Does Age Matter? Using Neuroscience Approaches to Understand Consumers’ Behavior towards Purchasing the Sustainable Product Online
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. Eye Tracking
2.3. EEG
2.4. FaceReader
3. Results
3.1. Eye Movements in Young and Older Individuals
3.2. EEG Results in Young and Older Individuals
3.3. FaceReader Was Used to Analyze Facial Expressions in Young and Older Individuals
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez-Ruiz, M.P.; Moser, K. Studying consumer behavior in an online context: The impact of the evolution of the World Wide Web for new avenues in research. Front. Psychol. 2019, 10, 2731. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, Y.K.; Ismagilova, E.; Hughes, D.L.; Carlson, J.; Filieri, R.; Jacobson, J.; Jain, V.; Karjaluoto, H.; Kefi, H.; Krishen, A.S.; et al. Setting the future of digital and social media marketing research: Perspectives and research propositions. Int. J. Inf. Manag. 2020, 59, 102168. [Google Scholar] [CrossRef]
- Garczarek-Bąk, U.; Szymkowiak, A.; Gaczek, P.; Disterheft, A. A comparative analysis of neuromarketing methods for brand purchasing predictions among young adults. J. Brand Manag. 2021, 28, 171–185. [Google Scholar] [CrossRef]
- Karmarkar, U.R.; Plassmann, H. Consumer neuroscience: Past, present, and future. Organ. Res. Methods 2017, 22, 174–195. [Google Scholar] [CrossRef]
- Prezenski, S.; Brechmann, A.; Wolff, S.; Russwinkel, N. A Cognitive modeling approach to strategy formation in dynamic decision making. Front. Psychol. 2017, 8, 1335. [Google Scholar] [CrossRef]
- Murman, D.L. The impact of age on cognition. Semin. Hear. 2015, 36, 111–121. [Google Scholar] [CrossRef]
- Löckenhoff, C.E. Aging and decision-making: A conceptual framework for future research—A mini-review. Gerontology 2018, 64, 140–148. [Google Scholar] [CrossRef]
- Hettich, D.; Hattula, S.; Bornemann, T. Consumer decision-making of older people: A 45-year review. Gerontology 2017, 58, e349–e368. [Google Scholar] [CrossRef]
- Harada, C.N.; Natelson Love, M.C.; Triebel, K.L. Normal cognitive aging. Clin. Geriatr. Med. 2013, 29, 737–752. [Google Scholar] [CrossRef]
- Tymula, A.; Rosenberg Belmaker, L.A.; Ruderman, L.; Glimcher, P.W.; Levy, I. Like cognitive function, decision making across the life span shows profound age-related changes. Proc. Natl. Acad. Sci. USA 2013, 110, 17143–17148. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Xia, S.; Ruan, F.; Pu, B. Age Differences in Consumer Decision Making under Option Framing: From the motivation perspective. Front. Psychol. 2016, 7, 1736. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.M.; Yoon, C. Aging and consumer decision making. Ann. N. Y. Acad. Sci. 2011, 1235, E1–E12. [Google Scholar] [CrossRef] [PubMed]
- Zniva, R.; Weitzl, W. It’s not how old you are but how you are old: A review on aging and consumer behavior. Manag. Rev. Q. 2016, 66, 267–297. [Google Scholar] [CrossRef]
- Steptoe, A.; Zaninotto, P. Lower socioeconomic status and the acceleration of aging: An outcome-wide analysis. Proc. Natl. Acad. Sci. USA 2020, 117, 14911–14917. [Google Scholar] [CrossRef]
- Fischhoff, B.; Broomell, S.B. Judgment and decision making. Annu. Rev. Psychol. 2020, 71, 331–355. [Google Scholar] [CrossRef]
- Mattson, M.P.; Arumugam, T.V. Hallmarks of brain aging: Adaptive and pathological modification by metabolic states. Cell Metab. 2018, 27, 1176–1199. [Google Scholar] [CrossRef] [PubMed]
