Cost–Benefit Analysis for Supply Chain of Renewable Gases from Perennial Energy Crops: The Case of Lithuania
Abstract
:1. Introduction
2. Estimation of Costs and Revenue by Supply Chain
- —direct energy costs for biomass of perennial energy crop cultivation and processing, EUR/ha;
- —indirect energy costs for biomass of perennial energy crop cultivation and processing, EUR/ha.
- —direct energy input for soil cultivation before sowing, EUR/ha;
- —direct energy input for weed control before sowing, EUR/ha;
- —direct energy input for fertilization, EUR/ha;
- Es—direct energy input for crop sowing, EUR/ha;
- —direct energy input for rolling after sowing, EUR/ha;
- —direct energy input for yield harvesting, EUR/ha;
- —direct energy input for crop shredding, EUR/ha;
- —direct energy input for ensiling, EUR/ha;
- —direct energy input for transportation, EUR/km.
- —application rate of fertilizers and herbicides, EUR/kg;
- —human labor energy costs (for cultivation and harvesting of energy crops);
- , EUR/h;
- —energy intensity of agricultural machinery, , EUR/l.
Cost–Benefit Analysis
- —number of time periods (years);
- —time period (years);
- —income for year t (EUR/t);
- —costs of year t (EUR/t), includes start-up expenses through ;
- —discount rate (%).
- —the time period of the end year when a cumulative cash flow ended up being negative for the final time;
- —the total value of a cumulative cash flow by the time A has ended;
- —the discounted period A of estimated cash flow.
- —number of time periods (years);
- —time period (years);
- —income for year t (EUR/t);
- —costs of year t (EUR/t), includes start-up expenses through .
3. Results
3.1. Costs and Revenue Analysis of Perennial Energy Crop Production
3.2. Effect of Net Present Value on Perennial Energy Crop Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.; Watanabe, M.; Lin, T.; DeLaquil, P.; Gehua, W.; Howell, M.; Alipalo, M.H. Rural Biomass Energy 2020. Cleaner Energy Better, Environment Higher Rural Income People’s Republic of China; Asian Development Bank: Mandaluyong, Philippines, 2010; Available online: https://www.adb.org/sites/default/files/publication/27997/rural-biomass-energy-2020.pdf (accessed on 24 February 2022).
- European Commission. European Biogas Association. Delivering the Green Deal. The Role of Clean Gases Including Hydrogen; European Comission: Brussels, Belgium, 2021; Available online: https://op.europa.eu/en/publication-detail/-/publication/ae2cb43d-5ef0-11ec-9c6c-01aa75ed71a1/languae-en (accessed on 23 January 2022).
- Jensen, I.D.; Münster, M.; Pisinger, D. Optimizing the supply chain of biomass and biogas for a single plant considering mass and energy losses. Eur. J. Oper. Res. 2017, 262, 744–758. [Google Scholar] [CrossRef]
- Patrizio, P.; Leduc, S.; Chinese, D.; Kraxner, F. Internalizing the external costs of biogas supply chains in the Italian energy sector. Energy 2017, 125, 85–96. [Google Scholar] [CrossRef]
- Uellendahl, H.; Wang, G.; Møller, H.; Jørgensen, U.; Skiadas, I.V.; Gavala, H.N.; Ahring, B.K. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation. Water Sci Technol. 2008, 58, 1841–1847. [Google Scholar] [CrossRef] [PubMed]
- Lehtomaki, A. Biogas Production from Energy Crops and Crop Residues; University of Jyväskylä: Jyväskylä, Finland, 2006; p. 91. Available online: https://jyx.jyu.fi/bitstream/handle/123456789/13152/9513925595.pdf?sequen (accessed on 25 January 2022).
