Productive Livestock Characterization and Recommendations for Good Practices Focused on the Achievement of the SDGs in the Ecuadorian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographic Setting
2.2. Sampling System and Data Collection
2.3. Calculation of Revenues, Investments and Net Income
3. Results and Discussion
3.1. Sociodemographic Characteristics
3.2. Land Use in Livestock Producers of the Altitudinal Gradient
3.3. Management of Livestock Systems in the Altitudinal Gradient
3.4. Variation in Income, Investments, and Net Benefits in the Altitudinal Gradient
3.5. Good Livestock Practices Recommended for the Achievement of the SDGs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Variables Used to Determine Total Income, Cost/Investments, and Net Porfit
Financial Concept | Analyzed Items |
Income from milk production | Calculation of annual milk production |
Income from meat production | Total annual sales of cows, calves, heifers, cows, bulls, and juvenile bulls. |
Total Revenues | Income from livestock economic activities |
Fixed costs (investments) | Financial costs |
Land rental costs | |
Facilities maintenance | |
Variable costs in production | Artificial insemination |
Acquisition of cows for production | |
Vaccines for the cattle herd | |
Grass fertilizers | |
Grass seed | |
Pesticides and herbicides | |
Balanced feeding for milking cows | |
Balanced feed for dry cows | |
Balanced feeding for pregnant cows | |
Balanced feeding for calves or calf | |
Balanced feeding for stallion bulls | |
Total costs | Sum of fixed and variable costs |
Net Profit | Income from livestock activity minus total costs |
Appendix B. Household Survey Used to Carry Out the Productive Characterization and Recommendations of Good Practices Oriented to the Achievement of the SDGs
1. Control information and general farm data |
Interviewer name: |
Identification of the farm: |
Date |
Canton |
Parish |
Farm number |
Farm name |
Owner’s name |
Owner’s mobile number |
2. Location |
Height, masl |
Average slope, % |
Coordinates |
Farm slope (%): 1 =< 25; 2 = 26 < and <=35; 3 = 36 < and <50; 4 = more than 50 |
3. Social structure |
Year of foundation of the farm |
Owner’s age |
Do you have relief on your farm? Yes = 1, no = 2. Who? |
Level of schooling (basic = 1, middle = 2, and university = 3, none = 4). |
Do you belong to any agricultural association? Yes = 1, no = 2. Which one? |
4. Uses on the farm |
Total farm area, ha |
Pasture area in ha |
Average slope of the area in livestock % |
5. Herd ownership and structure |
Total number of animals kept by the farm |
Cows |
Average useful life of cows, years |
Cattle calves |
Weaned cows |
Toretes destetados |
Bovine stallions |
Mean useful life of stallions, years |
Fattening bulls |
6. Household Composition | ||||||||||||||||||||
Name | Relationship (Relationship with the Head of the Household) | Gender (F = Feminine; M = Masculine) | Age (Years) | Occupation (Tasks/Jobs you Do on and off the Farm) | Hours of Work per Day | Working Days per Week | Cost (per Month) | Education Level (ns = no studies; p= primary; y = secondary; u = university) | ||||||||||||
On the Farm | Outside the Farm | |||||||||||||||||||
7. Agricultural (Crops) and Forestry Component: Indicate the total area of the farm (ha): | ||||||||||||||||||||
Farm uses | How much area (ha) does each use have? | How many trees are there for each use or crop? | If it is associated, indicate here with which crop or use | Annual contribution of each use to farm income? | Observations | |||||||||||||||
8. Livestock component: | ||||||||||||||||||||
Uses of the farm | How much area (ha) does each use have? | Number of cattle (min 10 per use) | Kg of balanced per cattle supplied per month and price per kg of balanced (usd) | Number of cattle sold | Annual contribution of each use to farm income?(per sale, in usd) | Average selling price | Who do you sell to? | Observations | ||||||||||||
9. Structure of the grazing system | |||
Area dedicated to grazing, ha | |||
Pasture status: 1 = slightly degraded, 2 = moderately degraded, 3 = severely degraded, 4 = improved grass | |||
Total area of compensation, ha | |||
- Like cane, ha | |||
- As forages, ha | |||
- As shrubs, ha | |||
- Other forages (short cycle cultivation) | |||
Area of fallow grass, ha | |||
Number of paddocks | |||
Mean size of the paddock, ha | |||
Grazing method: 1 = rope, 2 = rotational, 3 = rational, 4 = continuous | |||
Number of groups in the herd | |||
Predominant grass: 1 = gramalote, 2 = creepers, 3 = legumes, 4 = erect | |||
It has a reproductive record: yes= 1, no = 2 | |||
Age of incorporation to reproduction, months | |||
Cow/bull relationships | |||
