Chrysotile-Asbestos-Induced Damage in Panicum virgatum and Phleum pretense Species and Its Alleviation by Organic-Soil Amendment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Experimental Setup
2.3. Parameters Studied
2.3.1. Growth, Biomass, and Heavy Metals
2.3.2. Enzymatic Activities
2.3.3. Heavy Metals Concentration in the Sampling Soils
2.3.4. Statistical Analysis
3. Results
3.1. Alleviation of Asbestos-Induced Damage in Growth Indices by Compost Amendment
3.2. Mitigation of Toxic Metals Uptake by Compost Amendment
3.2.1. Cr Uptake
3.2.2. V Uptake
3.2.3. Mn Uptake
3.2.4. As Uptake
3.2.5. Ba Uptake
3.3. Compost-Induced Improvement in the Antioxidant Potential of Grasses under Asbestos Toxicity
3.4. Correlation among the Investigated Parameters
3.5. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bloise, A.; Ricchiuti, C.; Punturo, R.; Pereira, D. Potentially Toxic Elements (PTEs) Associated with Asbestos Chrysotile, Tremolite and Actinolite in the Calabria Region (Italy). Chem. Geol. 2020, 558, 119896. [Google Scholar] [CrossRef]
- Qaisar, M.A.; Khan, A.A.H. Mineralogy of Some Asbestos from North-West Pakistan. J. Sci. Ind. Res. 1967, 10, 116–120. [Google Scholar]
- Bloise, A.; Catalano, M.; Barrese, E.; Gualtieri, A.F.; Bursi Gandolfi, N.; Capella, S.; Belluso, E. TG/DSC Study of the Thermal Behaviour of Hazardous Mineral Fibres. J. Therm. Anal. Calorim. 2016, 123, 2225–2239. [Google Scholar] [CrossRef]
- Harper, M. 10th Anniversary Critical Review: Naturally Occurring Asbestos. J. Environ. Monit. 2008, 10, 1394–1408. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Sun, X.-M.; Wu, L. High Time for Complete Ban on Asbestos Use in Developing Countries. JAMA Oncol. 2019, 5, 779–780. [Google Scholar] [CrossRef] [PubMed]
- Gregson, N.; Watkins, H.; Calestani, M. Inextinguishable Fibres: Demolition and the Vital Materialisms of Asbestos. Environ. Plan. A 2010, 42, 1065–1083. [Google Scholar] [CrossRef]
- Jehan, N.; Ahmad, I. Petrochemistry of Asbestos Bearing Rocks from Skhakot-Qila Ultramafic Complex, Northern Pakistan. J. Himal. Earth Sci. 2006, 39, 75–83. [Google Scholar]
- Iftikhar, S.; Ali, M.; Nergis, Y. Risks and Hazards Study of Asbestos in Pakistan. Int. J. Econ. Environ. Geol. 2019, 6, 25–28. [Google Scholar]
- Baumann, F.; Buck, B.J.; Metcalf, R.V.; McLaurin, B.T.; Merkler, D.J.; Carbone, M. The Presence of Asbestos in the Natural Environment Is Likely Related to Mesothelioma in Young Individuals and Women from Southern Nevada. J. Thorac. Oncol. 2015, 10, 731–737. [Google Scholar] [CrossRef]
- Ahmad, M.; Ishaq, M.; Shah, W.A.; Adnan, M.; Fahad, S.; Saleem, M.H.; Khan, F.U.; Mussarat, M.; Khan, S.; Ali, B.; et al. Managing Phosphorus Availability from Organic and Inorganic Sources for Optimum Wheat Production in Calcareous Soils. Sustainability 2022, 14, 7669. [Google Scholar] [CrossRef]
- Ali, B.; Hafeez, A.; Javed, M.A.; Ahmad, S.; Afridi, M.S.; Sumaira Nadeem, M.; Khan, A.U.R.; Malik, A.; Ullah, A.; Alwahibi, M.S.; et al. Bacterial-mediated salt tolerance in maize: Insights into plant growth promotion, antioxidant defense system, oxidative stress, and surfactant production. Front. Plant Sci. 2022, 13, 978291. [Google Scholar] [CrossRef]
