Seasonal Variations in Grain Yield, Greenhouse Gas Emissions and Carbon Sequestration for Maize Cultivation in Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedures
2.2. Greenhouse Gas Measurement
2.3. Statistical Tools Used in the Current Study
3. Results
3.1. Seasonal Grain Yield Variability
Items | Emissions (kg ha−1) | Comments |
---|---|---|
Land preparation | 156.146 | About 80% of the land was prepared by a power tiller and 20% by a tractor [19]. About 45% of labour force emits CH4 at 1.12 kg CO2 capita−1 man-day−1 (adapted from https://badgut.org). Diesel-burning emissions of 3.56 kg CO2 L−1 [38]. |
Seed (21 kg ha−1) | 23.52 | Seed rate 21–23 kg ha−1 [39] and CO2 eq emissions of 1.12 kg ha−1 [40]. |
Seeding | 10.08 | About 20 man-days ha−1 for manual seeding. About 45% of labour force emits CH4 at 1.12 kg CO2 eq. man-day1. |
Fertilisers | 2152.702 | Fertiliser at 484–214–166 kg ha−1 for urea, TSP and MoP, respectively [41]. One-fifth of urea is generally imported. For imported and manufactured urea, the GHGs were 0.93 and 4 kg CO2 kg−1, respectively, and 1.29 kg CO2 eq kg−1 for TSP and 1.47 kg CO2 eq kg−1 for MoP [42,43]. |
Irrigation-3x | 1594.13 | The average water requirement for maize is 398.56 mm ha−1 [44]. GHG emissions were estimated based on [18]. |
Insecticide-2x | 69.44 | About 250 mL ha−1 was used for one spray. The emissions considered were 21.7 kg CO2 eq. ha−1 [45]. |
Weeding-2x | 21.28 | About 42 man-day ha−1 for hand weeding [17]. |
Harvesting | 15.68 | Harvesting is mostly done manually and requires about 31 man-day ha−1. |
Shelling/Threshing | 115.3804 | 96% of maize is threshed by machine [46] and the rest is threshed manually. Diesel burning emits 3.56 kg CO2 eq. ha−1 [38]. |
Steel-embedded emissions for thresher | 3.375 | Emissions at 2.7 kg CO2 eq. kg−1 steel [42]. In 5 years, open-drum threshing for 300 ha and close-drum for 600 ha. |
Total indirect | 4161.733 | |
Field-measured | ||
N2O (as CO2 eq.) | 111.3 | |
Respiratory CO2 | 673.64 | |
Total direct | 784.94 | |
Grand total | 4946.673 |
3.2. Seasonal GHG Emission Intensity
3.3. Seasonal Total GHG Emissions
3.4. Net Carbon Sequestration Rate
3.5. Total Net CO2 Sequestration
3.6. Spatio-Temporal Distribution of Carbon Emissions and Sequestration
4. Discussion
4.1. Grain Yield Variability
4.2. GHG Emission Intensity
4.3. Total GHG Emissions
4.4. Net Carbon Sequestration Rate
4.5. Total Net CO2 Sequestration
4.6. Spatio-Temporal Distribution of Carbon Emissions and Sequestration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Com. 2015, 6, 5989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, I.; Rahman, M.H.U.; Ahmed, S.; Hussain, J.; Ullah, A.; Judge, J. Assessing the impact of climate variability on maize using simulation modeling under semi-arid environment of Punjab, Pakistan. Environ. Sci. Pollu. Res. 2018, 25, 28413–28430. [Google Scholar] [CrossRef] [PubMed]
