Oxidative Magnetic Modification of Pristine Biochar Assisted by Ball-Milling for Removal of Methylene Blue and Tetracycline in Aqueous Solution
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials and Feedstock
2.2. Biochar Preparation and Characterization
2.3. Batch Adsorption Experiments
2.4. Recycle of Magnetic Biochar
2.5. Fixed Bed Column Adsorption
3. Results and Discussion
3.1. Biochar Characterization
3.2. Adsorption Capability of Biochar for MB and TC
3.2.1. The Effect of Initial pH
3.2.2. Adsorption Kinetics and Isotherms
3.2.3. Effect of Co-Existed Mineral on the Adsorption of Magnetic Biochar
3.2.4. Competitive Adsorption Behavior of MB and TC
3.2.5. Recycle of Magnetic Biochar
3.2.6. Fixed Bed Column Adsorption
3.2.7. Adsorption Mechanism of OMB
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panahi, H.S.K.; Dehhaghi, M.; Yong, S.O.; Nizami, A.S.; Khoshnevisan, B.; Mussatto, S.I.; Aghbashlo, M.; Tabatabaei, M.; Lam, S.S. A comprehensive review of engineered biochar: Production, characteristics, and environmental applications. J. Clean. Prod. 2020, 270, 122462. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, S.; Verma, S.; Sar, T.; Sarsaiya, S.; Ravindran, B.; Liu, T.; Sindhu, R.; Patel, A.K.; Binod, P.; et al. Production and beneficial impact of biochar for environmental application: A comprehensive review. Bioresour. Technol. 2020, 337, 125451. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, C.; Zhang, J.; Liu, J.; Liu, B.; Chen, G. Preparation and application of magnetic biochar in water treatment: A critical review. Sci. Total Environ. 2020, 711, 134847. [Google Scholar] [CrossRef]
- Rocha, L.S.; Pereira, D.; Sousa, E.; Otero, M.; Esteves, V.I.; Calisto, V. Recent advances on the development and application of magnetic activated carbon and char for the removal of pharmaceutical compounds from waters: A review. Sci. Total Environ. 2020, 718, 137272. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Huang, Z.; Lu, B.; Xian, J.; Tsang, E.P.; Cheng, W.; Fang, J.; Fang, Z. Magnetic biochar for environmental remediation: A review. Bioresour. Technol. 2020, 298, 122468. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, M.; Zhou, M.; Li, Y.C.; Wang, J.; Gao, B.; Sato, S.; Feng, K.; Yin, W.; Igalavithana, A.D.; et al. Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review. J. Hazard. Mater. 2019, 373, 820–834. [Google Scholar] [CrossRef]
- Mian, M.M.; Liu, G.; Yousaf, B.; Fu, B.; Ullah, H.; Ali, M.U.; Abbas, Q.; Mujtaba, M.A.M.; Ruijia, L. Simultaneous functionalization and magnetization of biochar via NH3 ambiance pyrolysis for efficient removal of Cr (VI). Chemosphere 2018, 208, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhou, J.; Liu, Y.; Guo, J.; Ren, J.; Zhou, F. Preparation of iminodiacetic acid-modified magnetic biochar by carbonization, magnetization and functional modification for Cd (II) removal in water. Fuel 2018, 233, 469–479. [Google Scholar] [CrossRef]
- Wu, J.; Huang, D.; Liu, X.; Meng, J.; Tang, C.; Xu, J. Remediation of As (III) and Cd (II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar. J. Hazard. Mater. 2018, 348, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Bian, S.; Liu, J.; Li, J.; Xu, S.; Liang, Z. Highly adsorptive pristine and magnetic biochars prepared from crayfish shell for removal of Cu (II) and Pb (II). J. Taiwan Inst. Chem. Eng. 2021, 127, 175–185. [Google Scholar] [CrossRef]
- Duan, S.; Ma, W.; Pan, Y.; Meng, F.; Yu, S.; Wu, L. Synthesis of magnetic biochar from iron sludge for the enhancement of Cr (VI) removal from solution. J. Taiwan Inst. Chem. Eng. 2017, 80, 835–841. [Google Scholar] [CrossRef]