- Zanto, T.P.; Toy, B.; Gazzaley, A. Delays in neural processing during working memory encoding in normal aging. Neuropsychologia 2010, 48, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Matysiak, O.; Kroemeke, A.; Brzezicka, A. Working memory capacity as a predictor of cognitive training efficacy in the elderly population. Front. Aging Neurosci. 2019, 11, 126. [Google Scholar] [CrossRef]
- Weeks, J.; Hasher, L. The disruptive—and beneficial—effects of distraction on older adults’ cognitive performance. Front. Psychol. 2014, 5, 133. [Google Scholar] [CrossRef]
- Mehta, A.; Sharma, C.; Kanala, M.; Thakur, M.; Harrison, R.; Torrico, D. Self-reported emotions and facial expressions on consumer acceptability: A study using energy drinks. Foods 2021, 10, 330. [Google Scholar] [CrossRef]
- Sun, G.; Shen, F.; Ma, X. The influence of face on online purchases: Evidence from China. Front. Psychol. 2021, 12, 788063. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Kim, C.; Lee, K.C. Consumer decision-making creativity and its relation to exploitation–exploration activities: Eye-tracking approach. Front. Psychol. 2021, 11, 557292. [Google Scholar] [CrossRef] [PubMed]
- Hessels, R.S.; Hooge, I.T.C. Eye tracking in developmental cognitive neuroscience—The good, the bad and the ugly. Dev. Cogn. Neurosci. 2019, 40, 100710. [Google Scholar] [CrossRef]
- Atkinson, M.A.; Simpson, A.A.; Cole, G.G. Visual attention and action: How cueing, direct mapping, and social interactions drive orienting. Psychon. Bull. Rev. 2018, 25, 1585–1605. [Google Scholar] [CrossRef]
- Sajjacholapunt, P.; Ball, L. The influence of banner advertisements on attention and memory: Human faces with averted gaze can enhance advertising effectiveness. Front. Psychol. 2014, 5, 166. [Google Scholar] [CrossRef]
- Enders, L.R.; Smith, R.J.; Gordon, S.M.; Ries, A.J.; Touryan, J. Gaze behavior during navigation and visual search of an open-world virtual environment. Front. Psychol. 2021, 12, 681042. [Google Scholar] [CrossRef]
- Cherubino, P.; Martinez-Levy, A.C.; Caratù, M.; Cartocci, G.; Di Flumeri, G.; Modica, E.; Rossi, D.; Mancini, M.; Trettel, A. Consumer behaviour through the eyes of neurophysiological measures: State-of-the-art and future trends. Comput. Intell. Neurosci. 2019, 2019, 1976847. [Google Scholar] [CrossRef]
- Kayser, J.; Wong, L.Y.X.; Sacchi, E.; Casal-Roscum, L.; Alvarenga, J.E.; Hugdahl, K.; Bruder, G.E.; Jonides, J. Behavioral measures of attention and cognitive control during a new auditory working memory paradigm. Behav. Res. Methods 2020, 52, 1161–1174. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, D.; Oosterhof, N.N.; Peelen, M.V. The Neural Dynamics of Attentional Selection in Natural Scenes. J. Neurosci. 2016, 36, 10522–10528. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.; Torous, J.; Stubbs, B.; Firth, J.A.; Steiner, G.Z.; Smith, L.; Alvarez-Jimenez, M.; Gleeson, J.; Vancampfort, D.; Armitage, C.J.; et al. The “online brain”: How the Internet may be changing our cognition. World Psychiatry 2019, 18, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Von Helversen, B.; Abramczuk, K.; Kopeć, W.; Nielek, R. Influence of consumer reviews on online purchasing decisions in older and younger adults. Decis. Support Syst. 2018, 113, 1–10. [Google Scholar] [CrossRef]
- Dolcos, F.; Katsumi, Y.; Moore, M.; Berggren, N.; de Gelder, B.; Derakshan, N.; Hamm, A.O.; Koster, E.H.; Ladouceur, C.D.; Okon-Singer, H.; et al. Neural correlates of emotion-attention interactions: From perception, learning, and memory to social cognition, individual differences, and training interventions. Neurosci. Biobehav. Rev. 2020, 108, 559–601. [Google Scholar] [CrossRef] [PubMed]