- Golla, B.; Tadesse, B.; Chalsisa, D.; Bayisa, E. Effect of sowing time and environmental variation on yield of different maize varieties. Open J. Plant Sci. 2018, 3, 041–045. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Karmakar, S.; Minz, A.; Singh, J.; Kumar, A.; Kumar, A. Assessment of Greenhouse Gases Emission in Maize-Wheat Cropping System Under Varied N Fertilizer Application Using Cool Farm Tool. Front. Environ. Sci. 2021, 9, 710108. [Google Scholar] [CrossRef]
- Butts-Wilmsmeyer, C.J.; Seebauer, J.R.; Singleton, L.; Below, F.E. Weather during key growth stages explains grain quality and yield of maize. Agronomy 2019, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, A.L.; Kemanian, A.R.; Forest, C.E. The response of maize, sorghum and soybean yield to growing-phase climate revealed with machine learning. Environ. Res. Lett. 2020, 15, 094013. [Google Scholar] [CrossRef]
- Smith, P.; Martina, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B 2017, 363, 789–813. [Google Scholar] [CrossRef] [Green Version]
- Rice, C.W. Carbon cycle in soils|Dynamics and management. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 164–170. ISBN 9780123485304. [Google Scholar] [CrossRef]
- Raich, J.W.; Potter, C.S. Global patterns of carbon dioxide emissions from soils. Glob. Biogeochem. Cycles 1995, 9, 23–36. [Google Scholar] [CrossRef] [Green Version]
- FAO (Food and Agriculture Organization of the United Nations). Emissions due to agriculture. In Global, Regional and Country Trends 2000–2018; FAOSTAT Analytical Brief Series No 18.; FAO: Rome, Italy, 2020. [Google Scholar]
- Zhang, D.; Shen, J.; Zhang, F.; Li, Y.; Zhang, W. Carbon footprint of grain production in China. Sci. Rep. 2017, 7, 4126. [Google Scholar] [CrossRef] [Green Version]
- Lotze-Campe, H. Climate change, population growth and crop production: An overview. In Crop Adaptation to Climate Change, 1st ed.; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; JohnWiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Hossain, M.S.; Arshad, M.; Qian, L.; Zhao, M.; Mehmood, Y.; Kächele, H. Economic impact of climate change on crop farming in Bangladesh: An application of Ricardian method. Ecol. Econ. 2019, 164, 106354. [Google Scholar] [CrossRef]
- Johnson, M.D.; Rutland, C.T.; Richardson, J.W.; Outlaw, J.L.; Nixon, C.J. Greenhouse gas emissions from U.S. grain farms. J. Crop Improv. 2016, 30, 447–477. [Google Scholar] [CrossRef]
- Haque, M.M.; Biswas, J.C. Emission factors and global warming potential as influenced by fertilizer management for the cultivation of rice under varied growing seasons. Environ. Res. 2021, 197, 111156. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.M.; Biswas, J.C.; Salahin, N.; Alam, K.M.; Akhter, S.; Akhtar, S.; Maniruzzaman, M.; Hossain, S.M. Tillage systems influence on greenhouse gas emission factor and global warming potential under rice-mustard-rice cropping system. Arch. Agron. Soil Sci. 2022. [Google Scholar] [CrossRef]
- BBS (Bangladesh Bureau of Statistics). Statistical Year Book of Bangladesh, 39th ed.; Statistics Division, Ministry of Planning: Dhaka, Bangladesh, 2019; pp. 141–167.
