The COVID-19 Epidemic Spreading Effects
Abstract
:1. Introduction
- (1)
- Geographical distribution and thermal zone analysis of the number of confirmed COVID-19 cases in Taiwan.
- (2)
- Spatial regression model estimation of COVID-19 epidemic spread in Taiwan.
- (3)
- The direct and indirect effects of COVID-19 epidemic spread in Taiwan.
- (1)
- The data on the number of confirmed cases of COVID-19 starts on 1 January 2022 and the data is updated daily. Therefore, the distribution period is not a full year.
- (2)
- The data source is the data published by the government on the website and some data have missing values.
2. Materials and Methods
3. Descriptive Statistics
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
County | Variable | ||||||
---|---|---|---|---|---|---|---|
Urban Planning | Forest | Car | Road | Road Area | Urbanization | Density | |
Yilan County | 76.5865 | 168,384 | 136,253 | 0.62 | 37.01 | 3.57291 | 3656 |
Changhua County | 133.797 | 10,104.1 | 412,063 | 2.23 | 22.17 | 12.4265 | 4486 |
Nantou County | 125.415 | 303,186 | 172,372 | 0.51 | 43.59 | 3.05423 | 2253 |
Yunlin County | 97.8476 | 12,608.9 | 219,554 | 1.94 | 44.4 | 7.58039 | 2749 |
Pingtung County | 165.123 | 156,194 | 233,371 | 0.9 | 37.98 | 5.94754 | 2624 |
Taitung County | 88.0492 | 286,984 | 62,236 | 0.37 | 60.82 | 2.50452 | 1488 |
Hualien County | 123.362 | 372,781 | 102,370 | 0.35 | 58.65 | 2.66238 | 1854 |
Penghu County | 10.7864 | 3242.1 | 27,623 | 2.25 | 27.42 | 8.50544 | 4126 |
Keelung City | 74.0575 | 9395.37 | 88,345 | 4.75 | 18.37 | 58.3007 | 4998 |
Hsinchu City | 46.256 | 2804.21 | 142,537 | 5.71 | 13.23 | 44.4167 | 7918 |
Taipei City | 271.8 | 11,490.8 | 729,043 | 4.53 | 6.91 | 100 | 9818 |
New Taipei City | 1228.46 | 155,483 | 904,621 | 1.79 | 11.36 | 59.8937 | 3050 |
Taichung City | 539.177 | 113,963 | 953,063 | 1.96 | 23.26 | 24.3189 | 4208 |
Tainan City | 522.041 | 54,148.5 | 588,919 | 2.09 | 33.43 | 23.8834 | 3055 |
Taoyuan City | 322.431 | 47,134.1 | 697,807 | 2.7 | 18.4 | 26.4081 | 5146 |
Miaoli County | 75.9467 | 125,946 | 190,549 | 1.04 | 36.73 | 4.17237 | 4316 |
Hsinchu County | 54.4983 | 104,211 | 200,014 | 0.79 | 25.57 | 3.81776 | 6453 |
Chiayi City | 60.7557 | 773.42 | 82,733 | 8.7 | 37.7 | 101.216 | 4570 |
Chiayi County | 169.458 | 79,888.3 | 160,985 | 1.21 | 48.93 | 8.88561 | 1262 |
Kaohsiung City | 422.552 | 170,523 | 774,130 | 1.66 | 20.2 | 14.3148 | 5923 |
References
- Brenner, N. Implosions/Explosions: Towards a Study of Planetary Urbanization; Jovis: Berlin, Germany, 2014. [Google Scholar]
- Connolly, C.; Keil, R.; Ali, H.S. Extended urbanisation and the spatialities of infectious disease: Demographic change, infrastructure and governance. Urban Stud. 2021, 58, 245–263. [Google Scholar] [CrossRef]
- Ren, X.; Keil, R. The Globalizing Cities Reader; Routledge: London, UK, 2017. [Google Scholar]
- Ali, H.S.; Keil, R. Networked Disease: Emerging Infections in the Global City; Wiley-Blackwell: Oxford, UK, 2008. [Google Scholar]
- Elsey, H.; Agyepong, I.; Huque, R.; Quayyum, Z. Rethinking health systems in the context of urbanisation: Challenges from four rapidly urbanising low- and middle- income countries. Br. Med. J. Glob. Health 2019, 4, e001501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, R.E.; Kim, Y.; Philpott, C.C. The mechanism of ferrichrome transport through Arn1p and its metabolism in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2003, 100, 5664–5669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; He, Y.; Jiang, B.; Zhang, D.; Tian, H.; Zuo, F.; Lam, T.H. Very brief physician advice and supplemental proactive telephone calls to promote smoking reduction and cessation in Chinese male smokers with no intention to quit: A randomized trial. Addiction 2017, 112, 2032–2040. [Google Scholar] [CrossRef]
