Functionalized Bentonite Clay Composite with NiAl-Layered Double Hydroxide for the Effective Removal of Cd(II) from Contaminated Water
Abstract
:1. Introduction
2. Materials/Chemicals and Methodology
2.1. Stock Solution Preparation
2.2. Preparation of the Composite Adsorbents
2.3. Characterization Techniques
2.4. Measurement of the Adsorption Capacities and Removal Efficiencies
2.5. Fitting of the Kinetic and Isotherm Models to the Adsorption Data
3. Results and Discussion
3.1. Characteristics of the Adsorbents and Adsorption Mechanism
3.1.1. Scanning Electron Microscopy Analysis
3.1.2. Energy Dispersive X-ray Analysis
3.1.3. Fourier Transform Infrared Analysis
3.2. Effects of the Retention Time, Solution pH, and Initial Concentrations of the Adsorbent and Adsorbate
3.3. Application of Kinetic Models to the Adsorption Data
3.4. Application of Different Isotherm Models to the Adsorption Data
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Celik, A.; Baker, D.R.; Arslan, Z.; Zhu, X.; Blanton, A.; Nie, J.; Yang, S.; Ma, S.; Han, F.X.; Islam, S.M. Highly Efficient, Rapid, and Concurrent Removal of Toxic Heavy Metals by the Novel 2D Hybrid LDH–[Sn2S6]. Chem. Eng. J. 2021, 426, 131696. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Clean Water and Sanitation. In Our World in Data; Oxford University Press: Oxford, UK, 2021. [Google Scholar]
- Singh, D.; Gautam, R.K.; Kumar, R.; Shukla, B.K.; Shankar, V.; Krishna, V. Citric Acid Coated Magnetic Nanoparticles: Synthesis, Characterization and Application in Removal of Cd(II) Ions from Aqueous Solution. J. Water Process Eng. 2014, 4, 233–241. [Google Scholar] [CrossRef]
- Wu, X.; Cobbina, S.J.; Mao, G.; Xu, H.; Zhang, Z.; Yang, L. A Review of Toxicity and Mechanisms of Individual and Mixtures of Heavy Metals in the Environment. Environ. Sci. Pollut. Res. Int. 2016, 23, 8244–8259. [Google Scholar] [CrossRef] [PubMed]
- Ozverdi, A.; Erdem, M. Cu2+, Cd2+ and Pb2+ Adsorption from Aqueous Solutions by Pyrite and Synthetic Iron Sulphide. J. Hazard. Mater. 2006, 137, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Shu, Y.; Zhang, R.; Li, X.; Song, J.; Li, B.; Zhang, Y.; Ou, D. Comparison of the Removal and Adsorption Mechanisms of Cadmium and Lead from Aqueous Solution by Activated Carbons Prepared from Typha Angustifolia and Salix Matsudana. RSC Adv. 2017, 7, 16092–16103. [Google Scholar] [CrossRef] [Green Version]
- Elbedwehy, A.M.; Abou-Elanwar, A.M.; Ezzat, A.O.; Atta, A.M. Super Effective Removal of Toxic Metals Water Pollutants Using Multi Functionalized Polyacrylonitrile and Arabic Gum Grafts. Polymers 2019, 11, 1938. [Google Scholar] [CrossRef] [Green Version]
- Sarode, S.; Upadhyay, P.; Khosa, M.A.; Mak, T.; Shakir, A.; Song, S.; Ullah, A. Overview of Wastewater Treatment Methods with Special Focus on Biopolymer Chitin-Chitosan. Int. J. Biol. Macromol. 2019, 121, 1086–1100. [Google Scholar] [CrossRef]
- Skoczko, I.; Szatylowicz, E. Removal of Heavy Metal Ions by Filtration on Activated Alumina-Assisted Magnetic Field. Desalination Water Treat. 2018, 117, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Elboughdiri, N. The Use of Natural Zeolite to Remove Heavy Metals Cu (II), Pb (II) and Cd (II), from Industrial Wastewater. Cogent Eng. 2020, 7, 1782623. [Google Scholar] [CrossRef]