- Ali, B.; Hafeez, A.; Ahmad, S.; Javed, M.A.; Sumaira Afridi, M.S.; Dawoud, T.M.; Almaary, K.S.; Muresan, C.C.; Marc, R.A.; Alkhalifah, D.H.M.; et al. Bacillus thuringiensis PM25 ameliorates oxidative damage of salinity stress in maize via regulating growth, leaf pigments, antioxidant defense system, and stress responsive gene expression. Front. Plant Sci. 2022, 13, 921668. [Google Scholar] [CrossRef]
- Adnan, M.; Fahad, S.; Saleem, M.H.; Ali, B.; Mussart, M.; Ullah, R.; Arif, M.; Ahmad, M.; Shah, W.A.; Romman, M.; et al. Comparative efficacy of phosphorous supplements with phosphate solubilizing bacteria for optimizing wheat yield in calcareous soils. Sci. Rep. 2022, 12, 11997. [Google Scholar] [CrossRef]
- Rajkumar, M.; Sandhya, S.; Prasad, M.N.V.; Freitas, H. Perspectives of Plant-Associated Microbes in Heavy Metal Phytoremediation. Biotechnol. Adv. 2012, 30, 1562–1574. [Google Scholar] [CrossRef]
- Aprill, W.; Sims, R.C. Evaluation of the Use of Prairie Grasses for Stimulating Polycyclic Aromatic Hydrocarbon Treatment in Soil. Chemosphere 1990, 20, 253–265. [Google Scholar] [CrossRef]
- Zhang, Y.; He, L.; Chen, Z.; Zhang, W.; Wang, Q.; Qian, M.; Sheng, X. Characterization of Lead-Resistant and ACC Deaminase-Producing Endophytic Bacteria and Their Potential in Promoting Lead Accumulation of Rape. J. Hazard. Mater. 2011, 186, 1720–1725. [Google Scholar] [CrossRef]
- Deng, H.; Ge, L.; Xu, T.; Wang, X.; Zhang, M.; Zhang, Y. Metabolic Properties of Carbon Sources of the Bacterial Community in Horizontal Subsurface Flow Constructed Wetlands in Eastern China. Fresenius Environ. Bull. 2010, 19, 2657–2664. [Google Scholar]
- Balsamo, R.A.; Kelly, W.J.; Satrio, J.A.; Ruiz-Felix, M.N.; Fetterman, M.; Wynn, R.; Hagel, K. Utilization of Grasses for Potential Biofuel Production and Phytoremediation of Heavy Metal Contaminated Soils. Int. J. Phytoremediation 2015, 17, 448–455. [Google Scholar] [CrossRef]
- Ali, B.; Wang, X.; Saleem, M.H.; Azeem, M.A.; Afridi, M.S.; Nadeem, M.; Ghazal, M.; Batool, T.; Qayyum, A.; Alatawi, A.; et al. Bacillus mycoides PM35 Reinforces Photosynthetic Efficiency, Antioxidant Defense, Expression of Stress-Responsive Genes, and Ameliorates the Effects of Salinity Stress in Maize. Life 2022, 12, 219. [Google Scholar] [CrossRef]
- Ali, B.; Wang, X.; Saleem, M.H.; Sumaira; Hafeez, A.; Afridi, M.S.; Khan, S.; Zaib-Un-Nisa; Ullah, I.; Amaral Júnior, A.T.; et al. PGPR-Mediated Salt Tolerance in Maize by Modulating Plant Physiology, Antioxidant Defense, Compatible Solutes Accumulation and Bio-Surfactant Producing Genes. Plants 2022, 11, 345. [Google Scholar] [CrossRef]
- Amna Ali, B.; Azeem, M.A.; Qayyum, A.; Mustafa, G.; Ahmad, M.A.; Javed, M.T.; Chaudhary, H.J. Bio-Fabricated Silver Nanoparticles: A Sustainable Approach for Augmentation of Plant Growth and Pathogen Control. In Sustainable Agriculture Reviews 53; Springer: Cham, Switzerland, 2021; pp. 345–371. [Google Scholar]