Organize calving strategy in the year: yes = 1, no = 2 Stallion age, months | |||
The stallion has some testicular deformation: yes = 1, no = 2 | |||
Breeds of bovine breeders | |||
Why do you prefer this breed? | |||
Stallion breed | |||
10. Production data | |||
Milking cows | |||
Number of cows with affected quarters | |||
First calving cows | |||
Second calving cows | |||
Cows with three calvings or more | |||
Milk production in the last year, thousands of liters | |||
Production of milk intended for sale in the last year, thousands of liters | |||
Milk production for calves (artificial breeding) | |||
Milk yields, liter per cow per day | |||
Initial inventory of cows and year of start of the cattle activity | |||
11. Final productions sold | |||
Milk price, USD | |||
Price per foot kg sold, USD | |||
Price of other productions sold | |||
In which months of the year is the largest production of marketed milk concentrated? 1–12 | |||
In which months of the year is the highest production of commercialized livestock concentrated? 1–12 | |||
Sale milk, sale meat, or cattle |
References
- Fukuda-Parr, S. From the Millennium Development Goals to the Sustainable Development Goals: Shifts in purpose, concept, and politics of global goal setting for development. Gend. Dev. 2016, 24, 43–52. [Google Scholar]
- Opoku, A. SDG2030: A sustainable built environment’s role in achieving the post-2015, United Nations Sustainable Development Goals. In Proceedings of the 32nd Annual ARCOM Conference, Manchester, UK, 5–7 September 2016; Volume 2, pp. 1149–1158. [Google Scholar]
- Bexell, M.; Jönsson, K. Responsibility and the United Nations’ sustainable development goals. In Forum for Development Studies; Routledge: Oxfordshire, UK, 2017; Volume 44, pp. 13–29. [Google Scholar]
- Tsalis, T.A.; Malamateniou, K.E.; Koulouriotis, D.; Nikolaou, I.E. New challenges for corporate sustainability reporting: United Nations’ 2030, Agenda for sustainable development and the sustainable development goals. Corp. Soc. Responsib. Environ. Manag. 2020, 27, 1617–1629. [Google Scholar]
- Kurth, A.E. Planetary health and the role of nursing: A call to action. J. Nurs. Scholarsh. 2017, 49, 598–605. [Google Scholar] [CrossRef]
- UN Sustainable Development Goals 2015. Available online: https://sustainabledevelopment.un.org/content/documents/4538pressowg13.pdf (accessed on 28 January 2021).
- Kopnina, H. Education for the future? Critical evaluation of education for sustainable development goals. J. Environ. Educ. 2020, 51, 280–291. [Google Scholar]
- Rodriguez, R.S.; Ürge-Vorsatz, D.; Barau, A.S. Sustainable Development Goals and climate change adaptation in cities. Nat. Clim. Change 2018, 8, 181–183. [Google Scholar]
- Toulkeridis, T.; Tamayo, E.; Simón-Baile, D.; Merizalde-Mora, M.J.; Reyes–Yunga, D.F.; Viera-Torres, M.; Heredia, M. Climate Change according to Ecuadorian academics–Perceptions versus facts. LA GRANJA. Rev. De Cienc. De La Vida 2020, 31, 21–46. [Google Scholar]
- Lu, Y.; Nakicenovic, N.; Visbeck, M.; Stevance, A.S. Policy: Five priorities for the UN sustainable development goals. Nat. News 2015, 520, 432–433. [Google Scholar] [CrossRef]
- Heredia-R, M.; Torres, B.; Cabrera-Torres, F.; Torres, E.; Díaz-Ambrona, C.G.H.; Pappalardo, S.E. Land Use and Land Cover Changes in the Diversity and Life Zone for Uncontacted Indigenous People: Deforestation Hotspots in the Yasuní Biosphere Reserve, Ecuadorian Amazon. Forests 2021, 12, 1539. [Google Scholar] [CrossRef]
- Foley, J.; Ramankutty, N.; Brauman, K.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on Pollution and Health. Lancet 2017, 391, 462–512. [Google Scholar] [CrossRef]
- Nilsson, M.; Griggs, D.; Visbeck, M. Policy: Map the interactions between Sustainable Development Goals. Nat. News 2016, 534, 320–322. [Google Scholar] [CrossRef] [PubMed]
- Obersteiner, M.; Walsh, B.; Frank, S.; Havlík, P.; Cantele, M.; Liu, J.; Palazzo, A.; Herrero, M.; Lu, Y.; Mosnier, A.; et al. Assessing the land resource–food price nexus of the Sus-tainable Development Goals. Sci. Adv. 2016, 2, e1501499, PMID:27652336. [Google Scholar] [CrossRef] [PubMed]
- Heredia, R.M.; Falconí, K.; Cayambe, J.; Becerra, S. Pedagogical Innovation: Towards Conservation Psychology and Sustainability. Univers. J. Educ. Res. 2021, 9, 771–780. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security. Rome 2017. Available online: http://www.fao.org/3/a-i7695e.pdf (accessed on 12 February 2022).
- Ritchie, H.; Roser, M. Micronutrient Deficiency. Our World Data. 2019. Available online: https://ourworldindata.org/micronutrient-deficiency?utm_medium=syndication&utm_source=scribd (accessed on 11 February 2020).