- Yang, J.; Hou, B.; Wang, J.; Tian, B.; Bi, J.; Wang, N.; Li, X.; Huang, X. Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials 2019, 9, 424. [Google Scholar] [CrossRef]
- Parvin, F.; Rikta, S.Y.; Tareq, S.M. 8—Application of Nanomaterials for the Removal of Heavy Metal from Wastewater. In Nanotechnology in Water and Wastewater Treatment; Ahsan, A., Ismail, A.F., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 137–157. ISBN 978-0-12-813902-8. [Google Scholar]
- Wang, Z.; Zhang, L.; Fang, P.; Wang, L.; Wang, W. Study on Simultaneous Removal of Dye and Heavy Metal Ions by NiAl-Layered Double Hydroxide Films. ACS Omega 2020, 5, 21805–21814. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Kang, X.; Wang, L.; Lichtfouse, E.; Wang, C. Clay Mineral Adsorbents for Heavy Metal Removal from Wastewater: A Review. Environ. Chem. Lett. 2019, 17, 629–654. [Google Scholar] [CrossRef]
- He, W.; Ai, K.; Ren, X.; Wang, S.; Lu, L. Inorganic Layered Ion-Exchangers for Decontamination of Toxic Metal Ions in Aquatic Systems. J. Mater. Chem. A 2017, 5, 19593–19606. [Google Scholar] [CrossRef]
- He, X.; Qiu, X.; Chen, J. Preparation of Fe(II)–Al Layered Double Hydroxides: Application to the Adsorption/Reduction of Chromium. Colloids Surf. A Physicochem. Eng. Asp. 2017, 516, 362–374. [Google Scholar] [CrossRef]
- Puzyrnaya, L.; Pshinko, G.; Zub, V.; Zuy, O. Removal of Cu(II), Co(II) and Cd(II) from Water Solutions by Layered-Double Hydroxides with Different [Mg(II)]/[Fe(III)] Molar Ratios. Bull. Mater. Sci. 2020, 43, 3. [Google Scholar] [CrossRef]
- Johnston, A.-L.; Lester, E.; Williams, O.; Gomes, R.L. Understanding Layered Double Hydroxide Properties as Sorbent Materials for Removing Organic Pollutants from Environmental Waters. J. Environ. Chem. Eng. 2021, 9, 105197. [Google Scholar] [CrossRef]
- Li, Z.; Yang, B.; Zhang, S.; Wang, B.; Xue, B. A Novel Approach to Hierarchical Sphere-like ZnAl-Layered Double Hydroxides and Their Enhanced Adsorption Capability. J. Mater. Chem. A 2014, 2, 10202–10210. [Google Scholar] [CrossRef]
- Moaty, S.A.A.; Farghali, A.; Moussa, M.; Khaled, R. Remediation of Waste Water by Co–Fe Layered Double Hydroxide and Its Catalytic Activity. J. Taiwan Inst. Chem. Eng. 2017, 71, 441–453. [Google Scholar] [CrossRef]
- Rojas, R. Copper, Lead and Cadmium Removal by Ca Al Layered Double Hydroxides. Appl. Clay Sci. 2014, 87, 254–259. [Google Scholar] [CrossRef]
- Kundu, S.; Naskar, M.K. Carbon-Layered Double Hydroxide Nanocomposite for Efficient Removal of Inorganic and Organic Based Water Contaminants–Unravelling the Adsorption Mechanism. Mater. Adv. 2021, 2, 3600–3612. [Google Scholar] [CrossRef]
- Liao, W.; Wang, H.; Li, H.; Yang, P. Cd(Ii) Removal by Fe(Ii) Surface Chemically Modified Layered Double Hydroxide–Graphene Oxide: Performance and Mechanism. RSC Adv. 2019, 9, 38982–38989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Z.; Atherton, J.J.; Xu, Z.P. Hierarchical Layered Double Hydroxide Nanocomposites: Structure, Synthesis and Applications. Chem. Commun. 2015, 51, 3024–3036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, R.; Yan, L.; Yang, K.; Yu, S.; Hao, Y.; Yu, H.; Du, B. Magnetic Fe3O4/MgAl-LDH Composite for Effective Removal of Three Red Dyes from Aqueous Solution. Chem. Eng. J. 2014, 252, 38–46. [Google Scholar] [CrossRef]