- Muller-Oehring, E.M.; Schulte, T. Cognition, emotion, and attention. Handb. Clin. Neurol. 2014, 125, 341–354. [Google Scholar] [PubMed]
- Monosov, I.E. How outcome uncertainty mediates attention, learning, and decision-making. Trends Neurosci. 2020, 43, 795–809. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.; Chiang, M.-C. Examining the effect of online advertisement cues on human responses using eye-tracking, EEG, and MRI. Behav. Brain Res. 2021, 402, 113128. [Google Scholar] [CrossRef]
- Yen, C.; Chiang, M.-C. Trust me, if you can: A study on the factors that influence consumers’ purchase intention triggered by chatbots based on brain image evidence and self-reported assessments. Behav. Inf. Technol. 2021, 40, 1177–1194. [Google Scholar] [CrossRef]
- Wolf, A.; Ueda, K. Contribution of eye-tracking to study cognitive impairments among clinical populations. Front. Psychol. 2021, 12, 590986. [Google Scholar] [CrossRef]
- Zito, M.; Fici, A.; Bilucaglia, M.; Ambrogetti, F.S.; Russo, V. Assessing the emotional response in social communication: The role of neuromarketing. Front. Psychol. 2021, 12, 625570. [Google Scholar] [CrossRef]
- Higgins, E.; Leinenger, M.; Rayner, K. Eye movements when viewing advertisements. Front. Psychol. 2014, 5, 210. [Google Scholar] [CrossRef]
- Myers, S.D.; Deitz, G.D.; Huhmann, B.A.; Jha, S.; Tatara, J.H. An eye-tracking study of attention to brand-identifying content and recall of taboo advertising. J. Bus. Res. 2020, 111, 176–186. [Google Scholar] [CrossRef]
- Light, G.A.; Williams, L.E.; Minow, F.; Sprock, J.; Rissling, A.; Sharp, R.; Swerdlow, N.R.; Braff, D.L. Electroencephalography (EEG) and event-related potentials (ERPs) with human participants. Curr. Protoc. Neurosci. 2010, 52, 1–24. [Google Scholar] [CrossRef]
- Feyissa, A.M.; Tatum, W.O. Adult EEG. Handb. Clin. Neurol. 2019, 160, 103–124. [Google Scholar]
- Ariely, D.; Berns, G.S. Neuromarketing: The hope and hype of neuroimaging in business. Nat. Rev. Neurosci. 2010, 11, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Bazzani, A.; Ravaioli, S.; Trieste, L.; Faraguna, U.; Turchetti, G. Is EEG suitable for marketing research? A systematic review. Front. Neurosci. 2020, 14, 594566. [Google Scholar] [CrossRef] [PubMed]
- Moezzi, B.; Pratti, L.M.; Hordacre, B.; Graetz, L.; Berryman, C.; Lavrencic, L.M.; Ridding, M.C.; Keage, H.A.D.; McDonnell, M.D.; Goldsworthy, M.R. Characterization of young and old adult brains: An EEG functional connectivity analysis. Neuroscience 2019, 422, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Babayan, A.; Erbey, M.; Kumral, D.; Reinelt, J.D.; Reiter, A.M.F.; Röbbig, J.; Schaare, H.L.; Uhlig, M.; Anwander, A.; Bazin, P.-L.; et al. A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults. Sci. Data 2019, 6, 180308. [Google Scholar] [CrossRef]
- Ruthig, J.C.; Poltavski, D.P.; Petros, T. Examining positivity effect and working memory in young-old and very old adults using EEG-derived cognitive state metrics. Res. Aging 2019, 41, 1014–1035. [Google Scholar] [CrossRef]
- Trammell, J.P.; MacRae, P.G.; Davis, G.; Bergstedt, D.; Anderson, A.E. The relationship of cognitive performance and the theta-alpha power ratio is age-dependent: An EEG study of short term memory and reasoning during task and resting-state in healthy young and old adults. Front. Aging Neurosci. 2017, 9, 364. [Google Scholar] [CrossRef]