- Pica-Ciamarra, U.; Tasciotti, L.; Otte, J.; Zezza, A. Livestock Assets, Rural Income and Rural Households. Cross-Country Evidence from Household Surveys; ESA Working Paper No. 11–17; FAO: Rome, Italy, 2011. [Google Scholar]
- Cordain, L.; Eaton, S.; Miller, J.B.; Mann, N.; Hill, K. The paradoxical nature of hunter-gatherer diets: Meat-based, yet non-atherogenic. Eur. J. Clin. Nutr. 2002, 56, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H.; Reay, D.; Higgins, P. Sustainable food security in India—Domestic production and macronutrient availability. PLoS ONE 2018, 13, e0193766. [Google Scholar] [CrossRef] [Green Version]
- Grace, D.; Domínguez Salas, P.; Alonso, S.; Lannerstad, M.; Muunda, E.M.; Ngwili, N.M.; Omar, A.; Khan, M.; Otobo, E. The Infuence of Livestock-Derived Foods on Nutrition During the First 1000 Days of Life. ILRI Res. Rep. 2018, 44, 62bp. [Google Scholar]
- Mehrabi, Z.; Gill, M.; Wijk, M.V.; Herrero, M.; Ramankutty, N. Livestock policy for sustainable development. Nat. Food 2020, 1, 160–165. [Google Scholar] [CrossRef]
- Krause, T.; Collen, W.; Nicholas, K.A. Evaluating safeguards in a conservation incentive program: Participation, consent, and benefit sharing in indigenous communities of the Ecuadorian Amazon. Ecol. Soc. 2013, 18. Available online: https://www.jstor.org/stable/26269386 (accessed on 11 February 2022). [CrossRef]
- Torres, B.; Eche, D.; Torres, Y.; Bravo, C.; Velasco, C.; García, A. Identification and Assessment of Livestock Best Management Practices (BMPs) Using the REDD+ Approach in the Ecuadorian Amazon. Agronomy 2021, 11, 1336. [Google Scholar] [CrossRef]
- Boval, M.; Angeon, V.; Rudel, T. Tropical grasslands: A pivotal place for a more multi-functional agriculture. Ambio 2017, 46, 48–56. [Google Scholar] [CrossRef]
- Torres, B.; Cayambe, J.; Paz, S.; Ayerve, K.; Heredia-R, M.; Torres, E.; Luna, M.; Toulkeridis, T.; García, A. Livelihood Capitals, Income Inequality, and the Perception of Climate Change: A Case Study of Small-Scale Cattle Farmers in the Ecuadorian Andes. Sustainability 2022, 14, 5028. [Google Scholar] [CrossRef]
- Lal, R. Integrating Animal Husbandry with Crops and Trees. Front. Sustain. Food Syst. 2020, 4, 113. [Google Scholar] [CrossRef]
- Nalubwama, S.M.; Mugisha, A.; Vaarst, M. Organic livestock production in Uganda: Potentials, challenges and prospects. Trop. Anim. Health Prod. 2011, 43, 749–757. [Google Scholar] [CrossRef]
- Wurzinger, M. Sustainable Development of Livestock Production: What and how can Research Contribute? In Advances in Fibre Production Science in South American Camelids and other Fibre Animals; Gutiérrez, J.P., McKenna, L., Niznikowski, R., Wurzinger, M., Eds.; Universitätsverlag Göttingen: Göttingen, Germany, 2019; p. 15. [Google Scholar]
- Zezza, A.; Pica-Ciamarra, U.; Mugera, K.H.; Mwisomba, T.; Okello, P. Measuring the Role of Livestock in the Household Economy. A Guidebook for Designing Household Survey Questionnaires; FAO: Rome, Italy, 2016; 67p. [Google Scholar]
- Behera, B.K.; Rout, P.K.; Behera, S. Sustainable Livestock Farming for Zero Hunger. In Move Towards Zero Hunger; Springer: Singapore, 2019; pp. 141–159. [Google Scholar]
- Jevtic, M.; Belic, B.; Glavas–Trbic, D. One Health Approach in Traditional Milk Production as a Part of Steps towards SDGs. Eur. J. Sustain. Dev. 2020, 9, 263. [Google Scholar] [CrossRef]
- Arnés, E.; Díaz-Ambrona, C.G.; Marín-González, O.; Astier, M. Farmer Field Schools (FFSs): A tool empowering sustainability and food security in peasant farming systems in the Nicaraguan Highlands. Sustainability 2018, 10, 3020. [Google Scholar] [CrossRef]
- Heredia, M.; Bravo, C.; Torres, B.; Alemán, R. Innovación para el fortalecimiento de capacidades sobre sostenibilidad de los recursos naturales en poblaciones indígenas mestizas—Colonas: Reserva de Biosfera Yasuní. Iber. J. Inf. Syst. Technol. 2020, 25, 103–116. Available online: http://www.risti.xyz/issues/ristie25.pdf (accessed on 18 February 2022).
