Optimization of Ultrasonic-Assisted Enzymatic Extraction of Freeze-Dried Sea Buckthorn (Hippophae rhamnoides L.) Berry Oil Using Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemicals and Reagents
2.3. Oil Extraction
2.3.1. Soxhlet Extraction
2.3.2. Ultrasonic-Assisted Enzymatic Extraction (UAEE)
RSM Design for the Optimization of Oil Extraction
2.4. Analysis of Physicochemical Properties
2.4.1. Density
2.4.2. Acid Value
- V = Standard KOH volume used in mL
- N = Normality of KOH solution
- W = Weight of sample in grams
2.4.3. Peroxide Value
- Titre = sodium thiosulphate used in mL (blank corrected), N = normality of sodium thiosulphate solution.
2.4.4. Iodine Value
- A = mL of Na2S2O3 used (blank conducted),
- N = normality of Na2S2O3 solution.
2.4.5. Color
2.5. Estimation of Fatty Acids in the Oil
2.6. Conditions of GC Instrumentation
2.7. Statistical Analyses
3. Results
3.1. Soxhlet Extraction and Physiochemical Properties of Oil
3.2. Ultrasound-Assisted Enzyme Extraction (UAEE)
3.2.1. Response Surface Optimization of Ultrasonic Extraction Condition
3.2.2. Optimization of Sea Buckthorn Oil Yield Conditions
3.2.3. Physicochemical Properties of UAEE Extracted Sea Buckthorn Oil
3.2.4. Fatty Acid Composition of Extracted Oil
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zielińska, A.; Nowak, I. Abundance of active ingredients in sea-buckthorn oil. Lipids Health Dis. 2017, 16, 95. [Google Scholar] [CrossRef] [PubMed]
- Kanayama, Y.; Kato, K.; Stobdan, T.; Galitsyn, G.G.; Kochetov, A.V.; Kanahama, K. Research progress on the medicinal and nutritional properties of sea buckthorn (Hippophae rhamnoides)—A review. J. Hortic. Sci. Biotechnol. 2012, 87, 203–210. [Google Scholar] [CrossRef]
- Li, T.S.C. Product development of sea buckthorn. In Trends in New Crops and New Uses; Janick, J., Whipkey, A., Eds.; ASHS Press: Alexandria, VA, USA, 2002; pp. 393–398. [Google Scholar]
- Kitrytė, V.; Povilaitis, D.; Kraujalienė, V.; Šulniūtė, V.; Pukalskas, A.; Venskutonis, P.R. Fractionation of sea buckthorn pomace and seeds into valuable components by using high pressure and enzyme-assisted extraction methods. LWT Food Sci. Technol. 2017, 85, 534–538. [Google Scholar] [CrossRef]
- Stobdan, T.; Phunchok, T. Value Chain Analysis of Sea Buckthorn (Hippophae rhamnoides L.) in Leh Ladakh; Ministry of Agriculture and Farmers Welfare, Government of India: New Delhi, India, 2017; pp. 17–18.
- Hussain, S.; Sharma, M.; Bhat, R. Valorisation of sea buckthorn pomace by optimization of ultrasonic-assisted extraction of soluble dietary fibre using response surface methodology. Foods 2021, 10, 1330. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.J.; Kaur, M.; Dhillon, R.S.; Tappia, P.S.; Dhalla, N.S. Health benefits of sea buckthorn for the prevention of cardiovascular diseases. J. Funct. Foods 2011, 3, 2–12. [Google Scholar] [CrossRef]
- Dulf, F.V. Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania. Chem. Central J. 2012, 6, 106. [Google Scholar] [CrossRef]
- Kuznetsova, E.I.; Pchelkin, V.P.; Tsydendambaev, V.D.; Vereshchagin, A.G. Distribution of unusual fatty acids in the mesocarptriacylglycerols of maturing sea buckthorn fruits. Russ. J. Plant Physiol. 2010, 57, 852–858. [Google Scholar] [CrossRef]
- Fatima, T.; Snyder, C.L.; Schroeder, W.R.; Weselake, R.J.; Krishna, P. Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed. PLoS ONE 2012, 7, e34099. [Google Scholar] [CrossRef]
