Evaluation of the Bioremediation Potential of Staphlococcus lentus Inoculations of Plants as a Promising Strategy Used to Attenuate Chromium Toxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Industrial Effluent Sample Collection
2.2. Isolation and Identification of Cr-Tolerant Bacterial Strain
2.3. Seed Sample Procurement and Sterilization
2.4. Bacterial Inoculations and Chromium Treatments
2.5. Study of the Growth Parameters and Stress Tolerance Index
2.6. Protein Contents
2.7. Proline Contents
2.8. Chlorophyll Contents
2.9. Chromium Uptake
2.10. Peroxidase Contents
3. Results
3.1. Effects of Bacterial Inoculation on the Growth Attributes and Cr-Tolerance Index
3.2. Effect of Bacterial Inoculations on the Protein Contents
3.3. Effect of Bacterial Inoculation on the Proline Content
3.4. Effect of Bacterial Inoculation on the Chlorophyll Contents
3.5. Effect of Bacterial Inoculation on Chromium Uptake in the Aerial Parts
3.6. Effect of Chromium on Peroxidase Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DesMarias, T.L.; Costa, M. Mechanisms of chromium-induced toxicity. Curr. Opin. Toxicol. 2019, 14, 1–7. [Google Scholar] [CrossRef]
- Vaiopoulou, E.; Gikas, P. Regulations for chromium emissions to the aquatic environment in Europe and elsewhere. Chemosphere 2020, 254, 126876. [Google Scholar] [CrossRef] [PubMed]
- Antuzevics, A.; Krieke, G.; Ozols, H.; Fedotovs, A.; Sarakovskis, A.; Kuzmin, A. Oxidation State and Local Structure of Chromium Ions in LaOCl. Materials 2021, 14, 3539. [Google Scholar] [CrossRef]
- GracePavithra, K.; Jaikumar, V.; Kumar, P.S.; SundarRajan, P. A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. J. Clean. Prod. 2019, 228, 580–593. [Google Scholar] [CrossRef]
- Singh, P.; Itankar, N.; Patil, Y. Biomanagement of hexavalent chromium: Current trends and promising perspectives. J. Environ. Manag. 2021, 279, 111547. [Google Scholar] [CrossRef]
- Alvarez, C.C.; Gómez, M.E.B.; Zavala, A.H. Hexavalent chromium: Regulation and health effects. J. Trace Elem. Med. Biol. 2021, 65, 126729. [Google Scholar] [CrossRef]
- Devi, P.; Kumar, P. Effect of bioremediation on internodal length and leaf area of maize plant cultivated in contaminated soil with chromium metal. J. Pharmacogn. Phytochem. 2020, 9, 1408–1413. [Google Scholar]
- Ayele, A.; Godeto, Y.G. Bioremediation of chromium by microorganisms and its mechanisms related to functional groups. J. Chem. 2021, 2021, 7694157. [Google Scholar] [CrossRef]
- Diaconu, M.; Roșca, M.; Cozma, P.; Minuț, M.; Smaranda, C.; Hlihor, R.-M.; Gavrilescu, M. Toxicity and Microbial Bioremediation of Chromium Contaminated Effluents. In Proceedings of the 2020 International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 29–30 October 2020; pp. 1–4. [Google Scholar]
- Guo, S.; Xiao, C.; Zhou, N.; Chi, R. Speciation, toxicity, microbial remediation and phytoremediation of soil chromium contamination. Environ. Chem. Lett. 2021, 19, 1413–1431. [Google Scholar] [CrossRef]