- Rentizelas, A.A.; Tolis, J.A.; Tatsiopoulos, I.P. Logistics Issues of Biomass: The Storage Problem and the Multi-Biomass Supply Chain. Renew. Sustain. Energy Rev. 2009, 13, 887–894. Available online: https://strathprints.strath.ac.uk/44929/1/RSER_Warehousing_publisher_version_pdf.pdf (accessed on 15 March 2022). [CrossRef]
- Bahrs, E.; Angenendt, E. Status quo and perspectives of biogas production for energy and material utilization. GCB Bioenergy 2019, 11, 9–20. [Google Scholar] [CrossRef]
- Kiesel, A.; Wagner, M.; Lewandowski, I. Environmental Performance of Miscanthus, Switchgrass and Maize: Can C4 Perennials Increase the Sustainability of Biogas Production? Sustainability 2017, 9, 5. [Google Scholar] [CrossRef]
- Grunwald, D.; Panten, K.; Schwarz, A.; Bischoff, W.A.; Schittenhelm, S. Comparison of maize, permanent cup plant and a perennial grass mixture with regard to soil and water protection. GCB Bioenergy 2020, 12, 694–705. [Google Scholar] [CrossRef]
- Gansverger, M.; Montgomery, L.F.R.; Liebhard, P. Botanical characteristics, crop management and potential of Silphium perfoliatum L. as a renewable resource for biogas production: A review. Ind. Crops Prod. 2015, 63, 362–372. [Google Scholar] [CrossRef]
- Ehmann, A.; Bach, I.-M.; Laopeamthong, S.; Bilbao, J.; Lewan-dowski, I. Can phosphate salts recovered from manurereplace conventional phosphate fertilizer? Agriculture 2017, 7, 20. [Google Scholar] [CrossRef]
- Carlsson, G.; Martesson, L.M.; Prade, T.; Svensson, S.E.; Jensen, E. Perennial species mixtures for multifunctional production of biomass on marginal land. GCB Bioenergy 2017, 9, 191–201. [Google Scholar] [CrossRef]
- Lewandowski, I. The Role of Perennial Biomass Crops in a Growing Bioeconomy. In Perennial Biomass Crops for Aresource-Constrained World; Springer International Publishing AG: Cham, Switzerland, 2016; pp. 3–13. [Google Scholar]
- Lopes, T.F.; Lukasik, R.M. Economic, social and environmental impacts attained by the use of the effluents generated within a small-scale biorefinery concept. Acta Innov. 2020, 36, 57–63. [Google Scholar] [CrossRef]
- Szyba, M. Spatial planning and the development of renewable energy sources in Poland. Acta Innov. 2021, 39, 5–14. [Google Scholar] [CrossRef]
- Ximenes, J.; Siqueira, A.; Kochańska, E.; Łukasik, R.M. Valorisation of agri-and aquaculture residues via biogas production for enhanced industrial application. Energies 2021, 14, 2519. [Google Scholar] [CrossRef]
- Egieyaa, J.M.; Čučekb, L.; Zirngastb, K.; Isafiadea, A.J.; Pahorc, B.; Kravanja, Z. Biogas Supply Chain Optimization Considering Different Multi-Period Scenarios. Chem. Eng. Trans. 2018, 70, 985–990. [Google Scholar]
- Nekrošius, A. Sustainability and Impact on Environmental Pollution of Using Perennial Grasses for Biogas Production. Ph. D. Thesis, A. Stulginskis University, Agriculture at the Faculty of Engineering, Institute of Energy and Biotechnology Engineering, Kaunas, Lithuania, 2014; pp. 1–23. [Google Scholar]
- Gissén, C.; Prade, P.; Kreuger, E.; Nges, I.A.; Rosenqvist, H.; Svensson, S.E.; Lantz, M.; Mattsson, J.E.; Börjesson, P.; Björnsson, L. Comparing energy crops for biogas production—Yields, energy input and costs in cultivation using digestate and mineral fertilisation. Biomass Bioenergy 2014, 64, 199–210. [Google Scholar] [CrossRef]
- Lakovou, E.; Karagiannidis, A.; Vlachos, D.; Toka, A.; Malamakis, A. Waste biomass-to-energy supply chain management: A critical synthesis. Waste Manag. 2010, 30, 1860–1870. [Google Scholar]
- Navickas, K.; Venslauskas, K.; Zuperka, V.; Nekrosius, A.; Kulikauskas, T. Energy Balance of Biogas Production from Perennial Grasses. Eng. Rural. Dev. 2011, 1–6. Available online: https://www.researchgate.net/publication/267204147_Energy_balance_of_biogas_production_from_perennial_grasses (accessed on 5 March 2022).