- Kret, M.E. Emotional expressions beyond facial muscle actions. A call for studying autonomic signals and their impact on social perception. Front. Psychol. 2015, 6, 711. [Google Scholar] [CrossRef]
- Jack Rachael, E.; Schyns Philippe, G. The human face as a dynamic tool for social communication. Curr. Biol. 2015, 25, R621–R634. [Google Scholar] [CrossRef]
- Elliott, E.; Jacobs, A. Facial expressions, emotions, and sign languages. Front. Psychol. 2013, 4, 115. [Google Scholar] [CrossRef] [Green Version]
- Skiendziel, T.; Rösch, A.G.; Schultheiss, O.C. Assessing the convergent validity between the automated emotion recognition software Noldus FaceReader 7 and Facial Action Coding System Scoring. PLoS ONE 2019, 14, e0223905. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.; Ueda, K. Consumer’s behavior beyond self-report. Front. Psychol. 2021, 12, 4338. [Google Scholar] [CrossRef]
- Bachmann, T. Attention as a process of selection, perception as a process of representation, and phenomenal experience as the resulting process of perception being modulated by a dedicated consciousness mechanism. Front. Psychol. 2011, 2, 387. [Google Scholar] [CrossRef]
- Hommel, B.; Chapman, C.S.; Cisek, P.; Neyedli, H.F.; Song, J.-H.; Welsh, T.N. No one knows what attention is. Atten. Percept. Psychophys 2019, 81, 2288–2303. [Google Scholar] [CrossRef] [PubMed]
- Buschman, T.J.; Kastner, S. From behavior to neural dynamics: An integrated theory of attention. Neuron 2015, 88, 127–144. [Google Scholar] [CrossRef] [PubMed]
- Sherman, S.M.; Usrey, W.M. Cortical control of behavior and attention from an evolutionary perspective. Neuron 2021, 109, 3048–3054. [Google Scholar] [CrossRef]
- Shomstein, S. Cognitive functions of the posterior parietal cortex: Top-down and bottom-up attentional control. Front. Integr. Neurosci. 2012, 6, 38. [Google Scholar] [CrossRef]
- Zhou, H.; Schafer, R.J.; Desimone, R. Pulvinar-cortex interactions in vision and attention. Neuron 2016, 89, 209–220. [Google Scholar] [CrossRef]
- Krauzlis, R.J.; Lovejoy, L.P.; Zénon, A. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 2013, 36, 165–182. [Google Scholar] [CrossRef]
- Risko, E.F.; Kingstone, A. Everyday attention. Can. J. Exp. Psychol. 2017, 71, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Whiting, W.L.; Madden, D.J.; Pierce, T.W.; Allen, P.A. Searching from the top down: Ageing and attentional guidance during singleton detection. Q. J. Exp. Psychol. Sect. A 2005, 58, 72–97. [Google Scholar] [CrossRef] [PubMed]
- Gruber, N.; Müri, R.; Mosimann, U.; Bieri, R.; Aeschimann, A.; Zito, G.; Urwyler, P.; Nyffeler, T.; Nef, T. Effects of age and eccentricity on visual target detection. Front. Aging Neurosci. 2014, 5, 101. [Google Scholar] [CrossRef] [PubMed]
- Braunlich, K.; Gomez-Lavin, J.; Seger, C.A. Frontoparietal networks involved in categorization and item working memory. NeuroImage 2014, 107, 146–162. [Google Scholar] [CrossRef] [PubMed]
- Sani, I.; Stemmann, H.; Caron, B.; Bullock, D.; Stemmler, T.; Fahle, M.; Pestilli, F.; Freiwald, W.A. The human endogenous attentional control network includes a ventro-temporal cortical node. Nat. Commun. 2021, 12, 360. [Google Scholar] [CrossRef]
- Friedman, N.P.; Robbins, T.W. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 2021, 47, 72–89. [Google Scholar] [CrossRef]