- Mohamed, M.S.; El-Arabi, N.I.; El-Hussein, A.; El-Maaty, S.A.; Abdelhadi, A.A. Reduction of chromium-VI by chromium-resistant Escherichia coli FACU: A prospective bacterium for bioremediation. Folia Microbiol. 2020, 65, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Seragadam, P.; Rai, A.; Ghanta, K.C.; Srinivas, B.; Lahiri, S.K.; Dutta, S. Bioremediation of hexavalent chromium from wastewater using bacteria-a green technology. Biodegradation 2021, 32, 449–466. [Google Scholar] [CrossRef] [PubMed]
- Murthy, M.K.; Khandayataray, P.; Padhiary, S.; Samal, D. A review on chromium health hazards and molecular mechanism of chromium bioremediation. Rev. Environ. Health 2022. [Google Scholar] [CrossRef] [PubMed]
- Kausar, A.; Ashraf, M.Y.; Ali, I.; Niaz, M.; Abbass, Q. Evaluation of sorghum varieties/lines for salt tolerance using physiological indices as screening tool. Pak. J. Bot. 2012, 44, 47–52. [Google Scholar]
- Waterborg, J.; Matthews, H. The Lowry method for protein quantitation. Basic protein and peptide protocols. Humana 1994, 1, 1–4. [Google Scholar]
- Carillo, P.; Gibon, Y. Protocol: Extraction and determination of proline. PrometheusWiki 2011, 2011, 1–5. [Google Scholar]
- Kumari, S.; Vaishnav, A.; Jain, S.; Varma, A.; Choudhary, D.K. Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill). J. Plant Growth Regul. 2015, 34, 558–573. [Google Scholar] [CrossRef]
- Lalelou, F.S.; Fateh, M. Effects of different concentrations of zinc on chlorophyll, starch, soluble sugars and proline content in Cucurbita pepo. Int. J. Biosci. 2014, 4, 6–12. [Google Scholar]
- Gheju, M.; Balcu, I.; Ciopec, M. Analysis of hexavalent chromium uptake by plants in polluted soils. Ovidius Univ. Ann. Chem. 2009, 20, 127–131. [Google Scholar]
- Misra, A.; Dwivedi, S.; Srivastava, A.; Tewari, D.; Khan, A.; Kumar, R. Low iron stress nutrition for evaluation of Fe-efficient genotype physiology, photosynthesis, and essential monoterpene oil (s) yield of Ocimum sanctum. Photosynthetica 2006, 44, 474–477. [Google Scholar] [CrossRef]
- Sinha, S.N.; Biswas, M.; Paul, D.; Rahaman, S. Biodegradation potential of bacterial isolates from tannery effluent with special reference to hexavalent chromium. Biotechnol. Bioinform. Bioeng. 2011, 1, 381–386. [Google Scholar]
- Mathur, S.; Kalaji, H.; Jajoo, A. Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. Photosynthetica 2016, 54, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Hayat, S.; Khalique, G.; Irfan, M.; Wani, A.S.; Tripathi, B.N.; Ahmad, A. Physiological changes induced by chromium stress in plants: An overview. Protoplasma 2012, 249, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Vishnupradeep, R.; Bruno, L.B.; Taj, Z.; Karthik, C.; Challabathula, D.; Kumar, A.; Freitas, H.; Rajkumar, M. Plant growth promoting bacteria improve growth and phytostabilization potential of Zea mays under chromium and drought stress by altering photosynthetic and antioxidant responses. Environ. Technol. Innov. 2022, 25, 102154. [Google Scholar] [CrossRef]
- Regan, J.; Dushaj, N.; Stinchfield, G. Reducing hexavalent chromium to trivalent chromium with zero chemical footprint: Borohydride exchange resin and a polymer-supported base. ACS Omega 2019, 4, 11554–11557. [Google Scholar] [CrossRef]
- Karthik, C.; Arulselvi, P.I. Biotoxic effect of chromium (VI) on plant growth-promoting traits of novel Cellulosimicrobium funkei strain AR8 isolated from Phaseolus vulgaris rhizosphere. Geomicrobiol. J. 2017, 34, 434–442. [Google Scholar] [CrossRef]
