Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Data
2.2. Data Analysis
2.2.1. Analysis of Factors Affecting Agroforestry Adoption
2.2.2. Impact Analysis of Agroforestry Adoption to Farmers’ Subjective Well-Being
3. Results and Discussion
3.1. Agroforestry in Bromo Tengger Semeru (BTS)
3.2. Descriptive Statistics
3.3. The Determinants of Agroforestry Adoption
3.4. The Impact of Agroforestry Adoption on Subjective Well-Being
4. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desmiwati, D.; Veriasa, T.O.; Aminah, A.; Safitri, A.D.; Wisudayati, T.A.; Hendarto, K.A.; Royani, H.; Dewi, K.H.; Raharjo, S.N.I.; Sari, D.R. Contribution of agroforestry systems to farmer income in state forest areas: A case study of Parungpanjang, Indonesia. For. Soc. 2021, 5, 109–119. [Google Scholar] [CrossRef]
- Kassie, G.W. Agroforestry and farm income diversification: Synergy or trade-off? The case of Ethiopia. Environ. Syst. Res. 2018, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.C.; Ordoñez, P.J.; Brown, S.E.; Forrest, S.; Nava, N.J.; Hughes, K.; Baylis, K. The impacts of agroforestry on agricultural productivity, ecosystem services, and human well-being in low-and middle-income countries: An evidence and gap map. Campbell Syst. Rev. 2020, 16, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.A.; Jacobsen, J.B.; Healey, J.R.; Roshetko, J.M.; Sunderland, T. Finding alternatives to swidden agriculture: Does agroforestry improve livelihood options and reduce pressure on existing forest? Agrofor. Syst. 2017, 91, 185–199. [Google Scholar] [CrossRef] [Green Version]
- Franzen, M.; Borgerhoff Mulder, M. Ecological, economic and social perspectives on cocoa production worldwide. Biodivers. Conserv. 2007, 16, 3835–3849. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [Green Version]
- Somarriba, E.; Cerda, R.; Orozco, L.; Cifuentes, M.; Dávila, H.; Espin, T.; Mavisoy, H.; Ávila, G.; Alvarado, E.; Poveda, V.; et al. Carbon stocks in agroforestry systems with cocoa (Theobroma cacao L.) in Central America. Ecosyst. Environ. 2013, 173, 46–57. [Google Scholar] [CrossRef]
- Degrande, A.; Schreckenberg, K.; Mbosso, C.; Anegbeh, P.; Okafor, V.; Kanmegne, J. Farmers’ fruit tree-growing strategies in the humid forest zone of Cameroon and Nigeria. Agrofor. Syst. 2006, 67, 159–175. [Google Scholar] [CrossRef]
- Kiptot, E.; Franzel, S.; Degrande, A. Gender, agroforestry and food security in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Maliki, R.; Cornet, D.; Floquet, A.; Sinsin, B. Agronomic and economic performance of yam-based systems with shrubby and herbaceous legumes adapted by smallholders. Outlook Agric. 2012, 41, 171–178. [Google Scholar] [CrossRef]
- Mbow, C.; Smith, P.; Skole, D.; Duguma, L.; Bustamante, M. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Kandji, S.T.; Verchot, L.; Mackensen, J. Climate Change and Variability in the Sahel Region: Impacts and Adaptation Strategies in the Agricultural Sector. 2006. Available online: https://www.worldagroforestry.org/publication/climate-change-and-variability-sahel-region-impacts-and-adaptation-strategies (accessed on 3 March 2022).
- Smith, J. Agroforestry: Reconciling Production with Protection of the Environment. 2010. Available online: https://www.researchgate.net/publication/277754782_Agroforestry_Reconciling_Production_with_Protection_of_the_Environment_A_Synopsis_of_Research_Literature (accessed on 12 March 2022).