- Maniruzzaman, M.; Biswas, J.C.; Hossain, M.B.; Roy, D.; Yesmin, M.S.; Kundu, P.K.; Haque, M.M.; Naher, U.A.; Rahman, M.M.; Akhter, S. Irrigation water-energy nexus: GHG emissions in Bangladesh. In First Annual Report on CRP-II project, Second Phase; Krishi Gobeshona Foundation: Dhaka, Bangladesh, 2021; p. 505. [Google Scholar]
- Hossen, M.A.; Talukder, M.R.A.; Mamun, M.R.A.; Paul, S.; Rahman, M.M.; Miaruddin, M.; Ali, M.A.; Islam, M.N. Mechanization status, promotional activities and government strategies of Thailand and Vietnam in comparison to Bangladesh. AgriEngineering 2020, 2, 489–510. [Google Scholar] [CrossRef]
- Sahakian, A.B.; Jee, S.R.; Pimentel, M. Methane and the gastrointestinal tract. Dig. Dis. Sci. 2010, 55, 2135–2143. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B.E.; Keck, P. Energy requirements and greenhouse gas emissions of maize production in the USA. Bioenerg. Res. 2014, 7, 753–764. [Google Scholar] [CrossRef]
- Hou, L.; Yang, Y.; Zhang, X.; Jiang, C. Carbon footprint for wheat and maize production modulated by farm size: A study in the North China plain. Int. J. Clim. Change Strateg. Manag. 2021, 13, 302–319. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; pp. 1–151. [Google Scholar]
- Jansson, C.; Faiola, C.; Wingler, A.; Zhu, X.G.; Kravchenko, A.; de Graaff, M.-A.; Ogden, A.J.; Handakumbura, P.P.; Werner, C.; Beckles, D.M. Crops for carbon farming. Front. Plant Sci. 2021, 12, 636709. [Google Scholar] [CrossRef]
- Tiefenbacher, A.; Sandén, T.; Haslmayr, H.-P.; Miloczki, J.; Wenzel, W.; Spiegel, H. Optimizing carbon sequestration in croplands: A synthesis. Agronomy 2021, 11, 882. [Google Scholar] [CrossRef]
- Smith, P.; Lanigan, G.; Kutsch, W.L.; Buchmann, N.; Eugster, W.; Aubinet, M.; Ceschi, E.; Béziat, P.; Yeluripati, J.B.; Osborne, B.; et al. Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agric. Ecosyst. Environ. 2010, 139, 302–315. [Google Scholar] [CrossRef]
- Ma, Y.C.; Kong, X.W.; Yang, B.; Zhang, X.L.; Yan, X.Y.; Yang, J.C.; Xiong, Z.Q. Net global warming potential and greenhouse gas intensity of annual rice-wheat rotations with integrated soil crop system management. Agric. Ecosyst. Environ. 2013, 164, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Zheng, X.; Liu, C.; Lin, S.; Zuo, Q.; Butterbach-Bahl, K. Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films. Sci. Rep. 2017, 7, 39855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BBS (Bangladesh Bureau of Statistics). Yearbook of Agricultural Statistics, 31st Series; Statistics and Informatics Division, Ministry of Planning: Dhaka, Bangladesh, 2020; pp. 86–90. [Google Scholar]
- Alam, M.M.; Basher, M.M.; Karim, A.; Rahman, M.A.; Islam, M.R. Effect of rate of nitrogen fertilizer and population density on the yield and yield attributes of maize (Zea mays). Pak. J. Biol. Sci. 2003, 6, 1770–1773. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.R.; Rahman, R.; Hasan, A.K.; Paul, S.K.; Alam, A.H.M.J. Effect of variety and spacing on the yield performance of maize (Zea mays L.) in old Brahmaputra floodplain area of Bangladesh. Arch. Agric. Environ. Sci. 2018, 3, 270–274. [Google Scholar] [CrossRef]
- Haque, M.M.; Biswas, J.C.; Maniruzaman, M.; Akhter, S.; Kabir, M.S. Carbon sequestration in paddy soil as influenced by organic and inorganic amendments. Carbon Manag. 2020, 11, 231–239. [Google Scholar] [CrossRef]
