Towards a Systematic Description of Fault Tree Analysis Studies Using Informetric Mapping
Abstract
:1. Introduction
- Question 1: What is the current general status of research on FTA? (Section 3.1–Section 3.4)
- Question 2: What are the knowledge base and research hotspots in FTA? (Section 3.5–Section 3.6.2)
- Question 3: What are the main frontiers in the research of FTA? (Section 3.6.3)
2. Data and Methods
2.1. Data Sources and Distribution of Literature Types
2.2. Method
3. Results and Discussion
3.1. Temporal Distribution Map of the Literature
3.1.1. Temporal Distribution of the Literature Globally
3.1.2. Temporal Distribution of the Literature by Active Nations
3.2. Spatial Distribution Map of the Literature
3.2.1. Country/Region Distribution
3.2.2. Disciplinary Distribution of the Literature
3.2.3. Institutional Distribution of the Literature
3.2.4. Journal Distribution
3.3. Highly Cited Literature Analysis
3.4. Co-Authorship Analysis
3.5. Research Knowledge Base
3.5.1. Reference Co-Citation Analysis
3.5.2. Journal Co-Citation Analysis
3.6. Research Hotspots and Frontier Analysis
3.6.1. Static Preliminary Analysis of Research Hotspots
3.6.2. Dynamic Tracing of Evolutionary Paths and Research Hotspots
3.6.3. Research Frontier Theme Detection
4. Discussion
5. Conclusions
- (1)
- The evolution of FTA research can be divided into three stages: the wave development stage (1995–2008), the stable development stage (2008–2018) and the rapid development stage (2018-present). Before 2009, the United States was the world leader in the amount of literature published and had a comparatively high research level. China began late in this field but overtook the United States in the stable development stage, with the most publications. The distribution of disciplines reflects that FTA is a multidisciplinary research field based on engineering industrial, engineering chemical, engineering electrical electronic, computer science and management science. Research groups with distinct geographical characteristics have been formed. However, the cooperation is not close, and there is a tendency to extend the cooperation from developed to developing countries.
- (2)
- “Reliability Engineering & System Safety”, “Journal of Loss Prevention in the Process Industries, and “Quality and Reliability Engineering International” are the top three journals that published literature on FTA research. Fuzzy fault tree analysis, dynamic fault tree analysis and FTA based on binary decision diagrams are the knowledge bases of the FTA research field. The co-cited literature can be roughly divided into three categories: safety science, reliability engineering and mathematical models and algorithms, and the core journals of each category are “Safety Science”, “Reliability Engineering & System Safety” and “Fuzzy Sets and Systems”.
- (3)
- The fundamental theory and system of FTA research have been preliminarily constructed. The main research directions in the field of FTA are the optimization of traditional FTA, system reliability analysis, risk analysis and safety management. Risk analysis in the energy field, the prevention of catastrophic accidents and the enhancement of system reliability are the current application hotspots of FTA. Fuzzy fault tree analysis, dynamic fault tree analysis based on Bayesian networks and FTA combined with management factors may be the main research hotspots and the frontiers. Fires, explosions, and shipping accidents may become the frontier fields of the application of FTA.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhattacharyya, S.K.; Cheliyan, A.S. Optimization of a subsea production system for cost and reliability using its fault tree model. Reliab. Eng. Syst. Saf. 2019, 185, 213–219. [Google Scholar] [CrossRef]
