010, 5, e15422. [Google Scholar] [CrossRef]
- Roth, C.; Kang, S.M.; Batty, M.; Barthélemy, M. Structure of Urban Movements: Polycentric Activity and Entangled Hierarchical Flows. PLoS ONE 2011, 6, e15923. [Google Scholar] [CrossRef] [Green Version]
- Vasanen, A. Functional Polycentricity: Examining Metropolitan Spatial Structure through the Connectivity of Urban Sub-Centres. Urban Stud. 2012, 49, 3627–3644. [Google Scholar] [CrossRef]
- Taylor, P.; Derudder, B. World City Network; Routledge: London, UK, 2004; ISBN 978-1-134-41500-7. [Google Scholar]
- Zheng, L.; Long, F.; Zhang, S. Comparison of the Spaces of Call and Traffic Flows: An Empirical Study of Qianzhong Urban Region, China. Cities 2020, 107, 102927. [Google Scholar] [CrossRef]
- Alexander, C. A City Is Not a Tree. Archit. Forum 1965, 122, 58–62. [Google Scholar]
- Batty, M. Inventing Future Cities; The MIT Press: Cambridge, MA, USA, 2018; ISBN 978-0-262-34989-5. [Google Scholar]
- Zhong, C.; Batty, M.; Manley, E.; Wang, J.; Wang, Z.; Chen, F.; Schmitt, G. Variability in Regularity: Mining Temporal Mobility Patterns in London, Singapore and Beijing Using Smart-Card Data. PLoS ONE 2016, 11, e0149222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schleith, D.; Widener, M.J.; Kim, C.; Liu, L. Assessing the Delineated Commuter Sheds of Various Clustering Methods. Comput. Environ. Urban Syst. 2018, 71, 81–87. [Google Scholar] [CrossRef]
- Ogulenko, A.; Benenson, I.; Omer, I.; Alon, B. Probabilistic Positioning in Mobile Phone Network and Its Consequences for the Privacy of Mobility Data. Comput. Environ. Urban Syst. 2021, 85, 101550. [Google Scholar] [CrossRef]
- Hillier, B. Space Is the Machine: A Configurational Theory of Architecture; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Hillier, B.; Hanson, J. The Social Logic of Space; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Karimi, K. A Configurational Approach to Analytical Urban Design: ‘Space Syntax’ Methodology. Urban Des. Int. 2012, 17, 297–318. [Google Scholar] [CrossRef]
- Krenz, K. The Emergence of Spatial Scales in Urban Regions. In Proceedings of the 11th Space Syntax Symposium, Lisbon, Portugal, 3–7 July 2017; Volume 74, pp. 1–23. [Google Scholar]
- Al Sayed, K.; Turner, A.; Hillier, B.; Iida, S.; Penn, A. Space Syntax Methodology, 4th ed.; Bartlett School of Architecture: London, UK, 2014. [Google Scholar]
- Karimi, K. Space Syntax: Consolidation and Transformation of an Urban Research Field. J. Urban Des. 2018, 23, 1–4. [Google Scholar] [CrossRef] [Green Version]
- van Nes, A.; Yamu, C. Introduction to Space Syntax in Urban Studies; Springer International Publishing: Cham, Germany, 2021; ISBN 978-3-030-59139-7. [Google Scholar]
- Yamu, C.; van Nes, A.; Garau, C. Bill Hillier’s Legacy: Space Syntax—A Synopsis of Basic Concepts, Measures, and Empirical Application. Sustainability 2021, 13, 3394. [Google Scholar] [CrossRef]
- Marcus, L. Ecological Space and Cognitive Geometry: Linking Humans and Environment in Space Syntax Theory. In Proceedings of the 10th International Space Syntax Symposium, London, UK, 13–17 July 2015; Volume 124, pp. 1–9. [Google Scholar]
- Kaplan, N.; Burg, D.; Omer, I. The Spatial Organization of Accessibility and Functional Hierarchy: The Case of Israel. Comput. Environ. Urban Syst. 2020, 80, 101429. [Google Scholar] [CrossRef]
- Jayasinghe, A.; Madusanka, N.B.S.; Abenayake, C.; Mahanama, P.K.S. A Modeling Framework: To Analyze the Relationship between Accessibility, Land Use and Densities in Urban Areas. Sustainability 2021, 13, 467. [Google Scholar] [CrossRef]
- Serra, M.; Hillier, B. Angular and Metric Distance in Road Network Analysis: A Nationwide Correlation Study. Comput. Environ. Urban Syst. 2019, 74, 194–207. [Google Scholar] [CrossRef]
- Sharmin, S.; Kamruzzaman, M. Meta-Analysis of the Relationships between Space Syntax Measures and Pedestrian Movement. Transp. Rev. 2018, 38, 524–550. [Google Scholar] [CrossRef]
- Hillier, B.; Penn, A.; Hanson, J.; Grajewski, T.; Xu, J. Natural Movement: Or, Configuration and Attraction in Urban Pedestrian Movement. Environ. Plann. B 1993, 20, 29–66. [Google Scholar] [CrossRef] [Green Version]
- Hillier, B. Cities as Movement Economies. Urban Des. Int. 1996, 1, 41–60. [Google Scholar] [CrossRef]