- Dola, D.B.; Mannan, M.A.; Sarker, U.; Mamun, M.A.A.; Islam, T.; Ercisli, S.; Saleem, M.H.; Ali, B.; Pop, O.L.; Marc, R.A. Nano-iron oxide accelerates growth, yield, and quality of Glycine max seed in water deficits. Front. Plant Sci. 2022, 13, 992535. [Google Scholar] [CrossRef]
- Farooq, T.H.; Rafay, M.; Basit, H.; Shakoor, A.; Shabbir, R.; Riaz, M.U.; Ali, B.; Kumar, U.; Qureshi, K.A.; Jaremko, M. Morpho-physiological growth performance and phytoremediation capabilities of selected xerophyte grass species toward Cr and Pb stress. Front. Plant Sci. 2022, 13, 997120. [Google Scholar] [CrossRef]
- Ma, J.; Saleem, M.H.; Ali, B.; Rasheed, R.; Ashraf, M.A.; Aziz, H.; Ercisli, S.; Riaz, S.; Elsharkawy, M.M.; Hussain, I.; et al. Impact of foliar application of syringic acid on tomato (Solanum lycopersicum L.) under heavy metal stress-insights into nutrient uptake, redox homeostasis, oxidative stress, and antioxidant defense. Front. Plant Sci. 2022, 13, 950120. [Google Scholar] [CrossRef]
- Ma, J.; Saleem, M.H.; Yasin, G.; Mumtaz, S.; Qureshi, F.F.; Ali, B.; Ercisli, S.; Alhag, S.K.; Ahmed, A.E.; Vodnar, D.C.; et al. Individual and combinatorial effects of SNP and NaHS on morpho-physio-biochemical attributes and phytoextraction of chromium through Cr-stressed spinach (Spinacia oleracea L.). Front. Plant Sci. 2022, 13, 973740. [Google Scholar] [CrossRef]
- Shojaei, S.; Jafarpour, A.; Shojaei, S.; Gyasi-Agyei, Y.; Rodrigo-Comino, J. Heavy Metal Uptake by Plants from Wastewater of Different Pulp Concentrations and Contaminated Soils. J. Clean. Prod. 2021, 296, 126345. [Google Scholar] [CrossRef]
- Nishikimi, M.; Appaji Rao, N.; Yagi, K. The Occurrence of Superoxide Anion in the Reaction of Reduced Phenazine Methosulfate and Molecular Oxygen. Biochem. Biophys. Res. Commun. 1972, 46, 849–854. [Google Scholar] [CrossRef]
- Aebi, H. [13] Catalase in Vitro. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 105, pp. 121–126. ISBN 978-0-12-182005-3. [Google Scholar]
- Flohé, L.; Günzler, W.A. [12] Assays of Glutathione Peroxidase. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 105, pp. 114–120. ISBN 978-0-12-182005-3. [Google Scholar]
- Lobarzewski, J.; Ginalska, G. Industrial Use of Soluble or Immobilized Plant Peroxidases. Plant Peroxidase Newsl. 1995, 6, 3–7. [Google Scholar]
- Rajendran, M.; An, W.; Li, W.; Perumal, V.; Wu, C.; Sahi, S.V.; Sarkar, S.K. Chromium Detoxification Mechanism Induced Growth and Antioxidant Responses in Vetiver (Chrysopogon Zizanioides (L.) Roberty). J. Cent. South Univ. 2019, 26, 489–500. [Google Scholar] [CrossRef]
- Nawaz, H.; Ali, A.; Saleem, M.H.; Ameer, A.; Hafeez, A.; Alharbi, K.; Ezzat, A.; Khan, A.; Jamil, M.; Farid, G. Comparative effectiveness of EDTA and citric acid assisted phytoremediation of Ni contaminated soil by using canola (Brassica napus). Braz. J. Biol. 2022, 82, e261785. [Google Scholar] [CrossRef]
- Kumar, A.; Maiti, S.K. Effect of Organic Manures on the Growth of Cymbopogon Citratus and Chrysopogon Zizanioides for the Phytoremediation of Chromite-Asbestos Mine Waste: A Pot Scale Experiment. Int. J. Phytoremediation 2015, 17, 437–447. [Google Scholar] [CrossRef]