- Jung, S.; Yoo, J.; Lee, Y. A software fault tree analysis technique for formal requirement specifications of nuclear reactor protection systems. Reliab. Eng. Syst. Saf. 2020, 203, 107064. [Google Scholar] [CrossRef]
- Huang, J.; You, J.; Liu, H.; Song, M. Failure mode and effect analysis improvement: A systematic literature review and future research agenda. Reliab. Eng. Syst. Saf. 2020, 199, 106885. [Google Scholar] [CrossRef]
- Liu, P.; Li, Y. An improved failure mode and effect analysis method for multi-criteria group decision-making in green logistics risk assessment. Reliab. Eng. Syst. Saf. 2021, 215, 107826. [Google Scholar] [CrossRef]
- Piadeh, F.; Ahmadi, M.; Behzadian, K. Reliability assessment for hybrid systems of advanced treatment units of industrial wastewater reuse using combined event tree and fuzzy fault tree analyses. J. Clean. Prod. 2018, 201, 958–973. [Google Scholar] [CrossRef]
- Choi, I.; Chang, D. Reliability and availability assessment of seabed storage tanks using fault tree analysis. Ocean Eng. 2016, 120, 1–14. [Google Scholar] [CrossRef]
- Hu, Y. Research on the application of fault tree analysis for building fire safety of hotels. Procedia Eng. 2016, 135, 524–530. [Google Scholar] [CrossRef]
- Walker, M.; Papadopoulos, Y. Qualitative temporal analysis: Towards a full implementation of the Fault Tree Handbook. Control Eng. Pract. 2009, 17, 1115–1125. [Google Scholar] [CrossRef]
- Ruijters, E.; Stoelinga, M. Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 2015, 15–16, 29–62. [Google Scholar] [CrossRef]
- Lee, W.S.; Grosh, D.L.; Tillman, F.A.; Lie, C.H. Fault tree analysis, methods, and applications-a review. IEEE Trans. Reliab. 1985, 34, 194–203. [Google Scholar] [CrossRef]
- Bhangu, N.S.; Pahuja, G.L.; Singh, R. Application of fault tree analysis for evaluating reliability and risk assessment of a thermal power plant. Energ. Sources 2015, 37, 2004–2012. [Google Scholar] [CrossRef]
- Yousfi Steiner, N.; Hissel, D.; Moçotéguy, P.; Candusso, D.; Marra, D.; Pianese, C.; Sorrentino, M. Application of Fault Tree Analysis to Fuel Cell diagnosis. Fuel Cells 2012, 12, 302–309. [Google Scholar] [CrossRef]
- Wu, Y.; Laiwang, B.; Shu, C. Investigation of an explosion at a styrene plant with alkylation reactor feed furnace. Appl. Sci. 2019, 9, 503. [Google Scholar] [CrossRef]
- Sano, K.; Koshiba, Y.; Ohtani, H. Risk assessment and risk reduction of an acrylonitrile production plant. J. Loss Prevent. Proc. 2020, 63, 104015. [Google Scholar] [CrossRef]
- Renjith, V.R.; Madhu, G.G.; Nayagam, V.L.G.; Bhasi, A.B. Two-dimensional fuzzy fault tree analysis for chlorine release from a chlor-alkali industry using expert elicitation. J. Hazard. Mater. 2010, 183, 103–110. [Google Scholar] [CrossRef]
- Mahmood, Y.A.; Ahmadi, A.; Verma, A.K.; Srividya, A.; Kumar, U. Fuzzy fault tree analysis: A review of concept and application. Int. J. Syst. Assur. Eng. 2013, 4, 19–32. [Google Scholar] [CrossRef]
- Purba, J.H.; Sony Tjahyani, D.T.; Ekariansyah, A.S.; Tjahjono, H. Fuzzy probability based fault tree analysis to propagate and quantify epistemic uncertainty. Ann. Nucl. Energy 2015, 85, 1189–1199. [Google Scholar] [CrossRef]
- Lindhe, A.; Norberg, T.; Rosén, L. Approximate dynamic fault tree calculations for modelling water supply risks. Reliab. Eng. Syst. Saf. 2012, 106, 61–71. [Google Scholar] [CrossRef]
- Kabir, S. An overview of fault tree analysis and its application in model based dependability analysis. Expert Syst. Appl. 2017, 77, 114–135. [Google Scholar] [CrossRef]
- Tanaka, H.; Fan, L.T.; Lai, F.S.; Toguchi, K. Fault-Tree analysis by fuzzy probability. IEEE Trans. Reliab. 1983, 32, 453–457. [Google Scholar] [CrossRef]
- Geymayr, J.A.B.; Ebecken, N.F.F. Fault-tree analysis: A knowledge-engineering approach. IEEE Trans. Reliab. 2015, 44, 37–45. [Google Scholar] [CrossRef]