- Penn, A.; Turner, A. Movement-Generated Land-Use Agglomeration: Simulation Experiments on the Drivers of Fine-Scale Land-Use Patterning. Urban Des. Int. 2004, 9, 81–96. [Google Scholar] [CrossRef]
- Hillier, B. Centrality as a Process: Accounting for Attraction Inequalities in Deformed Grids. Urban Design Int. 1999, 4, 107–127. [Google Scholar] [CrossRef]
- Shen, Y.; Karimi, K. Urban Evolution as a Spatio-Functional Interaction Process: The Case of Central Shanghai. J. Urban Des. 2018, 23, 42–70. [Google Scholar] [CrossRef]
- Hillier, B. Spatial Sustainability in Cities: Organic Patterns and Sustainable Forms. In Proceedings of the 7th International Space Syntax Symposium, Stockholm, Sweden, 8–11 June 2009; Volume K01, p. 20. [Google Scholar]
- Hillier, B. Studying Cities to Learn about Minds: Some Possible Implications of Space Syntax for Spatial Cognition. Environ. Plan. B Plan. Des. 2012, 39, 12–32. [Google Scholar] [CrossRef]
- Hillier, B. The Genetic Code for Cities: Is It Simpler than We Think? In Complexity Theories of Cities Have Come of Age; Portugali, J., Meyer, H., Stolk, E., Tan, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 129–152. ISBN 978-3-642-24543-5. [Google Scholar]
- Kaplan, N.; Burg, D.; Omer, I. Multiscale Accessibility and Urban Performance. Environ. Plan. B Urban Anal. City Sci. 2022, 49, 687–703. [Google Scholar] [CrossRef]
- Jiang, B. A Topological Representation for Taking Cities as a Coherent Whole: Topological Representation. Geogr. Anal. 2018, 50, 298–313. [Google Scholar] [CrossRef] [Green Version]
- Curtis, C. Integrating Land Use with Public Transport: The Use of a Discursive Accessibility Tool to Inform Metropolitan Spatial Planning in Perth. Transp. Rev. 2011, 31, 179–197. [Google Scholar] [CrossRef]
- Boeing, G. Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined Neighborhood. Urban Sci. 2019, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.C.W.; Yeh, A.G.O. The Use of Modal Accessibility Gap as an Indicator for Sustainable Transport Development. Environ. Plan. A 2004, 36, 921–936. [Google Scholar] [CrossRef]
- Boeing, G. A Multi-Scale Analysis of 27,000 Urban Street Networks: Every US City, Town, Urbanized Area, and Zillow Neighborhood. Environ. Plan. B Urban Anal. City Sci. 2020, 47, 590–608. [Google Scholar] [CrossRef] [Green Version]
- Yamu, C.; Frankhauser, P. Spatial Accessibility to Amenities, Natural Areas and Urban Green Spaces: Using a Multiscale, Multifractal Simulation Model for Managing Urban Sprawl. Environ. Plan. B Plan. Des. 2015, 42, 1054–1078. [Google Scholar] [CrossRef]
- Berghauser Pont, M.; Stavroulaki, G.; Gil, J.; Marcus, L.; Serra, M.; Hausleitnet, B.; Olsson, J.; Abshirini, E.; Dhanani, A. Quantitative Comparison of Cities: Distribution of Street and Building Types Based on Density and Centrality Measures. In Proceedings of the 11th Space Syntax Symposium, Lisbon, Portugal, 3–7 July 2017; Volume 44, pp. 1–18. [Google Scholar]
- Berghauser Pont, M.; Stavroulaki, G.; Marcus, L. Development of Urban Types Based on Network Centrality, Built Density and Their Impact on Pedestrian Movement. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1549–1564. [Google Scholar] [CrossRef]
- Omer, I.; Kaplan, N. Structural Properties of the Angular and Metric Street Network’s Centralities and Their Implications for Movement Flows. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1182–1200. [Google Scholar] [CrossRef]
- Rotem-Mindali, O.; Geffen, D. Rail Transportation and Core-Periphery Reliance in Israel. J. Urban Reg. Anal. 2014, VI, 113–127. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaplan, N.; Omer, I. Multiscale Accessibility—A New Perspective of Space Structuration. Sustainability 2022, 14, 5119. https://doi.org/10.3390/su14095119
Kaplan N, Omer I. Multiscale Accessibility—A New Perspective of Space Structuration. Sustainability. 2022; 14(9):5119. https://doi.org/10.3390/su14095119
Chicago/Turabian StyleKaplan, Nir, and Itzhak Omer. 2022. "Multiscale Accessibility—A New Perspective of Space Structuration" Sustainability 14, no. 9: 5119. https://doi.org/10.3390/su14095119
APA StyleKaplan, N., & Omer, I. (2022). Multiscale Accessibility—A New Perspective of Space Structuration. Sustainability, 14(9), 5119. https://doi.org/10.3390/su14095119