- Yasmin, S. Ikemoto Women’s participation in small-scale dairy farming for poverty reduction in Bangladesh. Am. Int. J. Soc. Sci. 2015, 4, 21–33. [Google Scholar]
- Schlink, A.C.; Nguyen, M.L.; Viljoen, G.J. Water requirements for livestock production: A global perspective. Rev. Sci. Tech. 2010, 29, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Palhares, J.C.P.; Morelli, M.; Novelli, T.I. Water footprint of a tropical beef cattle production system: The impact of individu-al-animal and feed management. Adv. Water Resour. 2021, 149, 103853. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.W.; Mekonnen, M.M.; Hoekstra, A. The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. Water Resour. Ind. 2013, 1, 25–36. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Fiala, M. Water Footprint of crop productions: A review. Sci. Total Environ. 2016, 548, 236–251. [Google Scholar] [CrossRef] [PubMed]
- Doreau, M.; Corson, M.S.; Wiedemann, S.G. Water use by livestock: A global perspective for a regional issue? Anim. Front. 2012, 2, 9–16. [Google Scholar] [CrossRef]
- Palhares, J.C.P.; Pezzopane, J.R.M. Water footprint accounting and scarcity indicators of conventional and organic dairy production systems. J. Clean. Prod. 2015, 93, 299–307. [Google Scholar] [CrossRef]
- Heredia-R, M.; Torres, B.; Cayambe, J.; Ramos, N.; Luna, M.; Diaz-Ambrona, C.G. Sustainability Assessment of Smallholder Agroforestry Indigenous Farming in the Amazon: A Case Study of Ecuadorian Kichwas. Agronomy 2020, 10, 1973. [Google Scholar] [CrossRef]
- Chiriacò, M.V.; Valentini, R. A land-based approach for climate change mitigation in the livestock sector. J. Clean. Prod. 2021, 283, 124622. [Google Scholar] [CrossRef]
- León Alvear, V.; Torres, B.; Luna, M.; Torres, A.; Ramírez, P.; Andrade-Yucailla, V.; Muñoz-Rengifo, J.C.; Heredia-R, M. Percepción sobre cambio climático en cuatro comunidades orientadas a la ganadería bovina en la zona central de los Andes Ecuatorianos. Livest. Res. Rural. Dev. 2020, 32, 165. Available online: http://www.lrrd.org/lrrd32/10/mageh32165.html (accessed on 19 February 2022).
- Sierra, R. Dynamics and patterns of deforestation in the western Amazon: The Napo deforestation front, 1986–1996. Appl. Geogr. 2000, 20, 1–16. [Google Scholar] [CrossRef]
- Suarez, E.; Morales, M.; Cueva, R.; Utreras Bucheli, V.; Zapata-Ríos, G.; Toral, E.; Torres, J.; Prado, W.; Vargas Olalla, J. Oil industry, wild meat trade and roads: Indirect effects of oil extraction activities in a protected area in north-eastern Ecuador. Anim. Conserv. 2009, 12, 364–373. [Google Scholar] [CrossRef]
- Sierra, R. Patrones Factores de Deforestación en el Ecuador Continental, 1990–2010. Y un Acercamiento a los Próximos 10 años. Conservación Internacional Ecuador Forest Trends; Conservación Internacional Ecuador y Forest Trends: Quito, Ecuador, 2013; p. 51. [Google Scholar]
- MAGAP. ATPA Proyecto Reconversión Agro productiva Sostenible de la Amazonia; MAGAP: Quito, Ecuador, 2014. [Google Scholar]
- Lerner, A.M.; Rudel, T.K.; Schneider, L.C.; McGroddy, M.; Burbano, D.V.; Mena, C.F. The spontaneous emergence of silvopastoral landscapes in the Ecuadorian Amazon: Patterns and processes. Reg. Environ. Change 2014, 15, 1421–1431. [Google Scholar] [CrossRef]
- Knoke, T.; Bendix, J.; Pohle, P.; Hamer, U.; Hildebrandt, P.; Roos, K.; Gerique, A.; Sandoval, M.L.; Breuer, L.; Tischer, A.; et al. Afforestation or intense pasturing improve the ecological and economic value of abandoned tropical farmlands. Nat. Commun. 2014, 5, 5612. [Google Scholar] [CrossRef]
- Myers, N. Threatened biotas: “hot spots” in tropical forests. Environmentalist 1988, 8, 187–208. [Google Scholar] [CrossRef] [PubMed]
- Myers, N.; Mittermeier, R.; Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Heredia-R, M.; Cayambe, J.; Schorsch, C.; Toulkeridis, T.; Barreto, D.; Poma, P.; Villegas, G. Multitemporal Analysis as a Non-Invasive Technology Indicates a Rapid Change in Land Use in the Amazon: The Case of the ITT Oil Block. Environments 2021, 8, 139. [Google Scholar] [CrossRef]
- Poma, P.; Usca, M.; Fdz-Polanco, M.; Garcia-Villacres, A.; Toulkeridis, T. Landslide and environmental risk from oil spill due to the rupture of SOTE and OCP pipelines, San Rafael Falls, Amazon Basin, Ecuador. Int. J. Adv. Sci. Eng. Inf. Technol. 2021, 11, 1558–1566. [Google Scholar] [CrossRef]
- Heredia-R, M.; Torres, B.; Cabrera-Torres, F.; Vasco, E.; Díaz-Ambrona, C.G.; Toulkeridis, T. Free Data Processing Applied to Detect Changes in Land Use Coverage at Biodiversity Hotspots of the Amazon. In Doctoral Symposium on Information and Communication Technologies-DSICT; Springer: Cham, Switzerland, 2022; pp. 104–115. [Google Scholar]
- Hoese, G.; Addison, A.; Toulkeridis, T.; Toomey, R., III. Observation of Climbing Catfish in a Cave in Tena, Ecuador. Subterr. Biol. 2015, 15, 29–35. [Google Scholar]
- Constantin, S.; Toulkeridis, T.; Moldovan, O.T.; Villacís, M.; Addison, A. Caves and karst of Ecuador–state-of-the-art and research perspectives. Phys. Geogr. 2019, 40, 28–51. [Google Scholar] [CrossRef]
- Martin-Solano, S.; Toulkeridis, T.; Addison, A.; Pozo-Rivera, W.E. Predation of Desmodus rotundus Geoffroy, 1810, (Phyllostomidae, Chiroptera) by Epicrates cenchria (Linnaeus, 1758) (Boidae, Reptilia) in an Ecuadorian Cave. Subterr. Biol. 2016, 19, 41–50. [Google Scholar]
- MAE Sistema de Clasificación de los Ecosistemas del Ecuador Continental. Subsecretaría de Patrimonio Natural. Ministerio del Ambiente del Ecuador Quito. 2012. Available online: https://www.ambiente.gob.ec/wp-content/uploads/downloads/2012/09/LEYENDA-ECOSISTEMAS_ECUADOR_2.pdf (accessed on 19 February 2022).