- Tilvikienė, V. Production of Alternative Biomass Sources (Including Alternative Protein Production Sources and Technologies) in Primary Agriculture: Technological Solutions, Their Use for Bioeconomy Development Purposes—Energy, Feed, Food. LAMMC Acad 2020, 1–169. Available online: https://zum.lrv.lt/uploads/zum/documents/files/LAMMC%20Alternatyviu%20biomases%20saltiniu_galutine%202020.pdf (accessed on 6 March 2022).
- Navickas, K.; Venslauskas, K. Energy Assessment of Bioenergy Projects. Academy 2015, 12. Available online: https://zua.vdu.lt/wp-content/uploads/2019/05/Energinis-vertinimas.pdf (accessed on 23 January 2022).
- Jasinskas, A.; Kryževičienė, A. Energetic grassland and the input of growing them and preparation for fuel. Res. Pap. IAg Eng. LUA LU Agric. 2006, 38, 59–71. Available online: https://gs.elaba.lt/object/elaba:6212483/ (accessed on 24 January 2022).
- MartınezPerez, N.; Cherryman, S.J.; Premier, G.C.; Dinsdale, R.M.; Hawkes, D.L.; Hawkes, F.R.; Kyazze, G.; Guwy, A.J. The potential for hydrogen-enriched biogas production from crops: Scenarios in the UK. Biomass Bioenergy 2007, 31, 95–104. [Google Scholar] [CrossRef]
- Mikkola, H.; Ahokas, J. Indirect energy input of agricultural machinery in energy analysis. Renew. Energy 2010, 35, 23–28. [Google Scholar] [CrossRef]
- Hoogmartens, R.; Van Passel, S.; Van Acker, K.; Dubois, M. Bridging the gap between LCA, LCC and CBA as sustainability assessment tools. Environ. Impact Assess. Rev. 2014, 48, 27–33. [Google Scholar] [CrossRef]
- Bazaluk, O.; Havrysh, A.; Fedorchuk, M.; Nitsenko, V. Energy Assessment of Sorghum Cultivation in Southern Ukraine. Agriculture 2021, 11, 695. [Google Scholar] [CrossRef]
- Amaleviciute-Volunge, K.; Slepetiene, A.; Butkute, B. Methane yield of perennial grasses as affected by the chemical composition of their biomass. Zemdirb. Agric. 2020, 107, 243–248. [Google Scholar] [CrossRef]
- Hassan, M.U.; Chattha, M.U.; Chattha, M.B.; Mahmood, A.; Sahi, S.T. Impact of harvesting times on chemical composition and methane productivity of sorghum (sorghum bicolor moench. Appl. Ecol. Environ. Res. 2018, 16, 2267–2276. [Google Scholar] [CrossRef]
- Marra, M.; Keene, T.; Skousen, J.; Griggs, T. Switchgrass Yield on Reclaimed Surface Mines for Bioenergy Production. J. Environ. Al Qual. 2013, 42, 696–703. [Google Scholar] [CrossRef]
- Jakiene, E.; Liakas, V.; Klimas, E.; Bačkaitis, J. Technologies for the Cultivation of Energetic Herbaceous and Woody Plants; Academy: Vilnius, Lithuania, 2013; pp. 1–199. Available online: http://dspace.lzuu.lt/bitstream/1/2551/1/energetini%c5%b2_%c5%bdolini%c5%b2_auginimos_technologijos.pdf (accessed on 24 January 2022).