- Trivedi, A.K.; Ahmad, I. Effects of Chrysotile Asbestos Contaminated Soil on Crop Plants. Soil Sediment. Contam. Int. J. 2011, 20, 767–776. [Google Scholar] [CrossRef]
- Shrestha, P.; Bellitürk, K.; Görres, J. Phytoremediation of Heavy Metal-Contaminated Soil by Switchgrass: A Comparative Study Utilizing Different Composts and Coir Fiber on Pollution Remediation, Plant Productivity, and Nutrient Leaching. IJERPH 2019, 16, 1261. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.-C.; Lai, H.-Y.; Juang, K.-W. Model Evaluation of Plant Metal Content and Biomass Yield for the Phytoextraction of Heavy Metals by Switchgrass. Ecotoxicol. Environ. Saf. 2012, 80, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Zainab, N.; Amna; Khan, A.A.; Azeem, M.A.; Ali, B.; Wang, T.; Shi, F.; Alghanem, S.M.; Hussain Munis, M.F.; Hashem, M.; et al. PGPR-Mediated Plant Growth Attributes and Metal Extraction Ability of Sesbania sesban L. in Industrially Contaminated Soils. Agronomy 2021, 11, 1820. [Google Scholar] [CrossRef]
- Chen, L.; Liu, J.; Hu, W.; Gao, J.; Yang, J. Vanadium in Soil-Plant System: Source, Fate, Toxicity, and Bioremediation. J. Hazard. Mater. 2021, 405, 124200. [Google Scholar] [CrossRef] [PubMed]
- Larsson, M.A.; Baken, S.; Gustafsson, J.P.; Hadialhejazi, G.; Smolders, E. Vanadium Bioavailability and Toxicity to Soil Microorganisms and Plants. Environ. Toxicol. Chem. 2013, 32, 2266–2273. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.G.; Boutin, C.; Knopper, L. Vanadium Pentoxide Phytotoxicity: Effects of Species Selection and Nutrient Concentration. Arch. Environ. Contam. Toxicol. 2013, 64, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, M.; Jia, Y.; Gou, M.; Zeyer, J. Toxicity of Vanadium in Soil on Soybean at Different Growth Stages. Environ. Pollut. 2017, 231, 48–58. [Google Scholar] [CrossRef]
- Guo, Y. Switchgrass Responses to Manganese Availability. Ph.D. Thesis, University of Missouri, Columbia, MO, USA, 2019. [Google Scholar]
- Chen, Z.; Yan, W.; Sun, L.; Tian, J.; Liao, H. Proteomic Analysis Reveals Growth Inhibition of Soybean Roots by Manganese Toxicity Is Associated with Alteration of Cell Wall Structure and Lignification. J. Proteom. 2016, 143, 151–160. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, X.Q.; Hu, Z.M.; Shao, J.F.; Che, J.; Chen, R.F.; Dong, X.Y.; Shen, R.F. Aluminium Alleviates Manganese Toxicity to Rice by Decreasing Root Symplastic Mn Uptake and Reducing Availability to Shoots of Mn Stored in Roots. Ann. Bot. 2015, 116, 237–246. [Google Scholar] [CrossRef]
- Neves, M.I.; Prajapati, D.H.; Parmar, S.; Aghajanzadeh, T.A.; Hawkesford, M.J.; De Kok, L.J. Manganese Toxicity Hardly Affects Sulfur Metabolism in Brassica Rapa. In Sulfur Metabolism in Higher Plants—Fundamental, Environmental and Agricultural Aspects; De Kok, L.J., Hawkesford, M.J., Haneklaus, S.H., Schnug, E., Eds.; Proceedings of the International Plant Sulfur Workshop; Springer International Publishing: Cham, Switzerland, 2017; pp. 155–162. ISBN 978-3-319-56525-5. [Google Scholar]