- Bollyky, T.J. Plagues and the Paradox of Progress: Why the World is Getting Healthier in Worrisome Ways; The MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Wolf, M. Rethinking urban epidemiology: Natures, networks and materialities. Int. J. Urban Reg. Res. 2016, 40, 958–982. [Google Scholar] [CrossRef] [PubMed]
- Quammen, D. Spillover: Animal Infections and the Next Human Pandemic; W. W. Norton & Company Inc.: New York, NY, USA, 2012. [Google Scholar]
- Patlak, M. Book reopened on infectious diseases. Food Drug Adm. Consum. Mag. 1996, 30, 19–23. [Google Scholar]
- Smolinsky, M.S.; Hamburg, M.A.; Lederberg, J. Microbial Threats to Health: Emergence, Detection, and Response; National Academies Press: Washington, DC, USA, 2003. [Google Scholar]
- Gubler, D.J. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 1998, 11, 480–496. [Google Scholar] [CrossRef] [Green Version]
- Gubler, D.J. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 2002, 10, 100–102. [Google Scholar] [CrossRef]
- Fauci, A.S.; Touchette, N.A.; Folkers, G.K. Emerging infectious diseases: A 10-year perspective from the National Institute of Allergy and Infectious Diseases. Emerg. Infect. Dis. 2005, 11, 519–525. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Global Strategic Framework for Integrated Vector Management; WHO/CDS/CPE/PVC/2004.10; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- McNeill, W.H. Plagues and Peoples, 1st ed.; Anchor Press: Garden City, NY, USA, 1976. [Google Scholar]
- Wilcox, B.A.; Gubler, D.J.; Pizer, H.F. The Social Ecology of Infectious Diseases; Mayer, K.H., Pizer, H.F., Eds.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Gosce, L.; Johansson, A. Analysing the link between public transport use and airborne transmission: Mobility and contagion in the London underground. Environ. Health 2018, 17, 84. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, M.A.; Prosper, O.; Lopiano, K.; Ruktanonchai, N.; Caughlin, T.T.; Martcheva, M.; Osenberg, C.W.; Smith, D.L. Spatial heterogeneity, host movement and mosquito-borne disease transmission. PLoS ONE 2015, 10, 0127552. [Google Scholar] [CrossRef] [Green Version]
- Arino, J. Spatio-temporal spread of infectious pathogens of humans. Infect. Dis. Model. 2017, 2, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Balcan, D.; Colizza, V.; Gonçalves, B.; Hu, H.; Ramasco, J.J.; Vespignani, A. Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. USA 2009, 106, 21484–21489. [Google Scholar] [CrossRef] [Green Version]
- Charu, V.; Zeger, S.; Gog, J.; Bjornstad, O.N.; Kissler, S.; Simonsen, L.; Grenfell, B.T.; Viboud, C. Human mobility and the spatial transmission of influenza in the United States. PLoS Comput. Biol. 2017, 13, 1005382. [Google Scholar] [CrossRef] [Green Version]
- Chowell, G.; Bettencourt, L.M.A.; Johnson, N.; Alonso, W.J.; Viboud, C. The 1918–1919 influenza pandemic in England and Wales: Spatial patterns in transmissibility and mortality impact. Proc. R. Soc. B Biol. Sci. 2008, 275, 501–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggo, R.M.; Cauchemez, S.; Ferguson, N.M. Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States. J. R. Soc. Interface 2011, 8, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Gog, J.R.; Ballesteros, S.; Viboud, C.; Simonsen, L.; Bjornstad, O.N.; Shaman, J.; Chao, D.L.; Khan, F.; Grenfell, B.T. Spatial transmission of 2009 pandemic influenza in the US. PLoS Comput. Biol. 2014, 10, 1003635. [Google Scholar] [CrossRef] [Green Version]