- Dixon, M.L.; De La Vega, A.; Mills, C.; Andrews-Hanna, J.; Spreng, R.N.; Cole, M.W.; Christoff, K. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc. Natl. Acad. Sci. USA 2018, 115, E1598–E1607. [Google Scholar] [CrossRef]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- McCabe, D.P.; Roediger, H.L.; McDaniel, M.A.; Balota, D.A.; Hambrick, D.Z. The relationship between working memory capacity and executive functioning: Evidence for a common executive attention construct. Neuropsychology 2010, 24, 222–243. [Google Scholar] [CrossRef]
- Walter, K.; Bex, P. Cognitive load influences oculomotor behavior in natural scenes. Sci. Rep. 2021, 11, 12405. [Google Scholar] [CrossRef]
- Nikolaev, A.R.; Pannasch, S.; Ito, J.; Belopolsky, A.V. Eye movement-related brain activity during perceptual and cognitive processing. Front. Syst. Neurosci. 2014, 8, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvino, L.; Pavone, L.; Abhishta, A.; Robben, H. Picking your brains: Where and how neuroscience tools can enhance marketing research. Front. Neurosci. 2020, 14, 577666. [Google Scholar] [CrossRef] [PubMed]
- Duerrschmid, K.; Danner, L. Eye tracking in consumer research. In Methods in Consumer Research; Ares, G., Varela, P., Eds.; Woodhead Publishing: Sawston, UK, 2018; Volume 2, Chapter 12; pp. 279–318. [Google Scholar]
- Brunyé, T.T.; Drew, T.; Weaver, D.L.; Elmore, J.G. A review of eye tracking for understanding and improving diagnostic interpretation. Cogn. Res. Princ. Implic. 2019, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Oyama, A.; Takeda, S.; Ito, Y.; Nakajima, T.; Takami, Y.; Takeya, Y.; Yamamoto, K.; Sugimoto, K.; Shimizu, H.; Shimamura, M.; et al. Novel method for rapid assessment of cognitive impairment using high-performance eye-tracking technology. Sci. Rep. 2019, 9, 12932. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.M.; Edwards, J.A.; Snyder, F.J.; Makinson, K.A.; Hamby, D.M. The effect of cognitive load on decision making with graphically displayed uncertainty information. Risk Anal. 2013, 34, 1495–1505. [Google Scholar] [CrossRef]
- Negi, S.; Mitra, R. Fixation duration and the learning process: An eye tracking study with subtitled videos. J. Eye Mov. Res. 2020, 13. [Google Scholar] [CrossRef]
- Raney, G.E.; Campbell, S.J.; Bovee, J.C. Using eye movements to evaluate the cognitive processes involved in text comprehension. J. Vis. Exp. 2014, 83, e50780. [Google Scholar] [CrossRef]
- Vehlen, A.; Spenthof, I.; Tönsing, D.; Heinrichs, M.; Domes, G. Evaluation of an eye tracking setup for studying visual attention in face-to-face conversations. Sci. Rep. 2021, 11, 2661. [Google Scholar] [CrossRef]
- Motoki, K.; Saito, T.; Onuma, T. Eye-tracking research on sensory and consumer science: A review, pitfalls and future directions. Food Res. Int. 2021, 145, 110389. [Google Scholar] [CrossRef]
- Eckstein, M.K.; Guerra-Carrillo, B.; Miller Singley, A.T.; Bunge, S.A. Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive development? Dev. Cogn. Neurosci. 2017, 25, 69–91. [Google Scholar] [CrossRef]
- Paneri, S.; Gregoriou, G.G. Top-down control of visual attention by the prefrontal cortex. Functional specialization and long-range interactions. Front. Neurosci. 2017, 11, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawnaque, F.S.; Rahman, K.M.; Anwar, S.F.; Vaidyanathan, R.; Chau, T.; Sarker, F.; Al Mamun, K.A. Technological advancements and opportunities in Neuromarketing: A systematic review. Brain Inform. 2020, 7, 10. [Google Scholar] [CrossRef]
- Bell, L.; Vogt, J.; Willemse, C.; Routledge, T.; Butler, L.T.; Sakaki, M. Beyond Self-Report: A review of physiological and neuroscientific methods to investigate consumer behavior. Front. Psychol. 2018, 9, 1655. [Google Scholar] [CrossRef]