- Nöldeke, B.; Winter, E.; Laumonier, Y.; Simamora, T. Simulating agroforestry adoption in rural Indonesia: The potential of trees on farms for livelihoods and environment. Land 2021, 10, 385. [Google Scholar] [CrossRef]
- Kusters, K.; Ruiz Perez, M.; de Foresta, H.; Dietz, T.; Ros-Tonen, M.; Belcher, B.; Manalu, P.; Nawir, A.; Wollenberg, E. Will agroforests vanish? The case of Damar agroforests in Indonesia. Hum. Ecol. 2008, 36, 357–370. [Google Scholar] [CrossRef] [Green Version]
- De Zoysa, M.; Inoue, M. Climate change impacts, agroforestry adaptation and policy environment in Sri Lanka. Open J. For. 2014, 4, 439. [Google Scholar] [CrossRef] [Green Version]
- Kay, S.; Rega, C.; Moreno, G.; den Herder, M.; Palma, J.H.; Borek, R.; Crous-Duran, J.; Freese, D.; Giannitsopoulos, M.; Graves, A. Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy 2019, 83, 581–593. [Google Scholar] [CrossRef]
- Castle, S.E.; Miller, D.C.; Merten, N.; Ordonez, P.J.; Baylis, K. Evidence for the impacts of agroforestry on ecosystem services and human well-being in high-income countries: A systematic map. Environ. Evid. 2022, 11, 10. [Google Scholar] [CrossRef]
- Cerda, R.; Deheuvels, O.; Calvache, D.; Niehaus, L.; Saenz, Y.; Kent, J.; Vilchez, S.; Villota, A.; Martinez, C.; Somarriba, E. Contribution of cocoa agroforestry systems to family income and domestic consumption: Looking toward intensification. Agrofor. Syst. 2014, 88, 957–981. [Google Scholar] [CrossRef]
- Fahmi, M.K.M.; Dafa-Alla, D.-A.M.; Kanninen, M.; Luukkanen, O. Impact of agroforestry parklands on crop yield and income generation: Case study of rainfed farming in the semi-arid zone of Sudan. Agrofor. Syst. 2018, 92, 785–800. [Google Scholar] [CrossRef] [Green Version]
- Jaya, A.; Antang, E.; Djaya, A.; Gunawan, H. Agroforestry farming system as peatland restoration efforts in Central Kalimantan, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 694, 012016. [Google Scholar] [CrossRef]
- Staton, T.; Breeze, T.D.; Walters, R.J.; Smith, J.; Girling, R.D. Productivity, biodiversity trade-offs, and farm income in an agroforestry versus an arable system. Ecol. Econ. 2022, 191, 107214. [Google Scholar] [CrossRef]
- Rahman, M.S.; Andriatmoko, N.D.; Saeri, M.; Subagio, H.; Malik, A.; Triastono, J.; Oelviani, R.; Kilmanun, J.C.; da Silva, H.; Pesireron, M. Climate disasters and subjective well-being among urban and rural residents in Indonesia. Sustainability 2022, 14, 3383. [Google Scholar] [CrossRef]
- Rahman, M.S.; Toiba, H.; Huang, W.-C. The impact of climate change adaptation strategies on income and food security: Empirical evidence from small-scale fishers in Indonesia. Sustainability 2021, 13, 7905. [Google Scholar] [CrossRef]
- Rahman, M.S.; Huang, W.-C.; Toiba, H.; Efani, A. Does adaptation to climate change promote household food security? Insights from Indonesian fishermen. Int. J. Sustain. Dev. World Ecol. 2022, 1–14. [Google Scholar] [CrossRef]
- Toiba, H.; Nugroho, T.W.; Retnoningsih, D.; Rahman, M.S. Food system transformation and its impact on smallholder farmers’ income and food security in Indonesia. Cogent Econ. Financ. 2020, 8, 1854412. [Google Scholar] [CrossRef]