- Karl, S.; Halder, N.; Kelso, J.K.; Ritchie, S.A.; Milne, G.J. A spatial simulation model for dengue virus infection in urban areas. BMC Infect. Dis. 2014, 14, 447. [Google Scholar] [CrossRef] [Green Version]
- Merler, S.; Ajelli, M.; Fumanelli, L.; Gomes, M.F.C.; Piontti, A.P.Y.; Rossi, L.; Chao, D.L.; Longini, I.M.; Halloran, E.M.; Vespignani, A. Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: A computational modelling analysis. Lancet Infect Dis. 2015, 15, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.; Naghizade, E.; Tomko, M.; Geard, N. What can urban mobility data reveal about the spatial distribution of infection in a single city? BMC Public Health 2019, 19, 656. [Google Scholar] [CrossRef]
- Riley, S. Large-scale spatial-transmission models of infectious disease. Science 2007, 316, 1298–1301. [Google Scholar] [CrossRef] [Green Version]
- Riley, S.; Eames, K.; Isham, V.; Mollison, D.; Trapman, P. Five challenges for spatial epidemic models. Epidemics 2015, 10, 68–71. [Google Scholar] [CrossRef] [Green Version]
- Sattenspiel, L.; Dietz, K. A structured epidemic model incorporating geographic mobility among regions. Math. Biosci. 1995, 128, 71–91. [Google Scholar] [CrossRef]
- Viboud, C.; Bjornstad, O.N.; Smith, D.L.; Simonsen, L.; Miller, M.A.; Grenfell, B.T. Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 2006, 312, 447–451. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Tian, H.; Sabel, C.E.; Xu, B. Impacts of road traffic network and socioeconomic factors on the diffusion of 2009 pandemic influenza A (H1N1) in Mainland China. Int. J. Environ. Res. Public Health 2019, 16, 1223. [Google Scholar] [CrossRef] [Green Version]
- Charaudeau, S.; Pakdaman, K.; Boelle, P.-Y. Commuter mobility and the spread of infectious diseases: Application to influenza in France. PLoS ONE 2014, 9, 83002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Church, R.L.; Cova, T.J. Mapping evacuation risk on transportation networks using a spatial optimization model. Transp. Res. Part C Emerg. Technol. 2000, 8, 321–336. [Google Scholar] [CrossRef]
- Ebihara, M.; Ohtsuki, A.; Iwaki, H. A model for simulating human behavior during emergency evacuation based on classificatory reasoning and certainty value handling. Comput. Aided Civ. Infrastruct. Eng. 1992, 7, 63–71. [Google Scholar] [CrossRef]
- Helbing, D.; Buzna, L.; Johansson, A.; Werner, T. Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transp. Sci. 2005, 39, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Helbing, D.; Johansson, A.; Al-Abideen, H.Z. Dynamics of crowd disasters: An empirical study. Phys. Rev. E 2007, 75, 046109. [Google Scholar] [CrossRef] [Green Version]
- Johansson, A. Constant-net-time headway as a key mechanism behind pedestrian flow dynamics. Phys. Rev. E 2009, 80, 026120. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Ren, A.; Chen, C. Agent-based evacuation model of large public buildings under fire conditions. Autom. Constr. 2009, 18, 338–347. [Google Scholar] [CrossRef]
- Yu, W.; Johansson, A. Modeling crowd turbulence by many-particle simulations. Phys. Rev. E 2007, 76, 046105. [Google Scholar] [CrossRef] [Green Version]
- Brauer, F. Compartmental models in epidemiology. In Mathematical Epidemiology; Springer: Berlin/Heidelberg, Germany, 2008; pp. 19–79. [Google Scholar]
- Colizza, V.; Barthélemy, M.; Barrat, A.; Vespignani, A. Epidemic modeling in complex realities. Comptes Rendus Biol. 2007, 330, 364–374. [Google Scholar] [CrossRef] [Green Version]
- Kermack, W.; Mckendrick, A. A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 1927, 115, 700–721. [Google Scholar]