- Chin, J.F.; Heng, Z.W.; Teoh, H.C.; Chong, W.C.; Pang, Y.L. Recent development of magnetic biochar crosslinked chitosan on heavy metal removal from wastewater—Modification, application and mechanism. Chemosphere 2021, 291, 133035. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Xiong, X.; Wan, Z.; Sun, Y.; Tsang, D.; Gupta, J.; Gao, B.; Cao, X.; Tang, J.; Yong, S.O. Ball milling as a mechanochemmical technology for fabrication of novel biochar nanomaterials. J. Bioresour. Technol. 2020, 312, 123613. [Google Scholar] [CrossRef] [PubMed]
- Amusat, S.O.; Kebede, T.G.; Dube, S.; Nindi, M.M. Ball-milling synthesis of biochar and biochar–based nanocomposites and prospects for removal of emerging contaminants: A review. J. Water Process Eng. 2021, 41, 101993. [Google Scholar] [CrossRef]
- Lyu, H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Huang, H.; Tang, J. Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environ. Pollut. 2018, 233, 54–63. [Google Scholar] [CrossRef]
- Li, R.; Zhang, Y.; Deng, H.; Zhang, Z.; Wang, J.J.; Shaheen, S.M.; Xiao, R.; Rinklebe, J.; Xi, B.; He, X.; et al. Removing tetracycline and Hg(II) with ball-milled magnetic nanobiochar and its potential on polluted irrigation water reclamation. J. Hazard. Mater. 2020, 384, 121095. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Zhao, J.; He, F.; Zhong, Z.; Huang, J.; Zheng, Y.; Zhang, Y.; Yang, Y.; Yu, F.; Bashir, M.A.; et al. Ball milling biochar iron oxide composites for the removal of chromium (Cr (VI)) from water: Performance and mechanisms. J. Hazard. Mater. 2021, 413, 125252. [Google Scholar] [CrossRef]
- Huang, J.; Zimmerman, A.R.; Chen, H.; Gao, B. Ball milled biochar effectively removes sulfamethoxazole and sulfapyridine antibiotics from water and wastewater. Environ. Pollut. 2020, 258, 113809. [Google Scholar] [CrossRef]
- Shan, D.; Deng, S.; Zhao, T.; Wang, B.; Wang, Y.; Huang, J.; Yu, G.; Winglee, J.; Wiesner, M.R. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J. Hazard. Mater. 2016, 305, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zimmerman, A.R.; He, F.; Chen, J.; Han, L.; Chen, H.; Hu, X.; Gao, B. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue. Sci. Total Environ. 2020, 722, 137972. [Google Scholar] [CrossRef]
- Anitha, D.; Ramadevi, A.; Seetharaman, R. Biosorptive removal of Nickel(II) from aqueous solution by Mangosteen shell activated carbon. Mater. Today Proceed. 2021, 45, 718–722. [Google Scholar] [CrossRef]
- Wen, Q.; Wang, S.; Liu, S.; Li, J.; Chen, Y.; Yang, R.; Xu, S. Investigation of seawater mineral promoted pyrolysis at low temperature for improving the adsorption capabilities of biochar. Chemosphere 2021, 292, 133447. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Moghaddam, B.T.; Chen, M.; Wu, S.; Adhikari, S. Biochar removes volatile organic compounds generated from asphalt. Sci. Total. Environ. 2020, 745, 141096. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Van, T.H.; Nguyen, Q.V.; Dam, V.X.; Hoang, P.L.; Ha, T.L. Magnetic Fe3O4 nanoparticle biochar derived from pomelo peel for reactive red 21 adsorption from aqueous solution. J. Chem. 2020, 2020, 3080612. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Zhou, S.; Lou, S.; Yuan, L.; Gao, T.; Wu, X.; Shi, X.; Wang, K. Synthesis of high saturation magnetization superparamagnetic Fe3O4 hollow microspheres for swift chromium removal. ACS Appl. Mater. Inter. 2012, 4, 4913–4920. [Google Scholar] [CrossRef] [PubMed]
- Özçimen, D.; Ersoy-Meriçboyu, A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renew. Energ. 2010, 35, 1319–1324. [Google Scholar] [CrossRef]
- Zhang, P.; O’Connor, D.; Wang, Y.; Jiang, L.; Xia, T.; Wang, L.; Tsang, D.C.W.; Yong, S.O.; Hou, D. A green biochar/iron oxide composite for methylene blue removal. J. Hazard. Mater. 2020, 384, 121286. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, O.; Ghaderi, E.; Emamy, H.; Akhavan, F. Genotoxicity of graphene nanoribbons in human mesenchymal stem cells. Carbon 2013, 54, 419–431. [Google Scholar] [CrossRef]