- Tirry, N.; Kouchou, A.; El Omari, B.; Ferioun, M.; El Ghachtouli, N. Improved chromium tolerance of Medicago sativa by plant growth-promoting rhizobacteria (PGPR). J. Genet. Eng. Biotechnol. 2021, 19, 149. [Google Scholar] [CrossRef]
- Haouas, A.; El Modafar, C.; Douira, A.; Ibnsouda-Koraichi, S.; Filali-Maltouf, A.; Moukhli, A.; Amir, S. Alcaligenes aquatilis GTE53: Phosphate solubilising and bioremediation bacterium isolated from new biotope “phosphate sludge enriched-compost”. Saudi J. Biol. Sci. 2021, 28, 371–379. [Google Scholar] [CrossRef]
- Wu, L.; Li, Z.; Han, C.; Liu, L.; Teng, Y.; Sun, X.; Pan, C.; Huang, Y.; Luo, Y.; Christie, P. Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls. Int. J. Phytoremediat. 2012, 14, 570–584. [Google Scholar] [CrossRef]
- Al-Huqail, A.; El-Bondkly, A. Improvement of Zea mays L. growth parameters under chromium and arsenic stress by the heavy metal-resistant Streptomyces sp. NRC21696. Int. J. Environ. Sci. Technol. 2022, 19, 5301–5322. [Google Scholar] [CrossRef]
- Sharma, A.; Kapoor, D.; Wang, J.; Shahzad, B.; Kumar, V.; Bali, A.S.; Jasrotia, S.; Zheng, B.; Yuan, H.; Yan, D. Chromium bioaccumulation and its impacts on plants: An overview. Plants 2020, 9, 100. [Google Scholar] [CrossRef] [Green Version]
- Amin, H.; Ahmed Arain, B.; Abbasi, M.S.; Amin, F.; Jahangir, T.M.; Soomro, N.-U.-A. Evaluation of chromium phyto-toxicity, phyto-tolerance, and phyto-accumulation using biofuel plants for effective phytoremediation. Int. J. Phytoremediat. 2019, 21, 352–363. [Google Scholar] [CrossRef]
- Rasheed, A.; Hassan, M.U.; Fahad, S.; Aamer, M.; Batool, M.; Ilyas, M.; Shang, F.; Wu, Z.; Li, H. Heavy metals stress and plants defense responses. In Sustainable Soil and Land Management and Climate Change; CRC Press: Boca Raton, FL, USA, 2021; pp. 57–82. [Google Scholar]
- Bhagyawant, S.S.; Narvekar, D.T.; Gupta, N.; Bhadkaria, A.; Koul, K.K.; Srivastava, N. Variations in the antioxidant and free radical scavenging under induced heavy metal stress expressed as proline content in chickpea. Physiol. Mol. Biol. Plants 2019, 25, 683–696. [Google Scholar] [CrossRef] [PubMed]
- Diaconu, M.; Pavel, L.V.; Hlihor, R.-M.; Rosca, M.; Fertu, D.I.; Lenz, M.; Corvini, P.X.; Gavrilescu, M. Characterization of heavy metal toxicity in some plants and microorganisms—A preliminary approach for environmental bioremediation. New Biotechnol. 2020, 56, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Qadir, M.; Hussain, A.; Hamayun, M.; Shah, M.; Iqbal, A.; Murad, W. Phytohormones producing rhizobacterium alleviates chromium toxicity in Helianthus annuus L. by reducing chromate uptake and strengthening antioxidant system. Chemosphere 2020, 258, 127386. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Kumar, V.; Usmani, Z.; Rani, R.; Chandra, A.; Gupta, V.K. Implications of plant growth promoting Klebsiella sp. CPSB4 and Enterobacter sp. CPSB49 in luxuriant growth of tomato plants under chromium stress. Chemosphere 2020, 240, 124944. [Google Scholar] [CrossRef] [PubMed]