- Daud, M.; Kamal, M.S.; Shehzad, F.; Al-Harthi, M.A. Graphene/Layered Double Hydroxides Nanocomposites: A Review of Recent Progress in Synthesis and Applications. Carbon 2016, 104, 241–252. [Google Scholar] [CrossRef]
- Hussain, S.T.; Ali, S.A.K. Removal of Heavy Metal by Ion Exchange Using Bentonite Clay. J. Ecol. Eng. 2021, 22, 104–111. [Google Scholar] [CrossRef]
- Bulut, E.; Özacar, M.; Şengil, İ.A. Equilibrium and Kinetic Data and Process Design for Adsorption of Congo Red onto Bentonite. J. Hazard. Mater. 2008, 154, 613–622. [Google Scholar] [CrossRef]
- Wang, C.-C.; Juang, L.-C.; Hsu, T.-C.; Lee, C.-K.; Lee, J.-F.; Huang, F.-C. Adsorption of Basic Dyes onto Montmorillonite. J. Colloid Interface Sci. 2004, 273, 80–86. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, Y.; Fu, J.; Yuan, L.; Li, Z.; Liu, C.; Zhao, D.; Wang, X. A Novel Magnetic Biochar/MgFe-Layered Double Hydroxides Composite Removing Pb2+ from Aqueous Solution: Isotherms, Kinetics and Thermodynamics. Colloids Surf. A Physicochem. Eng. Asp. 2019, 567, 278–287. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, Z.; Zhang, H.; Qiu, Y.; Yin, D. Mg–Fe Layered Double Hydroxide Assembled on Biochar Derived from Rice Husk Ash: Facile Synthesis and Application in Efficient Removal of Heavy Metals. Environ. Sci. Pollut. Res. 2018, 25, 24293–24304. [Google Scholar] [CrossRef]
- Zhou, H.; Jiang, Z.; Wei, S.; Liang, J. Adsorption of Cd(II) from Aqueous Solutions by a Novel Layered Double Hydroxide FeMnMg-LDH. Water Air Soil Pollut. 2018, 229, 78. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Q.; Islam, S.M.; Liu, Y.; Ma, S.; Kanatzidis, M.G. Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS42− Ion. J. Am. Chem. Soc. 2016, 138, 2858–2866. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-L.; Wang, P.-C. In Situ XRD and ATR-FTIR Study on the Molecular Orientation of Interlayer Nitrate in Mg/Al-Layered Double Hydroxides in Water. Colloids Surf. A Physicochem. Eng. Asp. 2007, 292, 131–138. [Google Scholar] [CrossRef]
- Guan, X.; Yuan, X.; Zhao, Y.; Bai, J.; Li, Y.; Cao, Y.; Chen, Y.; Xiong, T. Adsorption Behaviors and Mechanisms of Fe/Mg Layered Double Hydroxide Loaded on Bentonite on Cd (II) and Pb (II) Removal. J. Colloid Interface Sci. 2022, 612, 572–583. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Dong, Y.; He, M.; Chen, L.; Yu, X. Characterization of GMZ Bentonite and Its Application in the Adsorption of Pb(II) from Aqueous Solutions. Appl. Clay Sci. 2009, 43, 164–171. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, Z.; Qiu, Y.; Zhao, J. Adsorption of Arsenate on Cu/Mg/Fe/La Layered Double Hydroxide from Aqueous Solutions. J. Hazard. Mater. 2012, 239–240, 279–288. [Google Scholar] [CrossRef]