- Becerril, J.; Abdulai, A. The impact of improved maize varieties on poverty in Mexico: A propensity score-matching approach. World Dev. 2010, 38, 1024–1035. [Google Scholar] [CrossRef]
- Latiff, A. Plant Resources of South-East Asia. Auxiliary Plants; Bogors Press Fundation: Bogors, Indonesia, 1997. [Google Scholar]
- Jayaraj, R.S.C. Casuarina junghuhniana (Casuarinaceae) in India. Aust. J. Bot. 2010, 58, 149–156. [Google Scholar] [CrossRef]
- Hakim, L.; Soemarno, M.; Geosites. Biodiversity conservation, community development and geotourism development in Bromo-Tengger-Semeru-Arjuno biosphere reserve, East Java. Geoj. Tour. 2017, 20, 220–230. [Google Scholar]
- Batoro, J.; Indriyani, S.; Yanuwiadi, B. Ethno-ecology of Komplangan Field of the Bromo, Tengger, and Semeru Area in East Java: A qualitative approach. Biosaintifika J. Biol. Biol. Educ. 2017, 9, 41–48. [Google Scholar] [CrossRef]
- Syafrial; Toiba, H.; Rahman, M.S.; Retnoningsih, D. The Effects of Improved Cassava Variety Adoption on Farmers’ Technical Efficiency in Indonesia. Asian J. Agric. Rural Dev. 2021, 11, 269–278. [Google Scholar] [CrossRef]
- Adegbola, P.; Gardebroek, C. The effect of information sources on technology adoption and modification decisions. Agric. Econ. 2007, 37, 55–65. [Google Scholar] [CrossRef]
- Mwaura, F. Effect of farmer group membership on agricultural technology adoption and crop productivity in Uganda. Afr. Crop Sci. J. 2014, 22, 917–927. [Google Scholar]
- Wossen, T.; Alene, A.; Abdoulaye, T.; Feleke, S.; Rabbi, I.Y.; Manyong, V. Poverty reduction effects of agricultural technology adoption: The case of improved cassava varieties in Nigeria. J. Agric. Econ. 2019, 70, 392–407. [Google Scholar] [CrossRef]
- Zheng, H.; Ma, W. Click it and buy happiness: Does online shopping improve subjective well-being of rural residents in China? Appl. Econ. 2021, 53, 4192–4206. [Google Scholar] [CrossRef]
- Nugroho, T.W.; Hanani, N.; Toiba, H.; Sujarwo, S. Promoting Subjective Well-Being among Rural and Urban Residents in Indonesia: Does Social Capital Matter? Sustainability 2022, 14, 2375. [Google Scholar] [CrossRef]
Variable | Measurement | Mean | Std. |
---|---|---|---|
Agroforestry | Dummy, 1 if the farmer adopts the agroforestry system; 0 otherwise | 0.587 | 0.493 |
Terrace | Dummy, 1 if the farmer’s land is terraced; 0 otherwise | 0.505 | 0.501 |
Age | Age of farmers in years | 48.205 | 11.109 |
Education | Education of farmers in years | 7.020 | 4.142 |
Experience | Farming experience in years | 27.828 | 13.882 |
Off-farm work | Dummy, 1 if the farmer has an off-farm job; 0 otherwise | 0.356 | 0.480 |
Land status | Dummy, 1 for owning land; 0 otherwise | 0.766 | 0.424 |
Social Activity | Dummy, 1 if the farmer participates in a social activity; 0 otherwise | 0.469 | 0.500 |
Cooperative | Dummy, 1 if the farmer participates in a cooperative; 0 otherwise | 0.446 | 0.498 |
Farmers Group | Dummy, 1 if the farmer participates in a farmers’ group; 0 otherwise | 0.574 | 0.495 |
Location | Dummy, 1 if the farmer is located in Probolinggo; 0 otherwise | 0.528 | 0.500 |