- Lin, C.; Wang, M.J. Hybrid fault tree analysis using fuzzy sets. Reliab. Eng. Syst. Saf. 1997, 58, 205–213. [Google Scholar] [CrossRef]
- Shu, M.; Cheng, C.; Chang, J. Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly. Microelectron. Reliab. 2006, 46, 2139–2148. [Google Scholar] [CrossRef]
- Dugan, J.B.; Bavuso, S.J.; Boyd, M.A. Dynamic fault-tree models for fault-tolerant computer systems. IEEE Trans. Reliab. 1992, 41, 363–377. [Google Scholar] [CrossRef]
- Dugan, J.B.; Sullivan, K.J.; Coppit, D. Developing a low-cost high-quality software tool for dynamic fault-tree analysis. IEEE Trans. Reliab. 2000, 49, 49–59. [Google Scholar] [CrossRef]
- Boudali, H.; Crouzen, P.; Stoelinga, M. A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE Trans. Dependable Secur. Comput. 2010, 7, 128–143. [Google Scholar] [CrossRef]
- Durga Rao, K.; Gopika, V.; Sanyasi Rao, V.V.S.; Kushwaha, H.S.; Verma, A.K.; Srividya, A. Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment. Reliab. Eng. Syst. Saf. 2009, 94, 872–883. [Google Scholar] [CrossRef]
- Manno, G.; Chiacchio, F.; Compagno, L.; D’Urso, D.; Trapani, N. MatCarloRe: An integrated FT and Monte Carlo Simulink tool for the reliability assessment of dynamic fault tree. Expert Syst. Appl. 2012, 39, 10334–10342. [Google Scholar] [CrossRef]
- Bobbio, A.; Portinale, L.; Minichino, M.; Ciancamerla, E. Improving the analysis of dependable systems by mapping fault trees into Bayesian networks. Reliab. Eng. Syst. Saf. 2001, 71, 249–260. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, W.; Park, M. Reliability analysis and optimization of cold chain distribution system for fresh agricultural products. Sustainability 2019, 11, 3618. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, H.; Yao, J.; Ye, D.; Lang, Z.; Glowacz, A. Mapping the knowledge domains of new energy vehicle safety: Informetrics analysis-based studies. J. Energy Storage 2021, 35, 102275. [Google Scholar] [CrossRef]
- Liu, H.; Yu, Z.; Chen, C.; Jin, K.; Yang, C. Visualization and bibliometric analysis of research trends on human fatigue assessment. J. Med. Syst. 2018, 42, 179. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Goerlandt, F.; Reniers, G. An overview of scientometric mapping for the safety science community: Methods, tools, and framework. Saf. Sci. 2021, 134, 105093. [Google Scholar] [CrossRef]
- Nobanee, H.; Al Hamadi, F.Y.; Abdulaziz, F.A.; Abukarsh, L.S.; Alqahtani, A.F.; AlSubaey, S.K.; Alqahtani, S.M.; Almansoori, H.A. A bibliometric analysis of sustainability and risk management. Sustainability 2021, 13, 3277. [Google Scholar] [CrossRef]
- Hong, R.; Xiang, C.; Liu, H.; Glowacz, A.; Pan, W. Visualizing the knowledge structure and research evolution of infrared detection technology studies. Information 2019, 10, 227. [Google Scholar] [CrossRef]
- Liu, H.; Chen, H.L.; Hong, R.; Liu, H.G.; You, W.J. Mapping knowledge structure and research trends of emergency evacuation studies. Saf. Sci. 2020, 121, 348–361. [Google Scholar] [CrossRef]
- Huang, R.; Liu, H.; Ma, H.L.; Qiang, Y.J.; Pan, K.; Gou, X.Q.; Wang, X.; Ye, D.; Wang, H.N.; Glowacz, A. Accident prevention analysis: Exploring the intellectual structure of a research field. Sustainability 2022, 14, 8784. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Hassan-Montero, Y.; Guerrero-Bote, V.P.; De-Moya-Anegón, F. Graphical interface of the SCImago Journal and Country Rank: An interactive approach to accessing bibliometric information. Prof. Inf. 2014, 23, 272–278. [Google Scholar] [CrossRef]
- Liu, H.; Hong, R.; Xiang, C.; Lv, C.; Li, H. Visualization and analysis of mapping knowledge domains for spontaneous combustion studies. Fuel 2020, 262, 116598. [Google Scholar] [CrossRef]