- Lozano, P.; Cabrera, O.; Peyre, G.; Cleef, A.; Toulkeridis, T. Plant diversity and composition changes along an altitudinal gradient in the isolated volcano sumaco in the ecuadorian amazon. Diversity 2020, 12, 229. [Google Scholar] [CrossRef]
- Izquierdo, G.M. Informantes muestreo en investigación cualitativa. Investig. Andin. 2015, 17, 1148–1150. Available online: https://www.redalyc.org/pdf/2390/239035878001.pdf (accessed on 22 February 2022).
- Grijalva, J.; Ramos Veintimilla, R.; Arévalo Vizcaino, V.; Barrera, P.; Guerra, J. Alternativas de intensificación, adaptación mitigación a cambios climáticos: Los sistemas silvopastoriles en la subcuenca del Río Quijos de la Amazonía ecuatoriana. In Estación Experimental Santa Catalina, Programa Nacional de Forestería; INIAP: Quito, Ecuador, 2013. [Google Scholar]
- Rutter, S.M. Diet preference for grass and legumes in free-ranging domestic sheep and cattle: Current theory and future ap-plication. Appl. Anim. Behav. Sci. 2006, 97, 17–35. [Google Scholar] [CrossRef]
- Mogues, T. Shocks and Asset Dynamics in Ethiopia. Econ. Dev. Cult. Change 2011, 60, 91–120. [Google Scholar] [CrossRef]
- Hernández, C.E.; Carpio, N. Introducción a los tipos de muestreo. Alerta Rev. Científica Del Inst. Nac. De Salud 2019, 2, 75–79. [Google Scholar] [CrossRef]
- Antonio, G.P.J. Estadística e Informática (SPSS) en la Investigación Descriptiva e Inferencial (Versión Actualizada SPSS 22). 2017. ISBN: 978-84-362-7247-5. Available online: https://itunesu-assets.itunes.apple.com/itunes-assets/CobaltPublic122/v4/13/e8/7e/13e87e2d-9510-a82c-32fa-393aba72295a/302-303580771699079046-9788436272475.pdf (accessed on 19 February 2022).
- Rudel, T.K.; Bates, D.; Machinguiashi, R. Ecologically Noble Amerindians? Cattle Ranching and Cash Cropping among Shuar a Colonists in Ecuador. Lat. Am. Res. Rev. 2002, 37, 144–159. [Google Scholar]
- Vasco, C.; Bilsborrow, R.; Torres, B.; Griess, V. Agricultural land use among mestizo colonist and indigenous populations: Contrasting patterns in the Amazon. PLoS ONE 2018, 13, e0199518. [Google Scholar] [CrossRef] [PubMed]
- Heredia-R, M.; Torres, B.; Vasseur, L.; Puhl, L.; Barreto, D.; H Díaz-Ambrona, C.G. Sustainability dimensions assessment in four traditional agricultural systems in the Amazon. Front. Sustain. Food Syst. 2022, 545. [Google Scholar] [CrossRef]
- Zimmerman, B.; Peres, C.; Malcolm, J.C.T. Conservation and development alliances with the Kayapó of south-eastern Amazonia, a tropical forest indigenous people. Environ. Conserv. 2001, 28, 10–22. Available online: https://www.jstor.org (accessed on 10 February 2022). [CrossRef]
- Gray, C.; Bilsborrow, R.; Bremner, J.; Lu, F. Indigenous Land Use in the Ecuadorian Amazon: A Cross-cultural and Multilevel Analysis. Hum. Ecol. 2008, 36, 97–109. [Google Scholar] [CrossRef]
- Andrade-Yucailla, V.; Andino-Inmunda, M.; Acosta-Lozano, N.; Romero-Herrera, M.; González-Rivera, V.; Vargas-Burgos, J.C.; Or-tiz-Nacaza, P.; Andrade-Yucailla, S. Caracterización del entorno social de la gallina criolla de traspatio encontradas en comunidades indígenas Kichwa de San Jose de Chonta Punta del bosque siempreverde piemontano. Actas Iberoam. En Conserv. Anim. AICA 2019, 13, 90–96. Available online: https://aicarevista.jimdo.com/n%C3%Bameros/vol%C3%Bamen-13-2019-1/ (accessed on 9 February 2022).