- Huang, Y.L.; Yang, S.; Long, G.X.; Zhao, Z.K.; Li, X.F.; Gu, M.H. Manganese Toxicity in Sugarcane Plantlets Grown on Acidic Soils of Southern China. PLoS ONE 2016, 11, e0148956. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.A.; Islam, F.; Ali, B.; Najeeb, U.; Mao, B.; Gill, R.A.; Yan, G.; Siddique, K.H.M.; Zhou, W. Arsenic Toxicity in Plants: Cellular and Molecular Mechanisms of Its Transport and Metabolism. Environ. Exp. Bot. 2016, 132, 42–52. [Google Scholar] [CrossRef]
- Singh, S.; Sounderajan, S.; Kumar, K.; Fulzele, D.P. Investigation of Arsenic Accumulation and Biochemical Response of in Vitro Developed Vetiveria Zizanoides Plants. Ecotoxicol. Environ. Saf. 2017, 145, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.A.; Balal, R.M.; Khan, N.; Zotarelli, L.; Liu, G.D.; Sarkhosh, A.; Fernández-Zapata, J.C.; Martínez Nicolás, J.J.; Garcia-Sanchez, F. Selenium Impedes Cadmium and Arsenic Toxicity in Potato by Modulating Carbohydrate and Nitrogen Metabolism. Ecotoxicol. Environ. Saf. 2019, 180, 588–599. [Google Scholar] [CrossRef]
- Mohd, S.; Shukla, J.; Kushwaha, A.S.; Mandrah, K.; Shankar, J.; Arjaria, N.; Saxena, P.N.; Narayan, R.; Roy, S.K.; Kumar, M. Endophytic Fungi Piriformospora Indica Mediated Protection of Host from Arsenic Toxicity. Front. Microbiol. 2017, 8, 754. [Google Scholar] [CrossRef] [Green Version]
- Mawia, A.M.; Hui, S.; Zhou, L.; Li, H.; Tabassum, J.; Lai, C.; Wang, J.; Shao, G.; Wei, X.; Tang, S.; et al. Inorganic Arsenic Toxicity and Alleviation Strategies in Rice. J. Hazard. Mater. 2021, 408, 124751. [Google Scholar] [CrossRef]
- Armendariz, A.L.; Talano, M.A.; Travaglia, C.; Reinoso, H.; Wevar Oller, A.L.; Agostini, E. Arsenic Toxicity in Soybean Seedlings and Their Attenuation Mechanisms. Plant Physiol. Biochem. 2016, 98, 119–127. [Google Scholar] [CrossRef]
- Dradrach, A.; Karczewska, A.; Szopka, K. Arsenic Accumulation by Red Fescue (Festuca Rubra) Growing in Mine Affected Soils—Findings from the Field and Greenhouse Studies. Chemosphere 2020, 248, 126045. [Google Scholar] [CrossRef]
- Yang, F.; Xie, S.; Wei, C.; Liu, J.; Zhang, H.; Chen, T.; Zhang, J. Arsenic Characteristics in the Terrestrial Environment in the Vicinity of the Shimen Realgar Mine, China. Sci. Total Environ. 2018, 626, 77–86. [Google Scholar] [CrossRef]
- Dradrach, A.; Karczewska, A.; Szopka, K.; Lewińska, K. Accumulation of Arsenic by Plants Growing in the Sites Strongly Contaminated by Historical Mining in the Sudetes Region of Poland. IJERPH 2020, 17, 3342. [Google Scholar] [CrossRef]
- Dradrach, A.; Karczewska, A.; Szopka, K. Arsenic Uptake by Two Tolerant Grass Species: Holcus Lanatus and Agrostis Capillaris Growing in Soils Contaminated by Historical Mining. Plants 2020, 9, 980. [Google Scholar] [CrossRef]
- Sinha, B.; Bhattacharyya, K. Arsenic Toxicity in Rice with Special Reference to Speciation in Indian Grain and Its Implication on Human Health. J. Sci. Food Agric. 2015, 95, 1435–1444. [Google Scholar] [CrossRef]
- Prommarach, T.; Pholsen, S.; Shivaraju, H.P.; Chareonsudjai, P. Growth and Biosorption of Purple Guinea and Ruzi Grasses in Arsenic Contaminated Soils. Environ. Monit. Assess. 2022, 194, 85. [Google Scholar] [CrossRef]