- Lithuanian Agricultural Information and Rural Business Center. Prices of Mechanized Agricultural Services in 2022. Available online: https://www.vic.lt/zumpris/2022/06/07/mechanizuotu-zemes-ukio-paslaugu-kainos-2022-m/ (accessed on 3 April 2022).
- Minister of Agriculture of the Republic of Lithuania Order the Approval of the List of Normative Prices of Biological Assets and Agricultural Production in 2022; No. 3 d-832; Minister of Agriculture of the Republic of Lithuania: Vilnius, Lithuania, 2021. Available online: https://www.e-tar.lt/portal/lt/legalAct/e12f3cf0619a11eca9ac839120d251c4 (accessed on 15 March 2022).
- Fürtner, D.; Echenique, D.A.P.; Hörtenhuber, S.J.; Schwarzbauer, P.; Hesser, F. Beyond Monetary Cost-Benefit Analyses: Combining Economic, Environmental and Social Analyses of Short Rotation Coppice Poplar Production in Slovakia. Forests 2022, 13, 349. [Google Scholar] [CrossRef]
- Oleszek, M.; Matyka, M. Energy Use Efficiency of Biogas Production Depended on Energy Crops, Nitrogen Fertilization Level, and Cutting System. BioEnergy Res. 2020, 13, 1069–1081. [Google Scholar] [CrossRef]
- Wagner, M.; Mangold, A.; Lask, J.; Petig, E.; Kiesel, A.; Lewandowski, I. Economic and environmental performance of miscanthus cultivated on marginal land for biogas production. GCB Bioenergy 2019, 11, 34–49. [Google Scholar] [CrossRef]
- Nahm, M.; Morhart, C.H. Virginia mallow (Sida hermaphrodita (L.) Rusby) as perennial multipurpose crop: Biomass yields, energetic valorization, utilization potentials, and management perspectives. GCB Bioenergy 2018, 10, 393–404. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Dubis, B.; Budzynski, S.; Borawski, P.; Butkowska, K. Energy efficiency of crops grown for biogas production in a large-scale farm in Poland. Energy 2016, 109, 277–286. [Google Scholar] [CrossRef]
- Rancane, S.; Karklins, A.; Lazdina, D.; Berzins, P. Biomass Yield and CHEMICAL composition of Perennial Grasses for Energy Production. Eng. Rural. Dev. 2015, 546–551. Available online: https://www.researchgate.net/profile/DagnijaLazdina/publication/279952731_Biomass_yield_and_chemical_composition_of_perennial_grasses_for_energy_production/links/595dfb7c4585153d8e05c376/Biomass-yield-and-chemical-composition-of-perennial-grasses-for-energy-production.pdf (accessed on 12 March 2022).
- Jablonowski, N.D.; Kollmann, T.; Nabel, M.; Damm, T.; Klose, H.; Muller, M.; Blasing, M.; Seebold, S.; Krafft, S.; Kuperjans, I.; et al. Valorization of Sida (Sida hermaphrodita) biomass formultiple energy purposes. GCB Bioenergy 2017, 9, 202–214. [Google Scholar] [CrossRef]
- Slepetiene, A.; Slepetys, J.; Tilvikiene, V.; Amaleviciute, K.; Liaudanskiene, I.; Ceseviciene, J.; Kadziuliene, Z.; Dabkevicius, Z.; Buliauskaite, R. Evaluation of Chemical Composition and Biogas Production from Legumes and Perennial Grasses in Anaerobic Digestion Using the Oxitop System. Fresenius Environ. Bull. 2016, 25, 1342–1347. Available online: https://www.researchgate.net/publication/301619143_evaluation_of_chemical_composition_and_biogas_production_from_legumes_and_perennial_grasses_in_anaerobic_digestion_using_the_oxitop_system (accessed on 10 February 2022).