- Wang, R.; Zong, S.X.; Yu, L.F.; Lu, P.F.; Luo, Y.Q. Rhythms of volatile release from female and male sea buckthorn plants and electrophysiological response of sea buckthorn carpenter moths. J. Plant Interact. 2014, 9, 763–774. [Google Scholar] [CrossRef]
- Koskovac, M.; Cupara, S.; Kipic, M.; Barjaktarevic, A.; Milovanovic, O.; Kojicic, K.; Markovic, M. Sea buckthorn oil - A valuable source for cosmeceuticals. Cosmetics 2017, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Kallio, H. Composition and physiological effects of sea buckthorn (Hippophae rhamnoides) lipids. Trend. Food Sci. Technol. 2002, 13, 160–167. [Google Scholar] [CrossRef]
- Cenkowski, S.; Yakimishen, R.; Przybylski, R.; Muir, W.E. Quality of extracted sea buckthorn seed and pulp oil. Canad. Biosys. Eng. 2006, 48, c0508. [Google Scholar]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—a review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Sanwal, N.; Mishra, S.; Sahu, J.K.; Naik, S.N. Effect of ultrasound-assisted extraction on efficiency, antioxidant activity, and physicochemical properties of sea buckthorn (Hippophae salicipholia) seed oil. LWT Food Sci. Technol. 2022, 153, 112386. [Google Scholar] [CrossRef]
- Isopencu, G.; Stroescu, M.; Brosteanu, A.; Chira, N.; Pârvulescu, O.C.; Busuioc, C.; Stoica-Guzun, A. Optimization of ultrasound and microwave assisted oil extraction from sea buckthorn seeds by response surface methodology. J. Food Process Eng. 2019, 42, e12947. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Zhao, C.; Yang, L.; Zhao, W.; Jiang, H.; Ren, X.; Su, W.; Li, Y.; Guan, J. Separation of the main flavonoids and essential oil from sea buckthorn leaves by ultrasonic/microwave-assisted simultaneous distillation extraction. R. Soc. Open Sci. 2018, 5, 180133. [Google Scholar] [CrossRef]
- Vilas-Franquesa, A.; Juan, B.; Saldo, J. Targeted analysis of sea buckthorn oil extracted by accelerated solvent extraction technique using green and conventional solvents. LWT Food Sci. Technol. 2022, 164, 113643. [Google Scholar] [CrossRef]
- Ivanova, G.V.; Nikulina, E.O.; Kolman, O.Y.; Ivanova, A.N. Products of sea-buckthorn berries processing in parapharmaceutical production. IOP Conf. Series: Earth Environ. Sci. 2019, 315, 052020. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Z.; Yue, X.; Fan, X.; Li, T.; Chen, S. Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder. Food Chem. 2009, 116, 513–518. [Google Scholar] [CrossRef]
- Thimmaiah, S.R. Standard Methods of Biochemical Analysis; Kalyani Publisher: New Delhi, India, 2012; pp. 136–140. [Google Scholar]
- FSSAI. Manual for Analysis of Oils and Fats, Lab Manual 2; Ministry of Health and Family Welfare, Government of India: New Delhi, India, 2015; pp. 28–81.
- Sagar, N.A.; Pareek, S. Dough rheology, antioxidants, textural, physicochemical characteristics, and sensory quality of pizza base enriched with onion (Allium cepa L.) skin powder. Sci. Rep. 2020, 10, 18669. [Google Scholar] [CrossRef]
- Kaushal, M.; Sharma, P.C. Nutritional and antimicrobial property of sea buckthorn (Hippophae sp.) seed oil. J. Sci. Ind. Res. 2011, 70, 1033–1036. [Google Scholar]
- Pavlović, N.; Lendić, K.V.; Miškulin, M.; Moslavac, T.; Jokić, S. Supercritical CO2 extraction of sea buckthorn. Food Health Dis. 2016, 5, 55–61. [Google Scholar]
- Chauhan, B.; Gupta. R. Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. Process Biochem. 2004, 39, 2115–2122. [Google Scholar] [CrossRef]
- Xu, X.; Gao, Y.; Liu, G.; Wang, Q.; Zhao, J. Optimization of supercritical carbon dioxide extraction of sea buckthorn (Hippophae thamnoids L.) oil using response surface methodology. LWT Food Sci. Technol. 2008, 41, 1223–1231. [Google Scholar] [CrossRef]