- Sultana, R.; Kobayashi, K.; Kim, K.-H. Comparison of Arsenic Uptake Ability of Barnyard Grass and Rice Species for Arsenic Phytoremediation. Environ. Monit Assess 2015, 187, 4101. [Google Scholar] [CrossRef]
- Sleimi, N.; Kouki, R.; Hadj Ammar, M.; Ferreira, R.; Pérez-Clemente, R. Barium Effect on Germination, Plant Growth, and Antioxidant Enzymes in Cucumis Sativus L. Plants. Food Sci. Nutr. 2021, 9, 2086–2094. [Google Scholar] [CrossRef]
- de Souza Cardoso, A.A.; Monteiro, F.A. Sulfur Supply Reduces Barium Toxicity in Tanzania Guinea Grass (Panicum Maximum) by Inducing Antioxidant Enzymes and Proline Metabolism. Ecotoxicol. Environ. Saf. 2021, 208, 111643. [Google Scholar] [CrossRef]
- Myrvang, M.B.; Gjengedal, E.; Heim, M.; Krogstad, T.; Almås, Å.R. Geochemistry of Barium in Soils Supplied with Carbonatite Rock Powder and Barium Uptake to Plants. Appl. Geochem. 2016, 75, 1–8. [Google Scholar] [CrossRef]
- Sungur, A.; Gur, E.; Everest, T.; Soylak, M.; Ozcan, H. Assessment of Relationship Between Geochemical Fractions of Barium in Soil of Cherry Orchards and Plant Barium Uptake and Determination by Inductively Coupled Plasma Optical Emission Spectrometry. At. Spectrosc. 2019, 40, 173–178. [Google Scholar] [CrossRef]
- de Castro Ribeiro, P.R.C.; Viana, D.G.; Pires, F.R.; Egreja Filho, F.B.; Bonomo, R.; Cargnelutti Filho, A.; Martins, L.F.; Cruz, L.B.S.; Nascimento, M.C.P. Selection of Plants for Phytoremediation of Barium-Polluted Flooded Soils. Chemosphere 2018, 206, 522–530. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, C.F.M.; Viana, D.G.; Pires, F.R.; Egreja Filho, F.B.; Bonomo, R.; Martins, L.F.; Cruz, L.B.S.; Nascimento, M.C.P.; Cargnelutti Filho, A.; da Rocha Júnior, P.R. Phytoremediation of Barium-Affected Flooded Soils Using Single and Intercropping Cultivation of Aquatic Macrophytes. Chemosphere 2019, 214, 10–16. [Google Scholar] [CrossRef]
- Myrvang, M.B.; Bleken, M.A.; Krogstad, T.; Heim, M.; Gjengedal, E. Can Liming Reduce Barium Uptake by Agricultural Plants Grown on Sandy Soil? J. Plant Nutr. Soil Sci. 2016, 179, 557–565. [Google Scholar] [CrossRef]
- Lu, Q.; Xu, X.; Liang, L.; Xu, Z.; Shang, L.; Guo, J.; Xiao, D.; Qiu, G. Barium Concentration, Phytoavailability, and Risk Assessment in Soil-Rice Systems from an Active Barium Mining Region. Appl. Geochem. 2019, 106, 142–148. [Google Scholar] [CrossRef]
- Mehmood, S.; Khatoon, Z.; Amna Ahmad, I.; Muneer, M.A.; Kamran, M.A.; Ali, J.; Ali, B.; Chaudhary, H.J.; Munis, M.F. Bacillus sp. PM31 harboring various plant growth-promoting activities regulates Fusarium dry rot and wilt tolerance in potato. Arch. Agron. Soil Sci. 2021, 2021, 1971654. [Google Scholar] [CrossRef]
- Wahab, A.; Abdi, G.; Saleem, M.H.; Ali, B.; Ullah, S.; Shah, W.; Mumtaz, S.; Yasin, G.; Muresan, C.C.; Marc, R.A. Plants’ Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. Plants 2022, 11, 1620. [Google Scholar] [CrossRef]