- Buitrón-Cañadas, V. Colonización y acuerdos locales en la consolidación del sistema campesino-ganadero saraguro en la Amazonía sur del Ecuador Colonization and local agreements in the consolidation of the Saraguro peasant livestock system in the Southern Ecuadorian Amazon. EUTOPÍA 2017, 12, 103–119. [Google Scholar] [CrossRef]
- Requelme, N.; Bonifaz, N. Caracterización de sistemas de producción lechera de Ecuador. La Granja 2012, 15, 55–69. [Google Scholar] [CrossRef]
- Martín, P.L.; Sanzberro, D.; Zorzano, I.; Burgui, V.; Lacosta, Z. La importancia del relevo generacional. Navar. Agrar. 2019, 235, 19–28. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=7058189 (accessed on 5 February 2022).
- Rivera, S.A.G.; Marcillo, R.L.G.; Carrasco, R.; Guamán, F. Caracterización de los Sistemas Ganaderos de Aptitud Lechera en el Valle del Quijos, Provincia del Napo, Ecuador. Eur. Sci. J. ESJ 2019, 15, 279. [Google Scholar] [CrossRef]
- Alemán-Pérez, R.; Bravo-Medina, C.; Vargas-Burgos, J.; Chimborazo-Sarabia, C. Tipificación agroecológica de los sistemas ganaderos en la región amazónica ecuatoriana. Livest. Res. Rural. Dev. 2020, 32, 95. Available online: http://www.lrrd.org/lrrd32/6/cbravo32095.html (accessed on 7 February 2022).
- Solorio, S.; Wright, J.; Franco, M.; Basu, S.; Sarabia, S.; Ramirez, L.; Ayala, B.; Aguilar, P.; Ku, V. Silvopastoral systems: Best agroe-cological practice for resilient production systems under dryland and drought conditions. In Quan-Tification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability; Ahmed, M., Stockle, C.O., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 233–250. [Google Scholar] [CrossRef]
- Mena, C.F.; Barbieri, A.F.; Walsh, S.J.; Erlien, C.M.; Holt, F.L.; Bilsborrow, R.E. Pressure on the Cuyabeno Wildlife Reserve: Development and land use/cover change in the Northern Ecuadorian Amazon. World Dev. 2006, 34, 1831–1849. [Google Scholar] [CrossRef]
- Messina, J.; Walsh, S.; Mena, C.; Delamater, P. Land tenure and deforestation patterns in the Ecuadorian Amazon: Conflicts in land conservation in frontier settings. Appl. Geogr. 2006, 26, 113–128. [Google Scholar] [CrossRef]
- Carrasco, R.U.; Figueredo Calvo, R.; Curbelo Rodríguez, L.; Masaquiza Moposita, D. Caracterización de fincas ganaderas vacunas para el trabajo de extensión rural en Ecuador. II. Clasificación. Rev. De Prod. Anim. 2017, 29, 6–13. Available online: http://scielo.sld.cu/pdf/rpa/v29n2/rpa02217.pdf (accessed on 7 February 2022).
- Ríos-Núñez, S.; Benítez-Jiménez, D. Análisis del funcionamiento económico productivo de los sistemas de producción cárnica bovina en la Amazonía Ecuatoriana. Arch. De Zootec. 2015, 64, 409–416. [Google Scholar] [CrossRef]
- Meunier, A. Ganadería en el sur de la Amazonía ecuatoriana: Motor de la colonización flybase de la economía agraria.¿ Será capaz de adaptarse a los nuevos retos. Mosaico Agrar. 2007, 1, 225–265. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers11-03/010043076.pdf (accessed on 20 February 2022).
- Ness, B.; Urbel-Piirsalu, E.; Anderberg, S.; Olsson, L. Categorizing tools for sustainability assessment. Ecol. Econ. 2007, 60, 498–508. [Google Scholar] [CrossRef]
- Broom, D.M.; Galindo, F.A.; Murgueitio, E. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. R. Soc. B 2013, 280, 2013–2025. [Google Scholar] [CrossRef]
- Lemaire, G.; Franzluebbers, A.; de Faccio Carvalho, P.C.; Dedieu, B. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Hoddinott, J. Shocks and Their Consequences across and within Households in Rural Zimbabwe. J. Dev. Stud. 2006, 42, 301–321. [Google Scholar] [CrossRef]
- Truong, L.D.; Ho, N.N.; Tran, D.T.; Nguyen, X.T. Does cattle production contribute to improving welfare of poor ethnic minority households in Central Vietnam? Livest. Res. Rural. Dev. 2020, 32, 161. Available online: http://www.lrrd.org/lrrd32/10/thaok32161.html (accessed on 20 February 2022).
- Escobar, L.O.; Mejía, F.L.; Vasquez, H.; Bernal, W.; Álvarez, W.Y. Composición botánica evaluación nutricional de pasturas en diferentes sistemas silvopastoriles en Molinopampa, Región Amazonas, Perú. Livest. Res. Rural. Dev. 2020, 32, 96. Available online: http://www.lrrd.org/lrrd32/6/luises32096.html (accessed on 19 February 2022).