- Tang, H.; Zhou, W.; Zhang, L. Adsorption Isotherms and Kinetics Studies of Malachite Green on Chitin Hydrogels. J. Hazard. Mater. 2012, 209–210, 218–225. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mishra, R.; Saha, P.; Kushwaha, P. Adsorption Thermodynamics, Kinetics and Isosteric Heat of Adsorption of Malachite Green onto Chemically Modified Rice Husk. Desalination 2011, 265, 159–168. [Google Scholar] [CrossRef]
- Taty-Costodes, V.C.; Fauduet, H.; Porte, C.; Delacroix, A. Removal of Cd(II) and Pb(II) Ions, from Aqueous Solutions, by Adsorption onto Sawdust of Pinus Sylvestris. J. Hazard. Mater. 2003, 105, 121–142. [Google Scholar] [CrossRef]
- Karapinar, N.; Donat, R. Adsorption Behaviour of Cu2+ and Cd2+ onto Natural Bentonite. Desalination 2009, 249, 123–129. [Google Scholar] [CrossRef]
- Raji, F.; Pakizeh, M. Study of Hg(II) Species Removal from Aqueous Solution Using Hybrid ZnCl2-MCM-41 Adsorbent. Appl. Surf. Sci. 2013, 282, 415–424. [Google Scholar] [CrossRef]
- Hameed, B.H.; El-Khaiary, M.I. Batch Removal of Malachite Green from Aqueous Solutions by Adsorption on Oil Palm Trunk Fibre: Equilibrium Isotherms and Kinetic Studies. J. Hazard. Mater. 2008, 154, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Ayranci, E.; Duman, O. Structural Effects on the Interactions of Benzene and Naphthalene Sulfonates with Activated Carbon Cloth during Adsorption from Aqueous Solutions. Chem. Eng. J. 2010, 156, 70–76. [Google Scholar] [CrossRef]
- Duman, O.; Özcan, C.; Gürkan Polat, T.; Tunç, S. Carbon Nanotube-Based Magnetic and Non-Magnetic Adsorbents for the High-Efficiency Removal of Diquat Dibromide Herbicide from Water: OMWCNT, OMWCNT-Fe3O4 and OMWCNT-κ-Carrageenan-Fe3O4 Nanocomposites. Environ. Pollut. 2019, 244, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Malik, P.K. Use of Activated Carbons Prepared from Sawdust and Rice-Husk for Adsorption of Acid Dyes: A Case Study of Acid Yellow 36. Dye. Pigment. 2003, 56, 239–249. [Google Scholar] [CrossRef]
- Kumar, P.S.; Ramakrishnan, K.; Gayathri, R. Removal of Nickel(II) from Aqueous Solutions by Ceralite IR 120 Cationic Exchange Resins. J. Eng. Sci. Technol. 2010, 5, 232–243. [Google Scholar]
- Muralisankar, I.; Agilan, S.; Selvakumar, R.; Vairam, S. Synthesis of Co3O4/graphene nanocomposite using paraffin wax for adsorption of methyl violet in water. IET Nanobiotechnology 2018, 12, 787–794. [Google Scholar] [CrossRef]
- Aljamali, N.M.; Khdur, R.A.; Alfatlawi, I.O. Physical and chemical adsorption and its applications. Int. J. Thermodyn. Chem. Kinet. 2021, 7, 1–8. [Google Scholar] [CrossRef]
- Tchanang, G.; Djangang, C.N.; Abi, C.F.; Moukouri, D.L.M.; Djabo, G.T.N.; Kepdieu, J.M.; Blanchart, P. Nano-silica from kaolinitic clay used as adsorbent for anionic and cationic dyes removal: Linear and non-linear regression isotherms and kinetics studies. Ann. Civ. Environ. Eng. 2022, 6, 8–18. [Google Scholar] [CrossRef]
- Gimbert, F.; Morin-Crini, N.; Renault, F.; Badot, P.-M.; Crini, G. Adsorption Isotherm Models for Dye Removal by Cationized Starch-Based Material in a Single Component System: Error Analysis. J. Hazard. Mater. 2008, 157, 34–46. [Google Scholar] [CrossRef]
- Abtahi, M.; Mesdaghinia, A.; Saeedi, R.; Nazmara, S. Biosorption of As(III) and As(V) from Aqueous Solutions by Brown Macroalga Colpomenia Sinuosa Biomass: Kinetic and Equilibrium Studies. Desalination Water Treat. 2013, 51, 3224–3232. [Google Scholar] [CrossRef]
