Long-Term Degradation Trend Prediction and Remaining Useful Life Estimation for Solid Oxide Fuel Cells
Abstract
:1. Introduction
- To improve the durability, a dynamic model of the ohmic ASR is proposed, which can accurately evaluate the performance degradation characteristics of the SOFC;
- Based on the established dynamic model, the PF algorithm is proposed to achieve the long-term prediction of the degradation trend and the accurate estimation of the RUL of the SOFC.
2. Nonlinear Dynamic Model of the SOFC
2.1. Energy Balance Sub-Model
2.2. Electrochemical Sub-Model
3. Degradation Trend Prediction and RUL Estimation of the SOFC
3.1. Particle Filter Algorithm
3.2. Prediction of the Degradation Trend Based on the PF Algorithm
3.3. Estimation of the RUL
Algorithm 1 RUL estimation algorithm |
End While End |
4. Results and Discussion
4.1. ASR Prediction Results of the Degradation Trend
4.2. RUL Prediction Results of the Degradation Trend
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, X.; Xu, L.; Wang, J.; Yang, D.; Zhang, M.; Li, X. Discharge performance recovery of a solid oxide fuel cell based on a prognostic-based control strategy. J. Power Sources 2020, 480, 229102. [Google Scholar] [CrossRef]
- Yan, D.; Liang, L.; Yang, J.; Zhang, T.; Pu, J.; Chi, B.; Li, J. Performance degradation and analysis of 10-cell anode-supported SOFC stack with external manifold structure. Energy 2017, 125, 663–670. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Jiang, J.; Zhao, W.; Li, X.; Li, J. Two-dimensional temperature distribution estimation for a cross-flow planar solid oxide fuel cell stack. Int. J. Hydrogen Energy 2020, 45, 2257–2278. [Google Scholar] [CrossRef]
- Huo, H.; Xu, K.; Cui, L.; Zhang, H.; Xu, J.; Kuang, X. Temperature gradient control of the solid oxide fuel cell under variable load. ACS Omega 2021, 6, 27610–27619. [Google Scholar] [CrossRef]
- Wu, X.; Xu, L.; Wang, J.; Yang, D.; Li, F.; Li, X. A prognostic-based dynamic optimization strategy for a degraded solid oxide fuel cell. Sustain. Energy Technol. Assess. 2020, 39, 100682. [Google Scholar] [CrossRef]
- Wu, X.-L.; Xu, Y.-W.; Xue, T.; Zhao, D.-Q.; Jiang, J.; Deng, Z.; Fu, X.; Li, X. Health state prediction and analysis of SOFC system based on the data-driven entire stage experiment. Appl. Energy 2019, 248, 126–140. [Google Scholar] [CrossRef]
- Liu, H.; Chen, J.; Hissel, D.; Su, H. Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method. Appl. Energy 2019, 237, 910–919. [Google Scholar] [CrossRef]
- Arriagada, J.; Olausson, P.; Selimovic, A. Artificial neural network simulator for SOFC performance prediction. J. Power Sources 2002, 112, 54–60. [Google Scholar] [CrossRef]
- Campanari, S. Full load and part-load performance prediction for integrated SOFC and microturbine systems. J. Eng. Gas Turbines Power 2000, 122, 239–246. [Google Scholar] [CrossRef]
- Marra, D.; Sorrentino, M.; Pianese, C.; Iwanschitz, B. A neural network estimator of Solid Oxide Fuel Cell performance for on-field diagnostics and prognostics applications. J. Power Sources 2013, 241, 320–329. [Google Scholar] [CrossRef]
- Zaccaria, V.; Tucker, D.; Traverso, A. A distributed real-time model of degradation in a solid oxide fuel cell, part I: Model characterization. J. Power Sources 2016, 311, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Zaccaria, V.; Tucker, D.; Traverso, A. A distributed real-time model of degradation in a solid oxide fuel cell, part II: Analysis of fuel cell performance and potential failures. J. Power Sources 2016, 327, 736–742. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.Z.; Mehran, M.T.; Song, R.-H.; Lee, J.-W.; Lee, S.-B.; Lim, T.-H. A simplified approach to predict performance degradation of a solid oxide fuel cell anode. J. Power Sources 2018, 391, 94–105. [Google Scholar] [CrossRef]
- Dolenc, B.; Boškoski, P.; Stepančič, M.; Pohjoranta, A.; Juričić, Đ. State of health estimation and remaining useful life prediction of solid oxide fuel cell stack. Energy Convers. Manag. 2017, 148, 993–1002. [Google Scholar] [CrossRef]
- Lim, H.T.; Hwang, S.C.; Jung, M.G.; Park, H.W.; Park, M.Y.; Lee, S.S.; Jung, Y.G. Degradation mechanism of anode-supported solid oxide fuel cell in planar-cell channel-type setup. Fuel Cells 2013, 13, 712–719. [Google Scholar] [CrossRef]