- Hassen, A. Carbon sequestration potentials of rangelands under traditional management practices in the Rift Valley of Ethiopia. Livest. Res. Rural. 2020, 32, 160. Available online: http://www.lrrd.org/lrrd32/10/hassen32160.html (accessed on 22 January 2021).
- Lopera-Marín, J.J.; Angulo-Arizala, J.; Restrepo, E.M.; Mahecha-Ledesma, L. Producción de tubérculos biomasa aérea del yacón, Smallanthus sonchifolius (Poepp.) H. Rob. (Asteraceae), para alimentación animal en el trópico alto colombiano. Livest. Res. Rural. Dev. 2020, 32, 8. Available online: http://www.lrrd.org/lrrd32/8/jjlop32135.html (accessed on 19 February 2022).
- Pérez, S.L. Las Empresas Agropecuarias la Administración Financiera. Rev. Mex. De Agronegocios 2017, 40, 583–594. [Google Scholar]
- Vargas-Burgos, J.C.; Benítez, D.; Ríos, S.; Torres, A.; Navarrete, H.; Andino, M.; Quinteros, R. Ordenamiento de razas bovinas en los ecosistemas amazónicos. Estudio de caso provincia Pastaza. Rev. Amaz. Cienc. Tecnol. 2013, 2, 133–146. Available online: https://revistas.proeditio.com/REVISTAMAZONICA/article/view/184/157 (accessed on 19 February 2022).
- Heredia, M.; Falconí, A.K.; Barreto, D.; Amores, K.; Jamil, H.; Torres, B. Conductas sustentables sobre el marco de evaluación SAFA–FAO: Un aporte para poblaciones rurales vulnerables de la Amazonía. Rev. Ibérica Sist. Tecnol. Inf. 2020, 33, 312–326. [Google Scholar]
Variable | Altitudinal Gradient (Zone) | p-Value † | ||
---|---|---|---|---|
Low | Middle | High | ||
Elevation range (masl) | 400–700 | 701–1600 | 1601–2000 | - |
Average elevation (masl) | 543.1 a | 1114.1 b | 1778.0 c | 0.01 |
Year of settlement | 1975 | 1984 | 1952 | n.s |
Variable | Altitudinal Gradient (Zone) | p-Value † | ||
---|---|---|---|---|
Low | Middle | High | ||
Ethnicity (% Kichwa) | 0.0 a | 56.1 b | 0.0 a | 0.001 |
Household size (number of people) | 5.56 a,b | 6.70 a | 5.04 b | 0.01 |
Household members who work on the farm | 2.63 | 3.00 | 2.32 | n.s |
Head of household age (years) | 54.79 | 56.77 | 57.60 | n.s |
Head of household without education (%) | 8.8 | 15.8 | 3.8 | n.s |
Head of household with primary education (%) | 61.4 | 47.4 | 28.3 | n.s |
Head of household with secondary education (%) | 22.8 | 24.6 | 49.1 | n.s |
Variable | Gradiente Altitudinal (Zona) | p Value † | |||||
---|---|---|---|---|---|---|---|
Low | Middle | High | |||||
Avg (ha) | % | Avg (ha) | % | Avg (ha) | % | ||
Pasture land | 26.8 (19.2) | 62 | 27.2 (28.6) | 55 | 22.5 (17.2) | 81 | n.s. |
Crop land | 1.6 a (1.9) | 4 | 2.2 a (3.3) | 5 | 0.4 b (1.1) | 2 | 0.001 |
Remnant Forest Land | 20.1 a,b (29.8) | 34 | 32.9 a (56.2) | 40 | 12.2 b (28.1) | 17 | 0.05 |
Total land | 47.3 a,b (42.1) | 100 | 62.4 a (70.6) | 100 | 35.2 b (40.2) | 100 | 0.05 |
Low Zone 400 to 700 masl | Middle Zone 701 to 1600 masl | High Zone 1601 to 2000 masl |
---|---|---|
Grasses | ||
Marandu grass (Brachiaria brizantha) | Honey grass (Setaria splendida) | Kikuyu grass (Pennisetum clandestinum) |
Dallis grass (Brachiaria decumbes) | Dallis grass (Brachiaria decumbes) | Honey grass (Setaria splendida) |
Imperial grass (Axonopus scoparius) | Imperial grass (Axonopus scoparius) | Orchard grass / dactyl grass (Dactylis glomerata) |
Savoy grass (Panicum maximum) | Guinea grass (Panicum maximum) | Ryegrass (Lolium multiflorum) |
German grass (Echynochloa polystachya) | ||
Legumes | ||
Forage peanut (Arachis pintoi) | Forage peanut (Arachis pintoi) | Lotus (Lotus pedunculatus) |
Bellflower (Centrosema pubescens) | Bellflower (Centrosema pubescens) | White clover (Trifolium repens) |
Buttercup (Tithonia diversifolia) |
Variable | Altitudinal Gradient (Zone) | p Value † | ||
---|---|---|---|---|
Low | Middle | High | ||
Total animals (heads) | 24.2 a (13.8) | 18.8 a,b (17.1) | 30.4 b (21.8) | 0.01 |
Average daily milk yield (litre/cow) | 1.4 a (0.7) | 2.6 a (1.2) | 7.2 b (4.3) | 0.001 |
Total investment (USD) | 1709.9 b (1547.1) | 1555.8 b (1403.7) | 4307.3 a (2814.7) | 0.001 |
Total gross income (USD) | 2762.7 b (3038.1) | 3415.1 b (4939.6) | 19,042.6 a (26,204.6) | 0.001 |
Net profit (USD) | 1052.7 b (3259.3) | 1859.3 b (4682.1) | 14,735.3 a (25,120.3) | 0.001 |
Sustainable Development Goal (SDG) | Recommendation | Examples |
---|---|---|
SDG 1: End of Poverty | Implement accounting records and productive and reproductive planning systems, among other aspects of good livestock management practices, and improve grazing systems and management of leguminous forage species to increase productivity. | [25,76] |
SDG 2: Zero Hunger | Diversify livestock systems with crops, fruit trees, and timber (sustainable livestock intensification). Generate sustainable food-oriented production, implementing an animal-based diet, which could also alleviate malnutrition (hidden hunger). | [94] |