- Naddafi, K.; Rastkari, N.; Nabizadeh, R.; Saeedi, R.; Gholami, M.; Sarkhosh, M. Adsorption of 2,4,6-Trichlorophenol from Aqueous Solutions by a Surfactant-Modified Zeolitic Tuff: Batch and Continuous Studies. Desalination Water Treat. 2016, 57, 5789–5799. [Google Scholar] [CrossRef]
- Günay, A.; Arslankaya, E.; Tosun, İ. Lead Removal from Aqueous Solution by Natural and Pretreated Clinoptilolite: Adsorption Equilibrium and Kinetics. J. Hazard. Mater. 2007, 146, 362–371. [Google Scholar] [CrossRef] [PubMed]
Isotherm Model | Mathematical Expression | Parameters |
---|---|---|
Langmuir | qm, maximum sorption capacity, mg g−1 KL, Langmuir constant, L mg−1 | |
Freundlich | KF, Freundlich constant, L g−1 n, dimensionless constant | |
Dubinin–Radushkevich | T, absolute temperature, Kelvin R, universal gas constant, 8.314 J mol−1·K−1 E, mean free energy of adsorption, kJ mol−1 | |
Halsey | nH and kH, Halsey constants | |
Temkin | AT, equilibrium binding constant, L g−1 bT, heat of adsorption, kJ mol−1 | |
Harkins–Jura | AHJ and BHJ, H–J constants | |
Jovanovic | kj, Jovanovic constant | |
Elovich | ke, Elovich constant | |
Redlich–Peterson | α, L mg−1 β (0–1), dimensionless KRP, R–P constant, L g−1 | |
Sips | n, degree of heterogeneity, dimensionless KS, energy of adsorption, L g−1 |
Kinetic Model | Parameter | Nonlinear | Linearized | ||||||
---|---|---|---|---|---|---|---|---|---|
Bentonite | F-Bentonite | LDH (NiAl) | LDH/F-Bentonite | Bentonite | F-Bentonite | LDH (NiAl) | LDH/F-Bentonite | ||
Pseudo 1st-order | qe exp (mg g−1) | 15.00 | 17.50 | 12.25 | 20.00 | 15.00 | 17.50 | 12.25 | 20.00 |
qe cal (mg g−1) | 13.9 | 16.57 | 11.34 | 16.63 | 3.55 | 2.90 | 2.92 | 3.31 | |
k1 (min−1) | 0.38 | 0.45 | 0.35 | 0.4 | 0.009 | 0.006 | 0.006 | 0.006 | |
R2 | 0.56 | 0.55 | 0.45 | 0.39 | 0.75 | 0.38 | 0.49 | 0.4 | |
Pseudo 2nd-order | qe cal (mg g−1) | 14.59 | 17.32 | 11.99 | 20.73 | 14.99 | 17.95 | 13.00 | 22.68 |
k2 (g mg−1 min−1) | 0.0426 | 0.0431 | 0.0443 | 0.0292 | 0.0355 | 0.0271 | 0.0167 | 0.0096 | |
h (mg g−1 min−1) | 9.07 | 12.93 | 6.37 | 12.55 | 7.99 | 8.73 | 2.82 | 4.96 | |
R2 | 0.83 | 0.84 | 0.74 | 0.71 | 0.9994 | 0.9998 | 0.9994 | 0.9992 | |
ID-WM | Kip (mg g−1 min1/2) | 0.42 | 0.47 | 0.41 | 0.7 | 0.4289 | 0.51 | 0.41 | 0.70 |
C (mg g−1) | 9.73 | 12.06 | 7.45 | 13.21 | 9.7275 | 11.30 | 7.45 | 13.21 | |
R2 | 0.66 | 0.65 | 0.79 | 0.82 | 0.69 | 0.75 | 0.81 | 0.84 | |
Elovich | α (mg g−1 min−1) | 355.17 | 570.01 | 136.09 | 329.82 | 245.95 | 907.48 | 106.16 | 153.56 |
β (g mg−1) | 0.69 | 1.59 | 0.77 | 0.46 | 1.45 | 0.63 | 1.30 | 2.17 | |
R2 | 0.93 | 0.94 | 0.96 | 0.97 | 0.94 | 0.94 | 0.96 | 0.97 |
Isotherm | Parameter | Nonlinear | Linearized | ||||||
---|---|---|---|---|---|---|---|---|---|
Langmuir | qm, mg g−1 | 54.92 | 90.32 | 31.82 | 76.07 | 51.81 | 71.94 | 32.05 | 68.49 |
KL, L mg−1 | 0.17 | 0.11 | 0.26 | 0.26 | 0.20 | 0.21 | 0.25 | 0.40 | |
RL | 0.144 | 0.206 | 0.099 | 0.099 | 0.125 | 0.122 | 0.102 | 0.067 | |
R2 | 0.91 | 0.97 | 0.95 | 0.96 | 0.98 | 0.97 | 0.99 | 0.98 | |