Irrigation | Dummy, 1 if the farmer’s land has irrigation access; 0 otherwise | 0.677 | 0.469 |
Non-agri land | Number of non-agriculture land in Ha | 0.037 | 0.237 |
Life satisfaction | Life satisfaction level (1 for not satisfied at all to 5 very satisfied) | 2.611 | 1.287 |
Happiness | Happiness level (1 for very unhappy to 5 for very happy) | 2.337 | 1.165 |
Variable | Adopter | Non-Adopter | Different | t-Value |
---|---|---|---|---|
Terrace | 0.669 | 0.272 | 0.397 | 7.358 *** |
Age | 45.270 | 52.384 | −7.114 | −5.775 *** |
Education | 8.410 | 5.040 | 3.370 | 7.599 *** |
Experience | 25.298 | 31.432 | −6.134 | −3.874 *** |
Off-farm work | 0.230 | 0.536 | −0.306 | −5.742 *** |
Land status | 0.792 | 0.728 | 0.064 | 1.297 |
Social activity | 0.792 | 0.008 | 0.784 | 21.178 *** |
Cooperative | 0.685 | 0.104 | 0.581 | 12.220 *** |
Farmers’ Group | 0.798 | 0.256 | 0.542 | 11.113 *** |
Location | 0.567 | 0.472 | 0.095 | 1.640 * |
Irrigation | 0.713 | 0.624 | 0.089 | 1.641 * |
Non-agri land | 0.041 | 0.031 | 0.011 | 0.379 |
Life satisfaction | 2.927 | 2.160 | 0.767 | 5.335 *** |
Happiness | 2.652 | 1.888 | 0.764 | 5.928 *** |
Agroforestry | Coef. | Std. Err | z | p > |z| |
---|---|---|---|---|
Terrace | 1.436 | 0.491 | 2.920 | 0.003 *** |
Age | 0.045 | 0.026 | 1.760 | 0.079 * |
Education | 0.153 | 0.065 | 2.360 | 0.018 ** |
Experience | −0.012 | 0.018 | −0.690 | 0.491 |
Off-farm work | −1.210 | 0.424 | −2.850 | 0.004 *** |
Land status | 0.555 | 0.416 | 1.340 | 0.182 |
Social Activity | 3.980 | 0.689 | 5.780 | 0.000 *** |
Cooperative | 1.395 | 0.423 | 3.300 | 0.001 *** |
Farmers Group | 1.907 | 0.433 | 4.400 | 0.000 *** |
Location | −0.223 | 0.484 | −0.460 | 0.646 |
Irrigation | 0.419 | 0.484 | 0.870 | 0.386 |
Non-agri land | −0.098 | 1.457 | −0.070 | 0.946 |
_cons | −5.910 | 1.709 | −3.460 | 0.001 |
Number of obs | 303.000 | |||
Log-likelihood | −36.453 | |||
LR chi2 (12) | 337.820 | |||
Prob > chi2 | 0.000 | |||
Pseudo R2 | 0.823 |
Matching Algorithm | Outcome | Treated | Control | ATT | Std. Err | t-Value |
---|---|---|---|---|---|---|
Nearest neighbor matching | Life satisfaction | 178 | 13 | 1.787 | 0.441 | 4.048 *** |
Happiness | 178 | 13 | 1.556 | 0.413 | 3.766 *** | |
Kernel-based matching | Life satisfaction | 178 | 47 | 1.702 | 1.059 | 1.607 * |
Happiness | 178 | 47 | 1.507 | 0.513 | 2.937 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijayanto, H.W.; Lo, K.-A.; Toiba, H.; Rahman, M.S. Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia. Sustainability 2022, 14, 10382. https://doi.org/10.3390/su141610382
Wijayanto HW, Lo K-A, Toiba H, Rahman MS. Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia. Sustainability. 2022; 14(16):10382. https://doi.org/10.3390/su141610382
Chicago/Turabian StyleWijayanto, Hari Wahyu, Kai-An Lo, Hery Toiba, and Moh Shadiqur Rahman. 2022. "Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia" Sustainability 14, no. 16: 10382. https://doi.org/10.3390/su141610382
APA StyleWijayanto, H. W., Lo, K. -A., Toiba, H., & Rahman, M. S. (2022). Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia. Sustainability, 14(16), 10382. https://doi.org/10.3390/su141610382