- Dressler, D.; Loewen, A.; Nelles, M. Life cycle assessment of the supply and use of bioenergy: Impact of regional factors on biogas production. Int. J. Life Cycle Assess. 2012, 17, 1104–1115. Available online: https://link.springer.com/content/pdf/10.1007/s11367-012-0424-9.pdf (accessed on 17 March 2022). [CrossRef]
- Whittaker, C.; Hunt, J.; Misselbrook, T.; Shield, I. How well does Miscanthus ensile for use in an anaerobic digestion plant? Biomass Bioenergy 2016, 88, 4–34. [Google Scholar] [CrossRef]
- Wahid, R.; Nielsen, S.F.; Hernandez, V.M.; Ward, A.J.; Gislum, R.; Jørgensen, U.; Møller, H.B. Methane production potential from Miscanthus sp: Effect of harvesting time, genotypes and plant fractions. Biosyst. Eng. 2015, 133, 71–80. [Google Scholar] [CrossRef]
- Kiesel, A.; Lewandowski, I. Miscanthus as biogas substrate—Cutting tolerance and potential for anaerobic digestion. GCB Bioenergy 2015, 9, 153–167. [Google Scholar] [CrossRef]
- Mangold, A.; Lewandowski, I.; Hartung, J.; Kiesel, A. Miscanthus for biogas production: Influence of harvest date and ensiling on digestibility and methane hectare yield. GCB Bioenergy 2019, 11, 50–62. [Google Scholar] [CrossRef]
- Kupryś-Caruk, M.; Podlaski, S. The comparison of single and double cut harvests on biomass yield, quality and biogas production of Miscanthus × giganteus. Plant Soil Environ. 2019, 65, 369–376. [Google Scholar] [CrossRef]
- Schmidt, A.; Lemaigre, S.; Delfosse, P.; Francken-Welz, H.; Emmerling, C. Biochemical methane potential (BMP) of six perennial energy crops cultivated at three different locations in W-Germany. Biomass Convers. Biorefinery 2018, 8, 873–888. [Google Scholar] [CrossRef]
- Souvannasouk, V.; Shen, M.; Trejo, M.; Bhuyar, P. Biogas Production from Napier Grass and Cattle Slurry Using a Green Energy Technology. Int. J. Innov. Res. Sci. Stud. 2021, 4, 174–180. [Google Scholar] [CrossRef]
- Caruk, M.C.; Podlaski, S.; Kotyrba, D. Influence of double-cut harvest system on biomass yield, quality and biogas production from C4 perennial grasses. Biomass Bioenergy 2019, 130, 1–10. [Google Scholar]
- Corno, L.; Pilu, R.; Cantaluppi, E.; Adani, F. Giant cane (Arundo donax L.) for biogas production: The effect of two ensilage methods on biomass characteristics and biogas potential. Biomass Bioenergy 2016, 93, 131–136. [Google Scholar] [CrossRef]
- Krzystek, L.; Wajszczuk, K.; Pazera, A.; Matyka, M.; Slezak, R.; Ledakowicz, S. The Infuence of Plant Cultivation Conditions on Biogas Production. Energy Efciency Waste Biomass Valorization 2020, 11, 513–523. [Google Scholar] [CrossRef] [Green Version]
Operations | Unit | Miscanthus | Switchgrass | Perennial Ryegrass | Common Sainfoin | Common Lucerne |
---|---|---|---|---|---|---|
Biogas plant productivity | CH4 m3/h | 500 | 500 | 500 | 500 | 500 |
Full load hours | h | 8000 | 8000 | 8000 | 8000 | 8000 |
Productivity of biomethane production | thousand m3/yr | 4000 | 4000 | 4000 | 4000 | 4000 |