- Haque, M.M.; Biswas, J.C.; Hwang, H.Y.; Kim, P.J. Annual net carbon budget in rice soil. Nutr. Cycl. Agroecosyst. 2020, 116, 31–40. [Google Scholar] [CrossRef]
- Haque, M.M.; Biswas, J.C.; Maniruzzaman, M.; Hossain, M.B.; Islam, M.R. Water management and soil amendment for reducing emission factor and global warming potential but improving rice yield. Paddy Water Environ. 2021, 19, 515–527. [Google Scholar] [CrossRef]
- Lou, Y.; Li, Z.; Zhang, T.; Liang, Y. CO2 emissions from subtropical arable soils of China. Soil Biol. Biochem. 2004, 36, 1835–1842. [Google Scholar] [CrossRef]
- Singh, S.; Singh, J.; Kashyap, A. Methane flux from irrigated rice fields in relation to crop growth and N-fertilization. Soil Biol. Biochem. 1999, 31, 1219–1228. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, C.; Ma, Y.; Liu, Y.; Li, L.; Zhou, Q.; Xiong, Z. Two approaches for net ecosystem carbon budgets and soil carbon sequestration in a rice-wheat rotation system in China. Nutr. Cyc. Agroecosys. 2014, 100, 301–313. [Google Scholar] [CrossRef]
- Flessa, H.; Ruser, R.; Dorsch, P.; Kamp, T.; Jimenez, M.A.; Munch, J.C.; Beese, F. Integrated evaluation of greenhouse gas emissions (CO2, CH4, N2O) from two farming systems in southern Germany. Agric. Ecosys. Environ. 2002, 91, 175–189. [Google Scholar] [CrossRef]
- Karim, M.; Moniruzzaman, R.; Alam, Q.M. Economics of maize production in some selected areas of Bangladesh. Bangladesh J. Agril. Res. 2010, 35, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Van Huang, N.; Migo, M.V.; Quilloy, R.; Chivenge, P.; Gummert, M. Life cycle assessment applied in rice production and residue management. In Sustainable Rice Straw Management; Gummert, M., Hung, N., Chivenge, P., Douthwaite, B., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef] [Green Version]
- Adnan, K.M.M.; Sarker, S.A.; Tama, R.A.Z.; Pooja, P. Profit efficiency and influencing factors for the inefficiency of maize production in Bangladesh. J. Agric. Food Res. 2021, 5, 100161. [Google Scholar] [CrossRef]
- Gathorne-Hardy, A.; Reddy, D.N.; Venkatanarayana, M.; Harris-White, B. A life cycle assessment (LCA) of greenhouse gas emissions from SRI and flooded rice production in SE India. Taiwan Water Conserv. 2013, 61, 110–125. [Google Scholar]
- FAO (Food and Agriculture Organization of the United Nations). Global database of GHG emissions related to feed crops: A lifecycle inventory, version 1. In Livestock Environmental Assessment and Performance Partnership; FAO: Rome, Italy, 2017. [Google Scholar]
- Rahman, M.M.; Mahmud, M.G.A.; Ferdous, H.M.; Sultana, N.; Sayed, A. Assessment of irrigation water requirement of maize crop for different tillage practices in Bangladesh. Am. J. Exp. Agric. 2016, 10, 1–10. [Google Scholar] [CrossRef]
- Barber, A. Seven Case Study Farms: Total Energy & Carbon Indicators for New Zealand Arable & Outdoor Vegetable Production; AgriLINK New Zealand Ltd.: Pukekohe, New Zealand, 2004. [Google Scholar]
- Hossain, M.I. Present status and prospect of appropriate mechanization for wheat and maize cultivation in Bangladesh. In Proceedings of the Integration of Maize in Rice-Wheat System with Conservation Agriculture and Nutrient Management for Climate Resilient SUSTAINABLE productivity, BARI, Gazipur, Bangladesh, 24 August 2017. [Google Scholar]