- Newman, M.E. Spread of epidemic disease on networks. Phys. Rev. E 2002, 66, 016128. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Satorras, R.; Vespignani, A. Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 2001, 63, 066117. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Shaw, S.-L.; Xu, Y.; Lu, F.; Chen, J.; Yin, L. Understanding the bias of call detail records in human mobility research. Int. J. Geogr. Inf. Sci. 2016, 30, 1738–1762. [Google Scholar] [CrossRef]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Woolhouse, M.E.J.; Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 2005, 11, 1842–1847. [Google Scholar] [CrossRef] [PubMed]
- Karesh, W.B.; DPhil, A.D.; Lloyd-Smith, J.O.; Lubroth, J.; Dixon, M.A.; Bennett, M.; Aldrich, S.; Harrington, T.; Formenty, P.; Loh, E.H.; et al. Ecology of zoonoses: Natural and unnatural histories. Lancet 2012, 380, 1936–1945. [Google Scholar] [CrossRef]
- Hassell, J.M.; Begon, M.; Ward, M.J.; Fevre, E.M. Urbanization and disease emergence: Dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol. 2017, 32, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Cliff, A.D.; Ord, J.K. Spatial Autocorrelation; Pion: London, UK, 1973. [Google Scholar]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models and Applications; Pion: London, UK, 1981. [Google Scholar]
- LeSage, J.P.; Pace, R.K. Models for spatially dependent missing data. J. Real Estate Financ. Econ. 2004, 29, 233–254. [Google Scholar] [CrossRef]
- LeSage, J.P.; Pace, R.K. Introduction to Spatial Econometrics; Taylor and Francis Group, CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Whittle, P. On stationary processes in the plane. Biometrika 1954, 41, 434–449. [Google Scholar] [CrossRef]
- Ballard, K.; Bone, C. Exploring spatially varying relationships between Lyme disease and land cover with geographically weighted regression. Appl. Geogr. 2021, 109, 102383. [Google Scholar] [CrossRef]
- Darmofal, D. Spatial Analysis for the Social Sciences; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar]
- Drukker, D.M.; Egger, P.; Prucha, I. On two-step estimation of a spatial autoregressive model with autoregressive disturbances and endogenous regressors. Econom. Rev. 2013, 32, 686–733. [Google Scholar] [CrossRef]
- Kelejian, H.H.; Prucha, I. Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. J. Econom. 2010, 157, 53–67. [Google Scholar] [CrossRef] [Green Version]
- Ku, C.-A. Incorporating spatial regression model into cellular automata for simulating land use change. Appl. Geogr. 2016, 69, 1–9. [Google Scholar] [CrossRef]
- Lee, L.-F.; Liu, X.; Lin, X. Specification and estimation of social interaction models with network structures. Econom. J. 2010, 13, 145–176. [Google Scholar] [CrossRef]
- Nkeki, F.N.; Asikhia, M.O. Geographically weighted logistic regression approach to explore the spatial variability in travel behaviour and built environment interactions: Accounting simultaneously for demographic and socioeconomic characteristics. Appl. Geogr. 2019, 108, 47–63. [Google Scholar] [CrossRef]
- Sathler, D.; Adamo, S.; Lima, E.E.; Macedo, D.R.; Sherbinin, A.D.; Kim-Blanco, P. Assessing the regional context of migration in the Brazilian Amazon through spatial regression modeling. Appl. Geogr. 2019, 109, 102042. [Google Scholar] [CrossRef]
- Tu, W.; Ha, H.; Wang, W.; Liu, L. Investigating the association between household firearm ownership and suicide rates in the United States using spatial regression models. Appl. Geogr. 2020, 124, 102297. [Google Scholar] [CrossRef]