- Pilkington, A.; Meredith, J. The evolution of the intellectual structure of operations management—1980–2006: A citation/co-citation analysis. J. Oper. Manag. 2009, 27, 185–202. [Google Scholar] [CrossRef]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Lang, Z.; Liu, H.; Meng, N.; Wang, H.; Wang, H.; Kong, F. Mapping the knowledge domains of research on fire safety—An informetrics analysis. Tunn. Undergr. Space Technol. 2021, 108, 103676. [Google Scholar] [CrossRef]
- Liu, P.; Yang, L.; Gao, Z.; Li, S.; Gao, Y. Fault tree analysis combined with quantitative analysis for high-speed railway accidents. Safety Sci. 2015, 79, 344–357. [Google Scholar] [CrossRef]
- Yang, J.; Huang, H.; Liu, Y.; Li, Y. Evidential networks for fault tree analysis with imprecise knowledge. Int. J. Turbo Jet-Engines 2012, 29, 111–122. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; He, L.; Yang, Y.; Huang, H. A new fault tree analysis approach based on imprecise reliability model. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2014, 228, 371–381. [Google Scholar] [CrossRef]
- García Márquez, F.P.; Tobias, A.M.; Pinar Pérez, J.M.; Papaelias, M. Condition monitoring of wind turbines: Techniques and methods. Renew. Energ. 2012, 46, 169–178. [Google Scholar] [CrossRef]
- Khakzad, N.; Khan, F.; Amyotte, P. Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches. Reliab. Eng. Syst. Saf. 2011, 96, 925–932. [Google Scholar] [CrossRef]
- Trucco, P.; Cagno, E.; Ruggeri, F.; Grande, O. A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation. Reliab. Eng. Syst. Saf. 2008, 93, 845–856. [Google Scholar] [CrossRef]
- Li, D. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems. Comput. Math. Appl. 2010, 60, 1557–1570. [Google Scholar] [CrossRef] [Green Version]
- Volkanovski, A.; Čepin, M.; Mavko, B. Application of the fault tree analysis for assessment of power system reliability. Reliab. Eng. Syst. Saf. 2009, 94, 1116–1127. [Google Scholar] [CrossRef]
- Khan, F.; Rathnayaka, S.; Ahmed, S. Methods and models in process safety and risk management: Past, present and future. Process Saf. Environ. Prot. 2015, 98, 116–147. [Google Scholar] [CrossRef]
- Marhavilas, P.K.; Koulouriotis, D.; Gemeni, V. Risk analysis and assessment methodologies in the work sites: On a review, classification and comparative study of the scientific literature of the period 2000–2009. J. Loss Prevent. Proc. 2011, 24, 477–523. [Google Scholar] [CrossRef]
- Hasana, U.; Swain, S.K.; George, B. A bibliometric analysis of ecotourism: A safeguard strategy in protected areas. Regional Sustainability 2022, 3, 27–40. [Google Scholar] [CrossRef]
- Gou, X.Q.; Liu, H.; Qiang, Y.J.; Lang, Z.H.; Wang, H.N.; Ye, D.; Wang, Z.W.; Wang, H. In-depth analysis on safety and security research based on system dynamics: A bibliometric mapping approach-based study. Saf. Sci. 2022, 147, 105617. [Google Scholar] [CrossRef]
- Reay, K.A.; Andrews, J.D. A fault tree analysis strategy using binary decision diagrams. Reliab. Eng. Syst. Saf. 2002, 78, 45–56. [Google Scholar] [CrossRef]
- Sinnamon, R.M.; Andrews, J.D. Improved accuracy in quantitative fault tree analysis. Qual. Reliab. Eng. Int. 1997, 13, 285–292. [Google Scholar] [CrossRef]
- Sinnamon, R.M.; Andrews, J.D. New approaches to evaluating fault trees. Reliab. Eng. Syst. Saf. 1997, 58, 89–96. [Google Scholar] [CrossRef]
- Khan, F.I.; Abbasi, S.A. Analytical simulation and PROFAT II: A new methodology and a computer automated tool for fault tree analysis in chemical process industries. J. Hazard. Mater. 2000, 75, 1–27. [Google Scholar] [CrossRef]
- Khan, F.I.; Haddara, M.R. Risk-based maintenance of ethylene oxide production facilities. J. Hazard. Mater. 2004, 108, 147–159. [Google Scholar] [CrossRef]