- Iwanschitz, B.; Holzer, L.; Mai, A.; Schütze, M. Nickel agglomeration in solid oxide fuel cells: The influence of temperature. Solid State Ion. 2012, 211, 69–73. [Google Scholar] [CrossRef]
- Dolenc, B.; Boskoski, P.; Pohjoranta, A.; Noponen, M.; Juricic, D. Hybrid approach to remaining useful life prediction of solid oxide fuel cell stack. ECS Trans. 2017, 78, 2251–2264. [Google Scholar] [CrossRef]
- Yu, S.; Fernando, T.; Iu, H.H.-C. A comparison study for the estimation of SOFC internal dynamic states in complex power systems using filtering algorithms. IEEE Trans. Ind. Inform. 2017, 13, 1027–1035. [Google Scholar] [CrossRef]
- Jouin, M.; Gouriveau, R.; Hissel, D.; Péra, M.-C.; Zerhouni, N. Prognostics of PEM fuel cell in a particle filtering framework. Int. J. Hydrogen Energy 2014, 39, 481–494. [Google Scholar] [CrossRef] [Green Version]
- Gallo, M.; Marra, D.; Sorrentino, M.; Pianese, C.; Au, S.F. A versatile computational tool for model-based design, control and diagnosis of a generic solid oxide fuel cell integrated stack module. Energy Convers. Manag. 2018, 171, 1514–1528. [Google Scholar] [CrossRef]
- Gazzarri, J.I.; Kesler, O. Short-stack modeling of degradation in solid oxide fuel cells—Part I. contact degradation. J. Power Sources 2008, 176, 138–154. [Google Scholar] [CrossRef]
- Yang, Z.; Weil, K.S.; Paxton, D.M.; Stevenson, J.W. Selection and evaluation of heat-resistant alloys for SOFC interconnect applications. J. Electrochem. Soc. 2003, 150, A1188–A1201. [Google Scholar] [CrossRef]
- Hou, P.Y.; Huang, K.Q.; Bakker, W.T. Promises and problems with metallic interconnects for reduced temperature solid oxide fuel cells. In Proceedings of the 6th International Symposium on Solid Oxide Fuel Cells (SOFC-VI), Honolulu, HI, USA, 17–22 October 1999; pp. 737–748. [Google Scholar]
- Larrain, D.; Van Herle, J.; Favrat, D. Simulation of SOFC stack and repeat elements including interconnect degradation and anode reoxidation risk. J. Power Sources 2006, 161, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Zerhouni, N.; Lu, C. A hybrid remaining useful life prognostic method for proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2018, 43, 12314–12327. [Google Scholar] [CrossRef]
- Chi, Y.; Qiu, Y.; Lin, J.; Song, Y.; Hu, Q.; Li, W.; Mu, S. Online identification of a link function degradation model for solid oxide fuel cells under varying-load operation. Int. J. Hydrogen Energy 2022, 47, 2622–2646. [Google Scholar] [CrossRef]
- Naeini, M.; Cotton, J.S.; Adams, T.A. Dynamic life cycle assessment of solid oxide fuel cell system considering long-term degradation effects. Energy Convers. Manag. 2022, 255, 115336. [Google Scholar] [CrossRef]
Symbol | Definition | Value |
---|---|---|
number of cells | 5 | |
stack lumped thermal capacity | 5500 J·K−1 | |
active area | 100 cm2 | |
the initial mole fraction of hydrogen | 0.97 | |
the initial mole fraction of oxygen | 0.21 | |
the initial mole fraction of water vapor | 0.03 | |
minimal nominal acceptable voltage | 4 V | |
ideal gas constant | 8.3142 J·mol−1·K−1 | |
Faraday constant | 96,485 C·mol−1 | |
activation energy for the scale growth | 220 K J·mol−1 | |
activation energy for the oxide scale conductivity | 75.2 K J·mol−1 | |
rate constant for the thickness growth of the scale | 0.0126 cm2·s−1 | |
conductivity constant | 3.2 × 105 S·cm−1 |
PF | KF | |
---|---|---|
RMSE | 0.0008 | 0.0126 |
MAPE | 0.0430 | 1.4582 |
R2 | 0.9866 | 0.8895 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Huo, H.; Xie, G.; Xu, J.; Kuang, X.; Dong, Z. Long-Term Degradation Trend Prediction and Remaining Useful Life Estimation for Solid Oxide Fuel Cells. Sustainability 2022, 14, 9069. https://doi.org/10.3390/su14159069
Cui L, Huo H, Xie G, Xu J, Kuang X, Dong Z. Long-Term Degradation Trend Prediction and Remaining Useful Life Estimation for Solid Oxide Fuel Cells. Sustainability. 2022; 14(15):9069. https://doi.org/10.3390/su14159069
Chicago/Turabian StyleCui, Lixiang, Haibo Huo, Genhui Xie, Jingxiang Xu, Xinghong Kuang, and Zhaopeng Dong. 2022. "Long-Term Degradation Trend Prediction and Remaining Useful Life Estimation for Solid Oxide Fuel Cells" Sustainability 14, no. 15: 9069. https://doi.org/10.3390/su14159069
APA StyleCui, L., Huo, H., Xie, G., Xu, J., Kuang, X., & Dong, Z. (2022). Long-Term Degradation Trend Prediction and Remaining Useful Life Estimation for Solid Oxide Fuel Cells. Sustainability, 14(15), 9069. https://doi.org/10.3390/su14159069