- Peng, H.; Gao, P.; Chu, G.; Pan, B.; Peng, J.; Xing, B. Enhanced adsorption of Cu (II) and Cd (II) by phosphoric acid-modified biochars. Environ. Pollut. 2017, 229, 846–853. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Johir, M.A.H.; Sornalingam, K. Sorptive removal of phenolic endocrine disruptors by functionalized biochar: Competitive interaction mechanism, removal efficacy and application in wastewater. Chem. Eng. J. 2018, 335, 801–811. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Qian, K.; Lv, J.; Yan, W.; Liu, J.; Ai, J.; Zhang, Y.; Guo, T.; Zhou, X.; Xu, S.; et al. Encapsulation of Fe3O4 nanoparticles into N, S co-doped graphene sheets with greatly enhanced electrochemical performance. Sci. Rep. 2016, 6, 27957. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Zhang, S.; Li, H.; Li, S.; Cheng, K.; Li, J.-S.; Tsang, D.C.W. Corn straw-derived biochar impregnated with α-FeOOH nanorods for highly effective copper removal. Chem. Eng. J. 2018, 348, 191–201. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. App. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Zhang, P.; Hou, D.; Li, X.; Pehkonen, S.; Varma, R.S.; Wang, X. Greener and size-specific synthesis of stable Fe-Cu oxides as earth-abundant adsorbents for malachite green. J. Mater. Chem. A 2018, 6, 9229–9236. [Google Scholar]
- Zhang, X.; Li, Y.; Wu, M.; Pang, Y.; Hao, Z.; Hu, M.; Qiu, R.; Chen, Z. Enhanced adsorption of tetracycline by an iron and manganese oxides loaded biochar: Kinetics, mechanism and column adsorption. Bioresour. Technol. 2021, 320, 124264. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Y.; Wang, Z.; Tang, J.; Tang, J.; Li, X. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. J. Environ. Chem. Eng. 2017, 5, 601–611. [Google Scholar] [CrossRef]
- Hameed, B.H.; Ahmad, A.A.; Aziz, N. Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chem. Eng. J. 2007, 133, 195–203. [Google Scholar] [CrossRef]
- Zeng, H.; Qi, W.; Zhai, L.; Wang, F.; Zhang, J.; Li, D. Magnetic biochar synthesized with waterworks sludge and sewage sludge and its potential for methylene blue removal. J. Environ. Chem. Eng. 2021, 9, 105951. [Google Scholar] [CrossRef]
- Cho, D.W.; Lee, J.; Yong, S.O.; Kwon, E.E.; Song, H. Fabrication of a novel magnetic carbon nanocomposite adsorbent via pyrolysis of sugar. Chemosphere 2016, 163, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Ruthiraan, M.; Abdullah, E.C.; Mubarak, N.M.; Noraini, M.N. A promising route of magnetic based materials for removal of cadmium and methylene blue from waste water. J. Environ. Chem. Eng. 2017, 5, 1447–1455. [Google Scholar] [CrossRef]
- Oladipo, A.A.; Ifebajo, A.O. Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: Two-stage adsorber analysis. J. Environ. Manag. 2018, 209, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Ji, L.; Guo, J.; Ge, S.; Lu, W.; Cai, L.; Wang, Y.; Song, W.; Zhang, H. Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption. Bioresour. Technol. 2020, 302, 122842. [Google Scholar] [CrossRef]
- Rattanachueskul, N.; Saning, A.; Kaowphong, S.; Chumha, N.; Chuenchom, L. Magnetic carbon composites with a hierarchical structure for adsorption of tetracycline, prepared from sugarcane bagasse via hydrothermal carbonization coupled with simple heat treatment process. Bioresour. Technol. 2017, 226, 164–172. [Google Scholar] [CrossRef]
- Qu, J.; Wang, S.; Jin, L.; Liu, Y.; Yin, R.; Jiang, Z.; Tao, Y.; Huang, J.; Zhang, Y. Magnetic porous biochar with high specific surface area derived from microwave-assisted hydrothermal and pyrolysis treatments of water hyacinth for Cr (VI) and tetracycline adsorption from water. Bioresour. Technol. 2021, 340, 125692. [Google Scholar] [CrossRef]