SDG 3: Good Health and Well-being | Promote a healthy human diet through precision farming and the incorporation of good farming practices that prevent diseases and promote product quality. | [94] |
SDG 4: Quality Education | Propose field schools to promote good livestock practices aimed at making land use more efficient, freeing up pasture areas to promote reforestation and landscape restoration processes, as well as associativity and business development. | [25,34] |
SDG 5: Gender Equality | Promote greater participation and training of women in activities of good livestock practices to promote equal opportunities in sustainable societies. | [25,36] |
SDG 6: Clean Water and Sanitation | Reduce the water footprint of livestock, considering sustainable intensification through good livestock practices that incorporate waste management, in order to obtain economic, environmental, and social co-benefits from livestock activity. | [25,41,94] |
SDG 8: Decent Work and Economic Growth | Identify resilience factors that promote the adaptation and buffering capacity of farms and that favor adaptation capacity at the supply chain level. Conduct economic analysis through poverty quintiles and capital theory to make extension and training programs more efficient. | [27] |
SDG 10: Reduced Inequalities | Promote research on inequities in livestock systems and policies to reduce inequity through animal breeding programs with solid agroecological principles and pasture technification, serving these vulnerable populations. | [27] |
SDG 11: Sustainable cities and Communities | Promote policies that encourage good livestock practices towards sustainable livestock landscapes at the community level, and that also add value to livestock products. | [23] |
SDG 12: Responsible Consumption and Production | Promote responsible consumption policies so that society insists on the consumption of products that do not cause negative environmental externalities throughout the production chain. | [35,95] |
SDG 13: Climate Action | Promote public and private action policies with key actors to implement projects that promote good livestock practices with an REDD+ approach. Promote experimental research with the support of academia to facilitate technical assistance towards climate-smart livestock systems. Implement waste management systems such as artisanal vermiculture, composting, and semi-artisanal biodigester. | [25,94] |
SDG 15: Life on Land | Promote policies to implement deforestation-free livestock systems and improve the ecosystem services of grasslands by implementing good livestock practices, such as passive and active restoration in degraded areas due to overgrazing, and rehabilitation of grasslands with the inclusion of tree, fruit, and forage species. Promote policies to implement deforestation-free livestock systems and improve the ecosystem services of grasslands by implementing good livestock practices, such as passive and active restoration in degraded areas due to overgrazing, and rehabilitation of grasslands with the inclusion of tree, fruit, and forage species. | [25] |
SDG 17: Partnerships for the Goals | Promote policies for the organizational development of associations of livestock producers that promote cooperation, complementarity, solidarity, conflict resolution, the construction of local capacities, and the necessary planning to achieve the SDGs. | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, B.; Andrade, V.; Heredia-R, M.; Toulkeridis, T.; Estupiñán, K.; Luna, M.; Bravo, C.; García, A. Productive Livestock Characterization and Recommendations for Good Practices Focused on the Achievement of the SDGs in the Ecuadorian Amazon. Sustainability 2022, 14, 10738. https://doi.org/10.3390/su141710738
Torres B, Andrade V, Heredia-R M, Toulkeridis T, Estupiñán K, Luna M, Bravo C, García A. Productive Livestock Characterization and Recommendations for Good Practices Focused on the Achievement of the SDGs in the Ecuadorian Amazon. Sustainability. 2022; 14(17):10738. https://doi.org/10.3390/su141710738
Chicago/Turabian StyleTorres, Bolier, Verónica Andrade, Marco Heredia-R, Theofilos Toulkeridis, Kleber Estupiñán, Marcelo Luna, Carlos Bravo, and Antón García. 2022. "Productive Livestock Characterization and Recommendations for Good Practices Focused on the Achievement of the SDGs in the Ecuadorian Amazon" Sustainability 14, no. 17: 10738. https://doi.org/10.3390/su141710738
APA StyleTorres, B., Andrade, V., Heredia-R, M., Toulkeridis, T., Estupiñán, K., Luna, M., Bravo, C., & García, A. (2022). Productive Livestock Characterization and Recommendations for Good Practices Focused on the Achievement of the SDGs in the Ecuadorian Amazon. Sustainability, 14(17), 10738. https://doi.org/10.3390/su141710738