- Stuch, B.; Alcamo, J.; Schaldach, R. Projected climate change impacts on mean and year-to-year variability of yield of key smallholder crops in Sub-Saharan Africa. Clim. Dev. 2021, 13, 268–282. [Google Scholar] [CrossRef]
- Konduri, V.S.; Vandal, T.J.; Ganguly, S.; Ganguly, A.R. Data science for weather impacts on crop yield. Data Science for Weather Impacts on Crop Yield. Front. Sustain. Food Syst. 2020, 4, 52. [Google Scholar] [CrossRef]
- Shirmohammadi, B.; Malekian, A.; Salajegheh, A.; Taheri, B.; Azarnivand, H.; Malek, Z.; Verburg, P.H. Impacts of future climate and land use change on water yield in a semiarid basin in Iran. Land Degrad. Dev. 2020, 31, 1252–1264. [Google Scholar] [CrossRef]
- Schauberger, B.; Archontoulis, S.; Arneth, A.; Balkovic, J.; Ciais, P.; Deryng, D.; Elliott, J.; Folberth, C.; Khabarov, N.; Müller, C. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 2017, 8, 13931. [Google Scholar] [CrossRef] [Green Version]
- Waqas, M.A.; Wang, X.; Zafar, S.A.; Noor, M.A.; Hussain, H.A.; Nawaz, M.A.; Farook, M. Thermal stresses in maize: Effects and management strategies. Plants 2021, 10, 293. [Google Scholar] [CrossRef]
- Izaurralde, R.C.; Thomson, A.M.; Morgan, J.; Fay, P.; Polley, H.; Hatfield, J.L. Climate impacts on agriculture: Implications for forage and rangeland production. Agron. J. 2011, 103, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Jain, N.; Arora, P.; Tomer, R.; Mishra, S.V.; Bhatia, A.; Pathak, H.; Chakraborty, D.; Kumar, V.; Dubey, D.S.; Harit, R.C.; et al. Greenhouse gas emission from soils under major crops in northwest India. Sci. Total Environ. 2016, 542, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Jayasundara, S.; Wagner-Riddle, C.; Dias, G.; Kariyapperuma, K.A. Energy and greenhouse intensity of corn (Zea mays L.) production in Ontario: A regional assessment. Can. J. Soil Sci. 2014, 94, 77–95. [Google Scholar] [CrossRef]
- Camargo, G.G.T.; Ryan, M.R.; Richard, T.L. Energy use and greenhouse gas emissions from crop production using the farm energy analysis tool. BioScience 2013, 63, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Holka, M.; Bieńkowski, J. Carbon footprint and life-cycle costs of maize production in conventional and non-conventional tillage systems. Agronomy 2020, 10, 1877. [Google Scholar] [CrossRef]
- Khorramdel, S.; Koocheki, A.; Mahallati, M.N.; Khorasani, R.; Ghorbani, R. Evaluation of carbon sequestration potential in corn fields with different management systems. Soil Tillage Res. 2013, 133, 25–31. [Google Scholar] [CrossRef]
- Feng, Q.; Xu, J.; Zhang, Y.; Li, X.; Xu, J.; Han, H.; Ning, T.; Lal, R.; Li, Z. CO2 fixation in above-ground biomass of summer maize under different tillage and straw management treatments. Sci. Rep. 2017, 7, 16888. [Google Scholar] [CrossRef] [Green Version]
- Nasim, M.; Shahidullah, S.M.; Saha, A.; Muttaleb, M.A.; Aditya, T.L.; Ali, M.A.; Kabir, M.S. Distribution of crops and cropping patterns in Bangladesh. Bangladesh Rice J. 2017, 21, 1–55. [Google Scholar] [CrossRef] [Green Version]