- Tang, L.; Yu, J.; Pang, Y.; Zeng, G.; Deng, Y.; Wang, J.; Ren, X.; Ye, S.; Peng, B.; Feng, H. Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chem. Eng. J. 2018, 336, 160–169. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, R.; Zhang, W.; Yuan, Y.; Lai, B. High-efficiency adsorption of tetracycline by the prepared waste collagen fiber-derived porous biochar. RSC Adv. 2019, 9, 39355–39366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Apul, O.G.; Karanfil, T. Adsorption of halogenated aliphatic contaminants by graphene nanomaterials. Water Res. 2015, 79, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
BC | Element Content (wt%) | Surface Properties | |||||||
---|---|---|---|---|---|---|---|---|---|
C | H | O | N | Fe | K | SSA (m2/g) | PV (cm3/g) | PD (nm) | |
PB | 63.2 | 4.3 | 24.6 | 0.6 | 0.0 | 1.4 | 0.7 | 0.001 | 60.0 |
OMB | 30.7 | 2.9 | 31.8 | 0.3 | 24.1 | 2.8 | 71.2 | 0.034 | 3.0 |
Magnetic Biochar | Preparation Method | Qm (mg/g) | SM (emu/g) | Ref. |
---|---|---|---|---|
Fe3O4-doped biochar | Hydrothermal carbonation with iron mud at 180 °C for 12 h | 186.003 (MB) | 22.35 | [38] |
Fe3O4-doped biochar | Co-pyrolysis with Fe3O4 at 500 °C for 30 min | 52.6 (MB) | --- | [39] |
Fe2O3-doped biochar | Pretreatment by Fe2O3/KMnO4/HNO3 and pyrolysis at 800 °C for 20 min | 46.30 (MB) | --- | [40] |
Fe3O4-doped biochar | Pyrolysis at 600 °C for 4 h and ball-mill extrusion with Fe3O4 for 12 h | 500.5 (MB) | 34.9 | [20] |
Fe3O4-doped biochar | KMnO4-activation, pyrolysis at 500 °C for 2 h, and base-induced co-precipitation | 98.89 (TC) | 64.7 | [41] |
Fe3O4-doped biochar | Pyrolysis at 700 °C for 3 h and base-induced co-precipitation | 42.31 (TC) | 26.28 | [42] |
Fe3O4-doped biochar | Iron impregnation, pyrolysis at 700 °C for 2 h, and ball-milling for 12 h | 268.3 (TC) | 15.39 | [16] |
Fe3O4-doped biochar | Base promoted hydrothermal carbonization at 230 °C for 24 h and heat treatment at 400 °C for 1 h | 48.35 (TC) | 9.73 | [43] |
Fe3O4-doped biochar | Microwave-assisted pyrolysis at 700 °C for 2 h and microwave hydrothermal treatment with iron at 200 °C for 1 h | 202.62 (TC) | --- | [44] |
γ-Fe2O3 doped biochar | Pyrolysis at 800 °C for 2 h and alkali-acid modification | 286.913 (TC) | --- | [45] |
Fe3O4-doped biochar | Pyrolysis at 300 °C for 1 h, and ball-milling with K2FeO4 for 30 min | 133.76 (MB), 58.34 (TC) | 10.22 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Li, L.; Wen, Q.; Yang, R.; Zhao, Y.; Rao, X.; Li, J.; Xu, S.; Song, H. Oxidative Magnetic Modification of Pristine Biochar Assisted by Ball-Milling for Removal of Methylene Blue and Tetracycline in Aqueous Solution. Sustainability 2022, 14, 9349. https://doi.org/10.3390/su14159349
Chen Y, Li L, Wen Q, Yang R, Zhao Y, Rao X, Li J, Xu S, Song H. Oxidative Magnetic Modification of Pristine Biochar Assisted by Ball-Milling for Removal of Methylene Blue and Tetracycline in Aqueous Solution. Sustainability. 2022; 14(15):9349. https://doi.org/10.3390/su14159349
Chicago/Turabian StyleChen, Yijia, Linzhou Li, Qin Wen, Run Yang, Yiming Zhao, Xin Rao, Jihui Li, Shuying Xu, and Hui Song. 2022. "Oxidative Magnetic Modification of Pristine Biochar Assisted by Ball-Milling for Removal of Methylene Blue and Tetracycline in Aqueous Solution" Sustainability 14, no. 15: 9349. https://doi.org/10.3390/su14159349
APA StyleChen, Y., Li, L., Wen, Q., Yang, R., Zhao, Y., Rao, X., Li, J., Xu, S., & Song, H. (2022). Oxidative Magnetic Modification of Pristine Biochar Assisted by Ball-Milling for Removal of Methylene Blue and Tetracycline in Aqueous Solution. Sustainability, 14(15), 9349. https://doi.org/10.3390/su14159349