Freundlich | qm, mg g−1 | 47.60 | 74.79 | 29.60 | 73.47 | 57.77 | 85.58 | 31.34 | 80.84 |
KF, ((mg/g)(L/mg)1/n) | 15.81 | 17.41 | 12.61 | 26.20 | 15.05 | 16.81 | 11.62 | 23.92 | |
1/n | 0.310 | 0.410 | 0.240 | 0.290 | 0.378 | 0.458 | 0.279 | 0.343 | |
R2 | 0.82 | 0.94 | 0.86 | 0.9 | 0.91 | 0.98 | 0.88 | 0.95 | |
D–R | qm, mg g−1 | 45.82 | 68.29 | 27.54 | 66.27 | 41.42 | 56.45 | 27.26 | 58.84 |
KDR, (mol kJ−1)2 | 3.8 × 10−6 | 5.0 × 10−6 | 1.3 × 10−6 | 2.2 × 10−6 | 1.0 × 10−6 | 8.0 × 10−7 | 1.0 × 10−6 | 4.0 × 10−7 | |
E, kJ mol−1 | 0.36 | 0.32 | 0.62 | 0.48 | 0.71 | 0.79 | 0.71 | 1.12 | |
R2 | 0.69 | 0.81 | 0.84 | 0.76 | 0.80 | 0.73 | 0.91 | 0.80 | |
Halsey | qe cal, mg g−1 | 46.35 | 66.59 | 29.24 | 67.53 | 54.66 | 105.76 | 27.82 | 93.42 |
nH | −3.21 | −2.45 | −4.25 | −3.51 | −2.64 | −2.18 | −3.58 | −2.92 | |
KH | 0.000 | 0.001 | 0.000 | 0.000 | 0.356 | 0.447 | 0.225 | 0.391 | |
R2 | 0.82 | 0.94 | 0.86 | 0.90 | 0.91 | 0.98 | 0.88 | 0.95 | |
Temkin | KT, L mg−1 | 1.96 | 1.35 | 4.70 | 3.95 | 1.96 | 1.35 | 4.70 | 3.95 |
Hads, kJ mol−1 | 0.089 | 0.054 | 0.18 | 0.07 | 224.31 | 136.93 | 441.39 | 176.14 | |
R2 | 0.88 | 0.95 | 0.91 | 0.95 | 0.89 | 0.95 | 0.92 | 0.96 | |
H–J | AHJ, mg g−1 | 111.41 | 115.98 | 93.85 | 172.4 | 370.3704 | 500 | 270.27 | 769.231 |
BHJ | 2.72 | 2.31 | 3.16 | 2.73 | 1.56 | 1.45 | 1.78 | 1.46 | |
R2 | 0.75 | 0.87 | 0.80 | 0.83 | 0.79 | 0.82 | 0.75 | 0.79 | |
Jovanovic | qm, mg g−1 | 46.63 | 71.75 | 28.17 | 66.56 | 23.18 | 27.06 | 17.63 | 33.83 |
kj, L g−1 | −0.13 | −0.11 | −0.19 | −0.19 | −0.022 | −0.034 | −0.014 | −0.025 | |
R2 | 0.91 | 0.96 | 0.91 | 0.94 | 0.61 | 0.73 | 0.58 | 0.60 | |
Elovich | qm, mg g−1 | 21.41 | 36.10 | 8.92 | 23.15 | ||||
ke, L g−1 | 1.13 | 1.08 | 1.43 | 1.18 | |||||
R2 | 0.77 | 0.91 | 0.84 | 0.91 | |||||
R–P | KRP, L g−1 | 6.09 | 10.15 | 7.96 | 21.54 | ||||
α, L mg−1 | 0.0432 | 0.13 | 0.24 | 0.32 | |||||
β | 1.25 | 0.97 | 1.01 | 0.97 | |||||
R2 | 0.91 | 0.96 | 0.95 | 0.96 | |||||
Sips | qm, mg g−1 | 53.99 | 102.36 | 31.51 | 81.94 | ||||
KS, L g−1 | 0.16 | 0.12 | 0.25 | 0.28 | |||||
nS | 1.04 | 0.84 | 1.03 | 0.83 | |||||
R2 | 0.89 | 0.96 | 0.95 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafiq, M.; Alazba, A.A.; Amin, M.T. Functionalized Bentonite Clay Composite with NiAl-Layered Double Hydroxide for the Effective Removal of Cd(II) from Contaminated Water. Sustainability 2022, 14, 15462. https://doi.org/10.3390/su142215462
Shafiq M, Alazba AA, Amin MT. Functionalized Bentonite Clay Composite with NiAl-Layered Double Hydroxide for the Effective Removal of Cd(II) from Contaminated Water. Sustainability. 2022; 14(22):15462. https://doi.org/10.3390/su142215462
Chicago/Turabian StyleShafiq, Muhammad, Abdulrahman Ali Alazba, and Muhammad Tahir Amin. 2022. "Functionalized Bentonite Clay Composite with NiAl-Layered Double Hydroxide for the Effective Removal of Cd(II) from Contaminated Water" Sustainability 14, no. 22: 15462. https://doi.org/10.3390/su142215462
APA StyleShafiq, M., Alazba, A. A., & Amin, M. T. (2022). Functionalized Bentonite Clay Composite with NiAl-Layered Double Hydroxide for the Effective Removal of Cd(II) from Contaminated Water. Sustainability, 14(22), 15462. https://doi.org/10.3390/su142215462