- Waller, L.A.; Gotway, C.A. Applied Spatial Statistics for Public Health Data; Wiley-Interscience: Hoboken, NJ, USA, 2004. [Google Scholar]
- Yuan, M.; Huang, Y.; Shen, H.; Li, T. Effects of urban form on haze pollution in China: Spatial regression analysis based on PM2.5 remote sensing data. Appl. Geogr. 2018, 98, 215–223. [Google Scholar]
Variable | Variable Type | Description | Unit | Variable Scale/ Numeric Type |
---|---|---|---|---|
COVID19 | -- | Number of COVID-19-infected cases per 100,000 people | Number of COVID-19-infected cases/100,000 people | Ratio/Continuous |
urban planning | urbanization | Area of the urban planning area | Square kilometers | Ratio/Continuous |
forest | urbanization | Forest area | Hectare | Ratio/Continuous |
car | transportation systems and transport tools | Number of the car registered | Vehicle | Ratio/Discrete |
road | density | Road density | km/km2 | Ratio/Continuous |
road area | transportation systems and transport tools | Road area each person assigned | Square meters/person | Ratio/Continuous |
density | density | Population density of the current situation in the urban planning area | People/square kilometers | Ratio/Continuous |
urbanization | urbanization | Population of the urban area/total population of the municipality | % | Ratio/Continuous |
Variable | Average | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
COVID19 | 514.3806 | 586.4232 | 92.77316 | 2251.217 |
urban planning | 230.4198 | 282.3826 | 10.7864 | 1228.457 |
forest | 109,462.3 | 110,347.8 | 773.42 | 372,780.6 |
car | 343,929.4 | 307,666.3 | 27,623 | 953,063 |
road | 2.305 | 2.11833 | 0.35 | 8.7 |
road area | 31.3065 | 15.17759 | 6.91 | 60.82 |
urbanization | 25.7941 | 31.14242 | 2.50452 | 101.216 |
density | 4197.65 | 2152.103 | 1262 | 9818 |
COVID19 | Coefficient | Standard Error | p-Value |
---|---|---|---|
urban planning | −0.1263 *** | 0.0150 | 0.0000 |
forest | 0.0002 *** | 0.00006 | 0.0008 |
car | 0.0021 ** | 0.0007 | 0.0030 |
road | 295.9195 * | 111.8993 | 0.0080 |
road area | −42.9077 ** | 13.3566 | 0.0010 |
urbanization | 0.5104 *** | 0.0635 | 0.0000 |
density | −0.2909 *** | 0.0661 | 0.0000 |
constant | 2067.834 ** | 662.8678 | 0.0020 |
W | |||
urban planning | −1.4507 * | 0.5356 | 0.0067 |
forest | 0.0400 *** | 0.0050 | 0.0000 |
car | 0.0054 *** | 0.0011 | 0.0000 |
road | 3583.105 *** | 650.8499 | 0.0000 |
road area | −224.1063 *** | 27.3681 | 0.0000 |
urbanization | −186.9376 *** | 48.3417 | 0.0000 |
density | −0.9433 *** | 0.1083 | 0.0000 |
COVID19 | 1.1497 *** | 0.1153 | 0.0000 |
e. COVID19 | −14.4189 *** | 1.8038 | 0.0000 |
Vair (e. COVID19) | 165,414.3 | 58,576.38 | |
Log likelihood | −128.3633 | ||
Prob > chi2 | 0.0000 | ||
Pseudo R2 | 0.3629 |
COVID19 | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
urban planning | −0.0458084 | 7.323299 | 7.27749 |
forest | 0.0017822 | −0.1882867 | −0.1865045 |
car | 0.0016994 | −0.0359325 | −0.0342331 |
road | 98.12325 | −18,003.52 | −17,905.4 |
road area | −29.12226 | 1254.76 | 1225.637 |
urbanization | 9.905361 | 855.1364 | 865.0417 |
density | −0.2264669 | 5.863354 | 5.636887 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.-P. The COVID-19 Epidemic Spreading Effects. Sustainability 2022, 14, 9750. https://doi.org/10.3390/su14159750
Hu C-P. The COVID-19 Epidemic Spreading Effects. Sustainability. 2022; 14(15):9750. https://doi.org/10.3390/su14159750
Chicago/Turabian StyleHu, Chich-Ping. 2022. "The COVID-19 Epidemic Spreading Effects" Sustainability 14, no. 15: 9750. https://doi.org/10.3390/su14159750
APA StyleHu, C. -P. (2022). The COVID-19 Epidemic Spreading Effects. Sustainability, 14(15), 9750. https://doi.org/10.3390/su14159750