- Valipour, M. Calibration of mass transfer-based models to predict reference crop evapotranspiration. Appl. Water Sci. 2017, 7, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Valipour, M.; Dietrich, J. Developing ensemble mean models of satellite remote sensing, climate reanalysis, and land surface models. Theor. Appl. Climatol. 2022. [Google Scholar] [CrossRef]
- Valipour, M.; Dietrich, J. Correction to: Developing ensemble mean models of satellite remote sensing, climate reanalysis, and land surface models. Theor. Appl. Climatol. 2022. [Google Scholar] [CrossRef]
- Preet, M.S.; Kumar, R.; Valipour, M.; Singh, V.P.; Neha; Singh, A.K.; Iqbal, R.; Zafar, M.U.; Sharma, R.; Singh, S.V.; et al. Soil Nutrient Status and Morphometric Responses of Guava under Drip Irrigation and High-Tech Horticultural Techniques for Sustainable Farming. Hydrology 2022, 9, 151. [Google Scholar] [CrossRef]
- Usman, F.; Zeb, B.; Alam, K.; Valipour, M.; Ditta, A.; Sorooshian, A.; Roy, R.; Ahmad, I.; Iqbal, R. Exploring the Mass Concentration of Particulate Matter and Its Relationship with Meteorological Parameters in the Hindu-Kush Range. Atmosphere 2022, 13, 1628. [Google Scholar] [CrossRef]
- Efon, E.; Ngongang, R.D.; Meukaleuni, C.; Wandjie, B.; Zebaze, S.; Lenouo, A.; Valipour, M. Monthly, Seasonal, and Annual Variations of Precipitation and Runoff Over West and Central Africa Using Remote Sensing and Climate Reanalysis. Earth Syst. Environ. 2022. [Google Scholar] [CrossRef]
Wheat | Sr. # | Treatment | Shoot Length (cm) | Root Length (cm) | Fresh Weight (g) | Dry Weight (g) |
1 | Control | 14.208 ± 0.515 f | 6.888 ± 0.254 e | 0.415 ± 0.0195 e | 0.200 ± 0.012 cd | |
2 | E3 | 21.371 ± 0.378 i | 8.800 ± 0.368 f | 0.601 ± 0.020 i | 0.343 ± 0.011 f | |
3 | C + Cr Stress (150 µg/mL) | 8.500 ± 0.279 bc | 5.657 ± 0.20 abc | 0.198 ± 0.009 ab | 0.156 ± 0.010 abc | |
4 | E3 + Cr Stress (150 µg/mL) | 11.600 ± 0.272 e | 6.857 ± 0.256 e | 0.305 ± 0.014 d | 0.20 ± 0.004 cd | |
5 | C + Cr Stress (300 µg/mL) | 6.788 ± 0.248 a | 4.857 ± 0.216 a | 0.146 ± 0.006 a | 0.073 ± 0.043 a | |
6 | E3 + Cr Stress (300 µg/mL) | 9.114 ± 0.155 c | 5.871 ± 0.18 abc | 0.195 ± 0.012 ab | 0.093 ± 0.002 ab | |
Sunflower | 1 | Control | 9.22 ± 0.35 h | 7.02 ± 0.29 e | 0.59 ± 0.031 def | 0.016 ± 0.003 a |
2 | E3 | 13.51 ± 0.26 k | 9.57 ± 0.26 g | 0.90 ± 0.60 i | 0.04 ± 0.005 abcde | |
3 | C + Cr Stress (150 µg/mL) | 5.11 ± 0.19 c | 5.48 ± 0.31 bc | 0.40 ± 0.01 ab | 0.026 ± 0.003 bcde | |
4 | E3 + Cr Stress (150 µg/mL) | 7.91 ± 0.19 g | 7.2 ± 0.27 e | 0.71 ± 0.007 gh | 0.033 ± 0.001 ef | |
5 | C + Cr Stress (300 µg/mL) | 3.91 ± 0.29 a | 4.45 ± 0.28 a | 0.34 ± 0.01 a | 0.03 ± 0.01 cde | |
6 | E3 + Cr Stress (300 µg/mL) | 5.25 ± 0.22 cd | 5.71 ± 0.15 bc | 0.51 ± 0.03 cd | 0.031 ± 0.0005 def |
Treatments | SLSTI % | RLSTI % | FSTI % | |
---|---|---|---|---|
Wheat | C + Cr (150 µg/mL) | 59.8 | 82.3 | 47.7 |
E3 + Cr (150 µg/mL) | 136.4 | 121.5 | 154 | |
C + Cr (300 µg/mL) | 47.7 | 70.5 | 35.1 | |
E3 + Cr (300 µg/mL) | 134.2 | 120.8 | 133.5 | |
Sunflower | C + Cr (150 µg/mL) | 55.4 | 78 | 67.7 |
E3 + Cr (150 µg/mL) | 154.7 | 131 | 177.5 | |
C + Cr (300 µg/mL) | 42.4 | 63.3 | 57.6 | |
E3 + Cr (300 µg/mL) | 134 | 128.3 | 150 |