- Ferdous, R.; Khan, F.; Sadiq, R.; Amyotte, P.; Veitch, B. Fault and event tree analyses for process systems risk analysis: Uncertainty handling formulations. Risk Anal. 2011, 31, 86–107. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.F.; Huang, H.Z.; Zuo, M.J.; Sun, Z.Q. Optimal preventive maintenance policy under fuzzy Bayesian reliability assessment environments. IIE Trans. 2010, 42, 734–745. [Google Scholar] [CrossRef]
- Huang, H.Z.; Tong, X.; Zuo, M.J. Posbist fault tree analysis of coherent systems. Reliab. Eng. Syst. Saf. 2004, 84, 141–148. [Google Scholar] [CrossRef]
- Ferdous, R.; Khan, F.; Veitch, B.; Amyotte, P.R. Methodology for computer aided fuzzy fault tree analysis. Process Saf. Environ. Prot. 2009, 87, 217–226. [Google Scholar] [CrossRef]
- Cepin, M. Advantages and difficulties with the application of methods of probabilistic safety assessment to the power systems reliability. Nucl. Eng. Des. 2012, 246, 136–140. [Google Scholar] [CrossRef]
- Yazdi, M.; Kabir, S. A fuzzy Bayesian network approach for risk analysis in process industries. Process Saf. Environ. Protect. 2017, 111, 507–519. [Google Scholar] [CrossRef]
- Liu, H.; Xie, Y.; Liu, Y.; Nie, R.; Li, X. Mapping the knowledge structure and research evolution of urban rail transit safety studies. IEEE Access 2019, 7, 186437–186455. [Google Scholar] [CrossRef]
- Singer, D. A fuzzy set approach to fault tree and reliability analysis. Fuzzy Sets Syst. 1990, 34, 145–155. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Ding, Y.H.D.; Yu, D.T. Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis. J. Loss Prev. Process Ind. 2005, 18, 83–88. [Google Scholar]
- Kabir, S.; Walker, M.; Papadopoulos, Y.; Rude, E.; Securius, P. Fuzzy temporal fault tree analysis of dynamic systems. Int. J. Approx. Reason. 2016, 77, 20–37. [Google Scholar] [CrossRef] [Green Version]
- Amari, S.; Dill, G.; Howald, E. A new approach to solve dynamic fault trees. In Proceedings of the Annual Reliability and Maintainability Symposium 2003, Tampa, FL, USA, 27–30 January 2003; pp. 374–379. [Google Scholar]
- Dugan, J.B.; Bavuso, S.J.; Boyd, M.A. Fault trees and Markov models for reliability analysis of fault-tolerant digital systems. Reliab. Eng. Syst. Saf. 1993, 39, 291–307. [Google Scholar] [CrossRef]
- Čepin, M.; Mavko, B. A dynamic fault tree. Reliab. Eng. Syst. Saf. 2002, 75, 83–91. [Google Scholar] [CrossRef]
- Huang, H.Z.; Zhang, H.; Li, Y.F. A New Ordering Method of Basic Events in Fault Tree Analysis. Qual. Reliab. Eng. Int. 2012, 28, 297–305. [Google Scholar] [CrossRef]
- Rauzy, A. New algorithms for fault trees analysis. Reliab. Eng. Syst. Saf. 1993, 40, 203–211. [Google Scholar] [CrossRef]
- Sinnamon, R.M.; Andrews, J.D. Improved efficiency in qualitative fault tree analysis. Qual. Reliab. Eng. Int. 1997, 13, 293–298. [Google Scholar] [CrossRef]
- Zhu, C.; Tang, S.; Li, Z.; Fang, X. Dynamic study of critical factors of explosion accident in laboratory based on FTA. Saf. Sci. 2020, 130, 104877. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.; Liu, Y.; Xiao, N.; Li, H. A new fault tree analysis method: Fuzzy dynamic fault tree analysis. Eksploat. I Niezawodn.-Maint. Reliab. 2012, 14, 208–214. [Google Scholar]
- Kumar, M.; Yadav, S.P. The weakest t-norm based intuitionistic fuzzy fault-tree analysis to evaluate system reliability. ISA Trans. 2012, 51, 531–538. [Google Scholar] [CrossRef]
- Peeters, J.; Basten, R.J.; Tinga, T. Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner. Reliab. Eng. Syst. Saf. 2018, 172, 36–44. [Google Scholar] [CrossRef]
- Hosseini, N.; Givehchi, S.; Maknoon, R. Cost-based fire risk assessment in natural gas industry by means of fuzzy FTA and ETA. J. Loss Prev. Process Ind. 2020, 63, 104025. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, Z.; Roberts, C.; Hillmansen, S.; Chen, M. Reliability and life evaluation of a DC traction power supply system considering load characteristics. IEEE Trans. Transp. Electrif. 2020, 7, 958–968. [Google Scholar] [CrossRef]