Dry matter yield | t/ha | 20.8 | 11.3 | 5.15 | 5.32 | 7.9 |
Methane yield | m3 CH4-yr/ha | 4774 | 2712 | 1060 | 1453 | 1326 |
Amount of grass required for the biogas plant | t/ha | 17,429 | 16,542 | 19,434 | 14,646 | 23,831 |
Agricultural land required for the biogas plant | ha | 840 | 1556 | 3774 | 2753 | 3017 |
Nitrogenous N | kg/ha | 80 | 80 | 30 | 30 | 30 |
Potassium K2O | kg/ha | 128 | 137 | 68 | 68 | 68 |
Phosphorus P2O5 | kg/ha | 32 | 37 | 27 | 25 | 25 |
Herbicides | kg/ha | 1.375 | 1.32 | 1.35 | 1.35 | 1.35 |
Number of staff required | 2 | 2 | 2 | 2 | 2 | |
Biomass growth period | yr | 6 | 6 | 6 | 6 | 6 |
Direct Energy Costs | Unit | Value |
---|---|---|
Plowing | EUR/ha | 80 |
Cultivation | EUR/ha | 40 |
Herbicides | EUR/ha | 14.8 |
Mineral fertilizers 2 “x” | EUR/ha | 11.2 |
Sowing | EUR/ha | 50 |
Rolling | EUR/ha | 23.2 |
Harvest | EUR/ha | 37.5 |
Grass shredding | EUR/ha | 75 |
Transportation to the biogas plant | EUR/km | 0.5 |
Indirect Energy Costs | Unit | Value, EUR |
---|---|---|
Labor | EUR/h | 4.47 |
Exploitation of machines, operation | EUR/l | 2 |
Use of fertilizers | EUR/kg | 2.5 |
Revenue | Unit | Value |
---|---|---|
Purchase price of mass perennial energy crops | EUR/t | 25.0 |
Plants | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 |
---|---|---|---|---|---|---|
Miscanthus | 326.7 | 163.2 | 166.1 | 157.9 | 159.8 | 161.2 |
Switchgrass | 317.9 | 153.7 | 152.5 | 141.3 | 141.3 | 141.3 |
P. Ryegrass | 310.6 | 145.8 | 144.5 | 183.3 | 133.3 | 133.3 |
C. Sainfoin | 312.3 | 146.6 | 145.3 | 184.1 | 134.1 | 134.1 |
Lucerne | 311.7 | 147.5 | 146.3 | 135.1 | 135.1 | 135.1 |
Plants | eNPV [EUR/ha] | PBT [years] | IRR [%] | BCR [ratio] |
---|---|---|---|---|
Miscanthus | 371,201 | 5 | 13.6% | 1.39 |
Switchgrass | 36,655 | 6 | 5.6% | 1.02 |
P. Ryegrass | −1,827,022 | x | −11.1% | 0.53 |
C. Sainfoin | −1,560,033 | x | −13.2% | 0.46 |
Lucerne | −684,891 | x | −1.5% | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bužinskienė, R.; Miceikienė, A. Cost–Benefit Analysis for Supply Chain of Renewable Gases from Perennial Energy Crops: The Case of Lithuania. Sustainability 2022, 14, 10988. https://doi.org/10.3390/su141710988
Bužinskienė R, Miceikienė A. Cost–Benefit Analysis for Supply Chain of Renewable Gases from Perennial Energy Crops: The Case of Lithuania. Sustainability. 2022; 14(17):10988. https://doi.org/10.3390/su141710988
Chicago/Turabian StyleBužinskienė, Rita, and Astrida Miceikienė. 2022. "Cost–Benefit Analysis for Supply Chain of Renewable Gases from Perennial Energy Crops: The Case of Lithuania" Sustainability 14, no. 17: 10988. https://doi.org/10.3390/su141710988
APA StyleBužinskienė, R., & Miceikienė, A. (2022). Cost–Benefit Analysis for Supply Chain of Renewable Gases from Perennial Energy Crops: The Case of Lithuania. Sustainability, 14(17), 10988. https://doi.org/10.3390/su141710988