- Buzzell, G.A.; Das, B.; Cruz-Cano, R.; Nkongho, L.E.; Kidanu, A.W.; Kim, H.; Clark, P.I.; McDonald, C.G. Using electrophysiological measures to assess the consumer acceptability of smokeless tobacco products. Nicotine Tob. Res. 2016, 18, 1853–1860. [Google Scholar] [CrossRef] [PubMed]
- Alvino, L.; Constantinides, E.; van der Lubbe, R.H.J. Consumer neuroscience: Attentional preferences for wine labeling reflected in the posterior contralateral negativity. Front. Psychol. 2021, 12, 688713. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.H.C.; Naves, E.L.M. Attention detection in virtual environments using EEG signals: A scoping review. Front. Physiol. 2021, 12, 2051. [Google Scholar] [CrossRef] [PubMed]
- Samanez-Larkin, G.R.; Knutson, B. Decision making in the ageing brain: Changes in affective and motivational circuits. Nat. Rev. Neurosci. 2015, 16, 278–289. [Google Scholar] [CrossRef]
- Su, Y.S.; Chen, J.T.; Tang, Y.J.; Yuan, S.Y.; McCarrey, A.C.; Goh, J.O.S. Age-related differences in striatal, medial temporal, and frontal involvement during value-based decision processing. Neurobiol. Aging 2018, 69, 185–198. [Google Scholar] [CrossRef]
- Leh, S.E.; Petrides, M.; Strafella, A.P. The neural circuitry of executive functions in healthy subjects and Parkinson’s disease. Neuropsychopharmacology 2010, 35, 70–85. [Google Scholar] [CrossRef]
- Mather, M. The affective neuroscience of aging. Annu. Rev. Psychol. 2016, 67, 213–238. [Google Scholar] [CrossRef]
- Alsmadi, S.; Hailat, K. Neuromarketing and improved understanding of consumer behaviour through brain-based neuro activity. J. Inf. Knowl. Manag. 2021, 20, 1–9. [Google Scholar] [CrossRef]
- Mikalef, P.; Sharma, K.; Pappas, I.O.; Giannakos, M. Seeking information on social commerce: An examination of the impact of user- and marketer-generated content through an eye-tracking study. Inf. Syst. Front. 2021, 23, 1273–1286. [Google Scholar] [CrossRef]
Young | Elderly | |
---|---|---|
Horizontal eye activity (unit: pixel) | 250.1 ± 25.2 | 235.5 ± 20.4 |
Vertical eye activity (unit: pixel) | 140.2 ± 18.1 | 128.2 ± 15.5 |
Perclos average (unit: %) | 6.6 ± 0.8 | 5.8 ± 0.6 |
Mean saccade angle (unit: deg) | 9.2 ± 0.3 | 8.1 ± 0.2 |
Young | Elderly | |
---|---|---|
Sad expression (%) | 1.0 | 1.130 ± 0.126 |
Angry expression (%) | 1.0 | 0.985 ± 0.092 |
Scared expression (%) | 1.0 | 0.970 ± 0.093 |
Disgusted expression (%) | 1.0 | 1.103 ± 0.104 |
Contempt expression (%) | 1.0 | 0.967 ± 0.130 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, M.-C.; Yen, C.; Chen, H.-L. Does Age Matter? Using Neuroscience Approaches to Understand Consumers’ Behavior towards Purchasing the Sustainable Product Online. Sustainability 2022, 14, 11352. https://doi.org/10.3390/su141811352
Chiang M-C, Yen C, Chen H-L. Does Age Matter? Using Neuroscience Approaches to Understand Consumers’ Behavior towards Purchasing the Sustainable Product Online. Sustainability. 2022; 14(18):11352. https://doi.org/10.3390/su141811352
Chicago/Turabian StyleChiang, Ming-Chang, Chiahui Yen, and Hsiu-Li Chen. 2022. "Does Age Matter? Using Neuroscience Approaches to Understand Consumers’ Behavior towards Purchasing the Sustainable Product Online" Sustainability 14, no. 18: 11352. https://doi.org/10.3390/su141811352
APA StyleChiang, M. -C., Yen, C., & Chen, H. -L. (2022). Does Age Matter? Using Neuroscience Approaches to Understand Consumers’ Behavior towards Purchasing the Sustainable Product Online. Sustainability, 14(18), 11352. https://doi.org/10.3390/su141811352