- Biswas, J.C.; Maniruzzaman, M.; Haque, M.M.; Hossain, M.B.; Naher, U.A.; Akhtar, S.; Rahman, M.M.; Akhter, S.; Ahmed, F.; Biswas, J.K. Greenhouse gas emissions from paddy fields in Bangladesh compared to top twenty rice producing countries and emission reduction strategies. Paddy Water Environ. 2022, 20, 381–393. [Google Scholar] [CrossRef]
- Ray, R.L.; Griffin, R.W.; Fares, A.; Elhassan, A.; Awal, R.; Woldesenbet, S.; Risch, E. Soil CO2 emission in response to organic amendments, temperature, and rainfall. Sci. Rep. 2020, 10, 5849. [Google Scholar] [CrossRef] [Green Version]
Patterns | Area (ha) | Paddy Field Emissions (Tonnes) | CO2 Sequestration by Maize (Tonnes) |
---|---|---|---|
Maize−Fallow−T. Aman | 101,460 | 66,963.60 | 503,691.18 |
Potato−Maize−T. Aman | 47,690 | 31,475.40 | 236,753.72 |
Maize−Jute−T. Aman | 21,325 | 14,074.50 | 105,866.49 |
Maize−Vegetable−T. Aman | 1810 | 1194.60 | 8985.62 |
Wheat−Maize−T. Aman | 16,320 | 10,771.20 | 81,019.52 |
Maize−Aus−Fallow | 13,615 | 8985.90 | 67,590.73 |
Potato−Maize−Aus | 4300 | 2838.00 | 21,347.05 |
Tobacco−Maize−T. Aman | 7470 | 4930.20 | 37,084.30 |
Vegetable−Maize−T. Aman | 4500 | 2970.00 | 22,339.94 |
Maize−B. Aman | 5030 | 3319.80 | 24,971.09 |
Maize−Mung bean−T. Aman | 4900 | 3234.00 | 24,325.71 |
Maize−Maize−T. Aman | 3070 | 2026.20 | 15,240.80 |
Maize−Aus−Vegetable | 3000 | 1980.00 | 14,893.29 |
Maize−Aus−T. Aman | 2970 | 1960.20 | 14,744.36 |
Lentil−Maize−T. Aman | 2920 | 1927.20 | 14,496.14 |
Maize−Sesame−T. Aman | 1835 | 1211.10 | 9109.73 |
Onion−Maize−T. Aman | 1490 | 983.40 | 7397.00 |
Maize−Boro−T. Aman | 1400 | 924.00 | 6950.20 |
Maize−Aus−Black gram | 1370 | 904.20 | 6801.27 |
Boro−Maize−Fallow | 410 | 270.60 | 2035.42 |
Potato+Maize−B. Aman | 410 | 270.60 | 2035.42 |
Potato+Maize−Vegetable−T. Aman | 210 | 138.60 | 1042.53 |
Total | 247,505 | 163,353.30 | 122,8721.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, J.C.; Haque, M.M.; Hossain, M.B.; Maniruzzaman, M.; Zahan, T.; Rahman, M.M.; Sen, R.; Ishtiaque, S.; Chaki, A.K.; Ahmed, I.M.; et al. Seasonal Variations in Grain Yield, Greenhouse Gas Emissions and Carbon Sequestration for Maize Cultivation in Bangladesh. Sustainability 2022, 14, 9144. https://doi.org/10.3390/su14159144
Biswas JC, Haque MM, Hossain MB, Maniruzzaman M, Zahan T, Rahman MM, Sen R, Ishtiaque S, Chaki AK, Ahmed IM, et al. Seasonal Variations in Grain Yield, Greenhouse Gas Emissions and Carbon Sequestration for Maize Cultivation in Bangladesh. Sustainability. 2022; 14(15):9144. https://doi.org/10.3390/su14159144
Chicago/Turabian StyleBiswas, Jatish Chandra, Md. Mozammel Haque, Md. Belal Hossain, Md. Maniruzzaman, Taslima Zahan, Md. Mizanur Rahman, Ranjit Sen, Sheikh Ishtiaque, Apurbo K. Chaki, Imrul Mossadek Ahmed, and et al. 2022. "Seasonal Variations in Grain Yield, Greenhouse Gas Emissions and Carbon Sequestration for Maize Cultivation in Bangladesh" Sustainability 14, no. 15: 9144. https://doi.org/10.3390/su14159144
APA StyleBiswas, J. C., Haque, M. M., Hossain, M. B., Maniruzzaman, M., Zahan, T., Rahman, M. M., Sen, R., Ishtiaque, S., Chaki, A. K., Ahmed, I. M., Akhtar, S., Ahmmed, F., Hossain, M. F., Akhter, S., Kamruzzaman, M., Biswas, J. K., Alsuhaibani, A. M., Gaber, A., & Hossain, A. (2022). Seasonal Variations in Grain Yield, Greenhouse Gas Emissions and Carbon Sequestration for Maize Cultivation in Bangladesh. Sustainability, 14(15), 9144. https://doi.org/10.3390/su14159144