- Liu, G.M.; Xu, X.; Hao, Q.F.; Gao, Y.X. Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. LWT Food Sci. Technol. 2009, 42, 1491–1495. [Google Scholar] [CrossRef]
- Dong, J.; Liu, Y.; Liang, Z.; Wang, W. Investigation on ultrasound-assisted extraction of salvianolic acid B from Salvia miltiorrhiza root. Ultrason. Sonochem. 2010, 17, 61–65. [Google Scholar] [CrossRef]
- Faiznur, M.F.; Khairiah, A.K.; Mashitah, M.D. Ultrasound-assisted extraction of oil from calophyllum inophyllum seeds: Statistical optimisation using box-behnken design. J. Phys. Sci. 2016, 27, 103–121. [Google Scholar] [CrossRef]
- Sharma, M.; Hussain, S.; Shalima, T.; Aav, R.; Bhat, R. Valorization of sea buckthorn pomace to obtain bioactive carotenoids: An innovative approach of using green extraction techniques (ultrasonic and microwave-assisted extractions) synergized with green solvents (edible oils). Ind. Crops Prod. 2022, 175, 114257. [Google Scholar] [CrossRef]
- Munkhbayar, D.; Ariuntungalag, J.; Delgersuuri, G.; Badamkhand, D. Enzymatic technology for sea buckthorn oil extraction and its biochemical analysis. Mong. J. Chem. 2014, 15, 62–65. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S. Fortification of multigrain flour with onion skin powder as a natural preservative: Effect on quality and shelf life of the bread. Food Biosci. 2021, 41, 100992. [Google Scholar] [CrossRef]
- Aaby, K.; Martinsen, B.K.; Borge, G.I.; Røen, D. Bioactive compounds and color of sea buckthorn (Hippophae rhamnoides L.) purees as affected by heat treatment and high-pressure homogenization. Int. J. Food Prop. 2020, 23, 651–664. [Google Scholar] [CrossRef]
- Patra, B.R.; Borugadda, V.B.; Dalai, A.K. Microwave-assisted extraction of sea buckthorn pomace and seed extracts as a proactive antioxidant to stabilize edible oils. Bioresour. Technol. Rep. 2022, 17, 100970. [Google Scholar] [CrossRef]
- Dąbrowski, G.; Czaplicki, S.; Szustak, M.; Cichońska, E.; Gendaszewska-Darmach, E.; Konopka, I. Composition of flesh lipids and oleosome yield optimization of selected sea buckthorn (Hippophae rhamnoides L.) cultivars grown in Poland. Food Chem. 2022, 369, 130921. [Google Scholar] [CrossRef] [PubMed]
Code | Variable | Levels | ||||
---|---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | ||
X1 | Solvent/sample ratio (mL/g) | 4 | 4.5 | 5 | 5.5 | 6 |
X2 | Time in (minute) | 5 | 10 | 15 | 20 | 25 |
X3 | Enzyme (unit) | 1 | 2 | 3 | 4 | 5 |
Factor 1 | Factor 2 | Factor 3 | Response | |
---|---|---|---|---|
Run | A: Solvent/Ratio (mL/g) | B: Time (Min) | C: Enzyme (Units/g) | Yield (%) |
1 | 4.5 | 10 | 4 | 17.73 |
2 | 5 | 15 | 1 | 17.40 |
3 | 4.5 | 10 | 2 | 17.46 |
4 | 5.5 | 10 | 2 | 17.63 |
5 | 5 | 15 | 3 | 18.34 |
6 | 5.5 | 10 | 4 | 17.90 |
7 | 5.5 | 20 | 2 | 17.65 |
8 | 4.5 | 20 | 2 | 17.65 |
9 | 5 | 15 | 3 | 18.39 |
10 | 5 | 15 | 3 | 18.28 |
11 | 5 | 5 | 3 | 16.95 |
12 | 5 | 15 | 3 | 18.36 |
13 | 5 | 15 | 5 | 17.60 |
14 | 5 | 25 | 3 | 16.83 |
15 | 4 | 15 | 3 | 17.73 |
16 | 6 | 15 | 3 | 17.90 |
17 | 5.5 | 20 | 4 | 17.58 |
18 | 5 | 15 | 3 | 18.22 |
19 | 4.5 | 20 | 4 | 17.59 |
Source | Sum of Squares | df | Mean | F-Value | p-Value |
---|---|---|---|---|---|
Model | 3.44 | 9 | 0.3824 | 175.51 | <0.0001 ** |
A-solvent/ratio | 0.0269 | 1 | 0.0269 | 12.35 | 0.0066 |
B-Time | 0.0148 | 1 | 0.0148 | 6.78 | 0.0285 * |
C-Enzyme | 0.0408 | 1 | 0.0408 | 18.73 | 0.0019 ** |
AB | 0.0150 | 1 | 0.0150 | 6.87 | 0.0277 * |
AC | 0.0000 | 1 | 0.0000 | 0.0167 | 0.9000 |