- Afridi, M.S.; Javed, M.A.; Ali, S.; De Medeiros, F.H.V.; Ali, B.; Salam, A.; Sumaira Marc, R.A.; Alkhalifah, D.H.M.; Selim, S.; Santoyo, G. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. Front. Plant Sci. 2022, 13, 899464. [Google Scholar] [CrossRef]
Parameters | Compost | Asbestos (0 km) | Asbestos (1 km) | Asbestos (3 km) | Asbestos (10 km) |
---|---|---|---|---|---|
pH | 7.9 | 6.5 | 6.8 | 7.3 | 7.5 |
EC (mS cm−1) | 5.05 | 0.98 | 0.81 | 0.63 | 0.42 |
Total soluble solids (TSS) (mg/kg) | 154.79 | 72.93 | 79.15 | 84.71 | 89.58 |
NaCl content (mg/kg) | 186.58 | 84.34 | 85.31 | 89.47 | 93.93 |
Mn (mg/kg) | 431.6 | 2573.8 | 2356.4 | 2183.9 | 1653.7 |
Cr (mg/kg) | 1.4 | 13.4 | 11.9 | 9.7 | 6.3 |
V (mg/kg) | 0.63 | 11.51 | 8.82 | 6.94 | 4.78 |
As (mg/kg) | 0.71 | 16.57 | 12.89 | 10.65 | 7.93 |
Ba (mg/kg) | 1.01 | 19.93 | 17.07 | 15.63 | 10.94 |
Switchgrass | Timothy Grass | |||||||
---|---|---|---|---|---|---|---|---|
Treatment | Shoot Length (cm) | Shoot Biomass (mg) | Root Length (cm) | Root Biomass (mg) | Shoot Length (cm) | Shoot Biomass (mg) | Root Length (cm) | Root Biomass (mg) |
T0 | 192.67 a | 28.06 a | 99 a | 15.53 a | 175 a | 20.86 a | 86.33 a | 12.57 a |
T1 | 81.67 g | 8.90 h | 46.67 h | 6.40 g | 135.33 f | 8.87 e | 43.33 g | 5.67 g |
T2 | 98.33 f | 12.17 g | 56.67 g | 7.07 f | 135.67 f | 12.50 d | 57.33 e | 6.67 e |
T3 | 86.67 g | 13.63 f | 68.33 f | 8.33 e | 146 e | 13.40 cd | 53 f | 6.07 fg |
T4 | 65.33 h | 16.20 e | 72.67 e | 8.63 e | 139 f | 14.67 c | 61 d | 5.63 g |
T5 | 165.67 c | 23.17 d | 77.33 d | 10.40 d | 145.67 e | 16.60 b | 67.33 c | 6.40 ef |
T6 | 175.33 b | 24.23 c | 85.67 c | 11.23 c | 155.33 d | 16.83 b | 69.67 c | 7.17 d |
T7 | 155.67 d | 25.50 b | 90.66 b | 12.17 b | 163 c | 17.43 b | 70 c | 7.73 c |
T8 | 146.33 e | 25.07 bc | 84.33 c | 12.27 b | 168 b | 17.43 b | 76.33 b | 8.73 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, K.; Asghar, M.A.; Saleem, M.H.; Raza, A.; Kocsy, G.; Iqbal, N.; Ali, B.; Albeshr, M.F.; Bhat, E.A. Chrysotile-Asbestos-Induced Damage in Panicum virgatum and Phleum pretense Species and Its Alleviation by Organic-Soil Amendment. Sustainability 2022, 14, 10824. https://doi.org/10.3390/su141710824
Saleem K, Asghar MA, Saleem MH, Raza A, Kocsy G, Iqbal N, Ali B, Albeshr MF, Bhat EA. Chrysotile-Asbestos-Induced Damage in Panicum virgatum and Phleum pretense Species and Its Alleviation by Organic-Soil Amendment. Sustainability. 2022; 14(17):10824. https://doi.org/10.3390/su141710824
Chicago/Turabian StyleSaleem, Khansa, Muhammad Ahsan Asghar, Muhammad Hamzah Saleem, Ali Raza, Gábor Kocsy, Nadeem Iqbal, Baber Ali, Mohammed Fahad Albeshr, and Eijaz Ahmed Bhat. 2022. "Chrysotile-Asbestos-Induced Damage in Panicum virgatum and Phleum pretense Species and Its Alleviation by Organic-Soil Amendment" Sustainability 14, no. 17: 10824. https://doi.org/10.3390/su141710824
APA StyleSaleem, K., Asghar, M. A., Saleem, M. H., Raza, A., Kocsy, G., Iqbal, N., Ali, B., Albeshr, M. F., & Bhat, E. A. (2022). Chrysotile-Asbestos-Induced Damage in Panicum virgatum and Phleum pretense Species and Its Alleviation by Organic-Soil Amendment. Sustainability, 14(17), 10824. https://doi.org/10.3390/su141710824