Sr. # | Treatment | Protein Content (µg/g) | Proline Content (µg/g) | Ch. ‘a’ (µg/g) | Ch. ‘b’ (µg/g) | Ch. ‘a+b’ (µg/g) | Chromium Uptake (mg/kg) | Peroxidase Content (µg/g) |
---|---|---|---|---|---|---|---|---|
1 | Control (wheat) | 121.6 ± 8.33 a | 33.0 ± 6.08 a | 0.02 ± 0.0 ab | 0.04 ± 0.0 ab | 0.06 ± 0.0 a | 0 | 20.5 ± 3.82 g |
2 | E3 | 205 ± 14.4 cd | 54.6 ± 4.97 de | 0.1 ± 0.04 f | 0.15 ± 0.0 e | 0.26 ± 0.0 e | 0 | 30.3 ± 3.07 cd |
3 | C + Cr (150 µg/mL) | 171.6 ± 8.3 b | 74.0 ± 5.50 f | 0.01 ± 0.0 a | 0.02 ± 0.0 ab | 0.04 ± 0.0 a | 72.2 ± 0.84 e | 33.1 ± 3.02 a |
4 | E3 + Cr (150 µg/mL) | 205 ± 14.4 cd | 39.6 ± 2.0 abc | 0.09 ± 0.0 f | 0.09 ± 0.0 e | 0.19 ± 0.0 d | 13.5 ± 0.08 a | 46.5 ± 3.08 fg |
5 | C + Cr (300 µg/mL) | 213.0 ± 8.3 d | 82.66 ± 3.8 f | 0.01 ± 0.0 a | 0.02 ± 0.0 a | 0.03 ± 0.0 a | 98.0 ± 0.57 f | 40.4 ± 4.04 b |
6 | E3 + Cr (300 µg/mL) | 443.0 ± 8.3 f | 51.6 ± 5.81 cd | 0.08 ± 0.0 ef | 0.07 ± 0.0 bcde | 0.16 ± 0.0 cd | 14.4 ± 0.23 a | 56.0 ± 0.94 a |
1 | Control (sunflower) | 211.6 ± 8.3 a | 29 ± 8.71 a | 0.021 ± 0.03 abc | 0.05 + 0.006 bc | 0.002 ± 0.008 bc | 0.00 | 23.2 ± 2.10 a |
2 | E3 | 468 ± 8.3 cde | 108.3 ± 9.7 e | 0113 ± 0.19 f | 0.305 ± 0.008 h | 0.013 ± 0.017 h | 0.00 | 46.66 ± 1.47 cd |
3 | C + Cr (150 µg/mL) | 168.3 ± 8.3 b | 103.3 ± 3.3 cf | 0.018 ± 0.017 ab | 0.035 ± 0.006 ab | 0.0013 ± 0.016 ab | 75.81 ± 1.195 g | 53.4 ± 1.38 b |
4 | E3 + Cr (150 µg/mL) | 221.6 ± 8.3 e | 61 ± 5.03 b | 0.095 ± 0.092 f | 0.188 ± 0.001 g | 0.0048 ± 0.0057 g | 13.86 ± 0.44 c | 56.06 ± 1.68 ef |
5 | C + Cr (300 µg/mL) | 121.6 ± 8.3 e | 111 ± 6.96 e | 0.003 ± 0.008 a | 0.0117 ± 0.0008 a | 0.0006 ± 0.001 a | 87.06 ± 1.43 h | 55.23 ± 1.70 cd |
6 | E3 + Cr (300 µg/mL) | 198.3 ± 6.6 h | 79.33 ± 5.23 bc | 0.034 ± 0.072 bcd | 0.142 ± 0.002 f | 0.0041 ± 0.0048 e | 44.36 ± 1.59 f | 73.20 ± 2.22 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamil, N.; Hyder, S.; Valipour, M.; Yasir, M.; Iqbal, R.; Roy, R.; Zafar, M.U.; Ahmed, A. Evaluation of the Bioremediation Potential of Staphlococcus lentus Inoculations of Plants as a Promising Strategy Used to Attenuate Chromium Toxicity. Sustainability 2022, 14, 13056. https://doi.org/10.3390/su142013056
Jamil N, Hyder S, Valipour M, Yasir M, Iqbal R, Roy R, Zafar MU, Ahmed A. Evaluation of the Bioremediation Potential of Staphlococcus lentus Inoculations of Plants as a Promising Strategy Used to Attenuate Chromium Toxicity. Sustainability. 2022; 14(20):13056. https://doi.org/10.3390/su142013056
Chicago/Turabian StyleJamil, Nuzhat, Sajjad Hyder, Mohammad Valipour, Muhammad Yasir, Rashid Iqbal, Rana Roy, Muhammad Umar Zafar, and Ambreen Ahmed. 2022. "Evaluation of the Bioremediation Potential of Staphlococcus lentus Inoculations of Plants as a Promising Strategy Used to Attenuate Chromium Toxicity" Sustainability 14, no. 20: 13056. https://doi.org/10.3390/su142013056
APA StyleJamil, N., Hyder, S., Valipour, M., Yasir, M., Iqbal, R., Roy, R., Zafar, M. U., & Ahmed, A. (2022). Evaluation of the Bioremediation Potential of Staphlococcus lentus Inoculations of Plants as a Promising Strategy Used to Attenuate Chromium Toxicity. Sustainability, 14(20), 13056. https://doi.org/10.3390/su142013056