BC | 0.0555 | 1 | 0.0555 | 25.46 | 0.0007 ** |
A2 | 0.3625 | 1 | 0.3625 | 166.39 | <0.0001 ** |
B2 | 2.98 | 1 | 2.98 | 1368.10 | <0.0001 ** |
C2 | 0.9660 | 1 | 0.9660 | 443.39 | <0.0001 ** |
Residual | 0.0196 | 9 | 0.0022 | ||
Lack of Fit | 0.0014 | 5 | 0.0003 | 0.0593 | 0.9958 |
Pure Error | 0.0183 | 4 | 0.0046 | ||
Corrected Total | 3.46 | 18 |
Source | Sum of Squares | df | Mean | F-Value | p-Value | |
---|---|---|---|---|---|---|
Mean vs. Total | 5985.15 | 1 | 5985.15 | |||
Linear vs. Mean | 0.0825 | 3 | 0.0275 | 0.1221 | 0.9456 | |
2FI vs. Linear | 0.0705 | 3 | 0.0235 | 0.0852 | 0.9668 | |
Quadratic vs. 2FI | 3.29 | 3 | 1.10 | 503.14 | <0.0001 | Suggested |
Cubic vs. Quadratic | 0.0000 | 4 | 0.0000 | 0.0000 | 1.0000 | Aliased |
Residual | 0.0196 | 5 | 0.0039 | |||
Total | 5988.61 | 19 | 315.19 |
Standard deviation | 0.0467 |
Mean | 17.75 |
Coefficient of variance % | 0.2630 |
R2 | 0.9943 |
Adjusted R2 | 0.9887 |
Predicted R2 | 0.9889 |
Adequate precision | 43.7038 |
Retention Time | ||
---|---|---|
Soxhlet Extraction | UAEE | |
Physicochemical characteristics | ||
Acid value (mg KOH/g) | 9.2 b ± 0.104 | 6.77 a ± 0.305 |
Iodine value (g I2/100 g) | 123.5 b ± 2.291 | 138.67 a ± 3.512 |
Peroxide value (meq/kg) | 6.4 b ± 0.100 | 4.33 a ± 0.252 |
Density (g/cm3) | 0.82 b ± 0.026 | 0.92 a ± 0.015 |
Fatty acid composition (mg/g) | ||
Palmitic acid | 25.29 b ± 0.295 | 25.22 a ± 0.301 |
Stearic acid | 1.46 b ± 0.005 | 1.54 a ± 0.008 |
Palmitoleic acid | 32.36 b ± 0.510 | 31.76 a ± 0.503 |
Oleic acid | 24.46 b ± 0.203 | 17.20 a ± 0.172 |
Linoleic acid | 10.75 b ± 0.108 | 10.81 a ± 0.115 |
Linolenic acid | 4.83 b ± 0.102 | 4.83 a ± 0.104 |
Color values | ||
L* | 29.53 b ± 0.0152 | 27.45 a ± 0.0360 |
a* | 1.83 b ± 0.02 | 3.62 a ± 0.02 |
b* | −2.06 b ± 0.0351 | −0.64 a ± 0.0208 |
Hue (h0) | 311.62 b ± 0.678 | 349.97 a ± 0.268 |
Chroma (C*) | 2.75 b ± 0.0238 | 3.67 a ± 0.0232 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar T., A.; Pareek, S.; Kaur, R.; Sagar, N.A.; Singh, L.; Sami, R.; Aljuraide, N.I.; Elhakem, A.; Alsharari, Z.D.; Alruwais, R.S.; et al. Optimization of Ultrasonic-Assisted Enzymatic Extraction of Freeze-Dried Sea Buckthorn (Hippophae rhamnoides L.) Berry Oil Using Response Surface Methodology. Sustainability 2022, 14, 10849. https://doi.org/10.3390/su141710849
Kumar T. A, Pareek S, Kaur R, Sagar NA, Singh L, Sami R, Aljuraide NI, Elhakem A, Alsharari ZD, Alruwais RS, et al. Optimization of Ultrasonic-Assisted Enzymatic Extraction of Freeze-Dried Sea Buckthorn (Hippophae rhamnoides L.) Berry Oil Using Response Surface Methodology. Sustainability. 2022; 14(17):10849. https://doi.org/10.3390/su141710849
Chicago/Turabian StyleKumar T., Ashrith, Sunil Pareek, Ramanpreet Kaur, Narashans Alok Sagar, Lochan Singh, Rokayya Sami, N. I. Aljuraide, Abeer Elhakem, Zayed D. Alsharari, Raja Saad Alruwais, and et al. 2022. "Optimization of Ultrasonic-Assisted Enzymatic Extraction of Freeze-Dried Sea Buckthorn (Hippophae rhamnoides L.) Berry Oil Using Response Surface Methodology" Sustainability 14, no. 17: 10849. https://doi.org/10.3390/su141710849
APA StyleKumar T., A., Pareek, S., Kaur, R., Sagar, N. A., Singh, L., Sami, R., Aljuraide, N. I., Elhakem, A., Alsharari, Z. D., Alruwais, R. S., Aljabri, M. D., & Rahman, M. M. (2022). Optimization of Ultrasonic-Assisted Enzymatic Extraction of Freeze-Dried Sea Buckthorn (Hippophae rhamnoides L.) Berry Oil Using Response Surface Methodology. Sustainability, 14(17), 10849. https://doi.org/10.3390/su141710849