- Budiyanto, M.A.; Fern, A.H. Risk assessment of work accident in container terminals using the fault tree analysis method. J. Mar. Sci. Eng. 2020, 8, 466. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Wang, D.; Huang, Z. A novel method of fuzzy fault tree analysis combined with VB program to identify and assess the risk of coal dust explosions. PLoS ONE 2017, 12, e182453. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Cui, H.; Tao, B.; Ma, S. Cause factors in emergency process of fire accident for oil–gas storage and transportation based on fault tree analysis and modified Bayesian network model. Energy Environ. 2018, 29, 802–821. [Google Scholar] [CrossRef]
- Guo, X.Y.; Meng, B.; Liu, Y.W.; Lu, N.; Fu, S.; Si, Q.M. A human error mechanism for pilot based on fault tree analysis and Bayesian network. J. Intell. Fuzzy Syst. 2020, 38, 6863–6871. [Google Scholar]
- Cheliyan, A.S.; Bhattacharyya, S.K. Fuzzy fault tree analysis of oil and gas leakage in subsea production systems. J. Ocean. Eng. Sci. 2018, 3, 38–48. [Google Scholar] [CrossRef]
- Lavasani, S.M.; Ramzali, N.; Sabzalipour, F.; Akyuz, E. Utilisation of Fuzzy Fault Tree Analysis (FFTA) for quantified risk analysis of leakage in abandoned oil and natural-gas wells. Ocean Eng. 2015, 108, 729–737. [Google Scholar] [CrossRef]
- Shi, S.; Jiang, B.; Meng, X. Assessment of gas and dust explosion in coal mines by means of fuzzy fault tree analysis. Int. J. Min. Sci. Technol. 2018, 28, 991–998. [Google Scholar] [CrossRef]
- Ahn, Y.; Yu, Y.; Kim, J. Accident cause factor of fires and explosions in tankers using fault tree analysis. J. Mar. Sci. Eng. 2021, 9, 844. [Google Scholar] [CrossRef]
- Xu, J.; Yang, M.; Li, S. Hardware reliability analysis of a coal mine gas monitoring system based on Fuzzy-FTA. Appl. Sci. 2021, 11, 10616. [Google Scholar] [CrossRef]
- Knežević, V.; Orović, J.; Stazić, L.; Čulin, J. Fault tree analysis and failure diagnosis of marine diesel engine turbocharger system. J. Mar. Sci. Eng. 2020, 8, 1004. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Wang, J. In-depth analysis on thermal hazards related research trends about lithium-ion batteries: A bibliometric study. J. Energy Storage 2021, 35, 102253. [Google Scholar] [CrossRef]
- Kabir, S.; Geok, T.K.; Kumar, M.; Yazdi, M.; Hossain, F. A method for temporal fault tree analysis using intuitionistic fuzzy set and expert elicitation. IEEE Access 2019, 8, 980–996. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhuang, Y.; Wei, Y.; Jiang, H.; Yang, H. Railway safety risk assessment and control optimization method based on FTA-FPN: A case study of chinese High-Speed railway station. J. Adv. Transp. 2020, 2020, 3158546. [Google Scholar] [CrossRef]
- Botti, L.; Melloni, R.; Oliva, M. Learn from the past and act for the future: A holistic and participative approach for improving occupational health and safety in industry. Saf. Sci. 2022, 145, 105475. [Google Scholar] [CrossRef]
- Hua, W.; Chen, J.; Qin, Q.E.; Wan, Z.; Song, L. Causation analysis and governance strategy for hazardous cargo accidents at ports: Case study of Tianjin Port’s hazardous cargo explosion accident. Mar. Pollut. Bull. 2021, 173, 113053. [Google Scholar] [CrossRef]
- Sarıalioğlu, S.; Uğurlu, Ö.; Aydın, M.; Vardar, B.; Wang, J. A hybrid model for human-factor analysis of engine-room fires on ships: HFACS-PV&FFTA. Ocean Eng. 2020, 217, 107992. [Google Scholar]
- Al-Shanini, A.; Ahmad, A.; Khan, F. Accident modelling and safety measure design of a hydrogen station. Int. J. Hydrog. Energy 2014, 39, 20362–20370. [Google Scholar] [CrossRef]
- Aydin, M.; Camliyurt, G.; Akyuz, E.; Arslan, O. Analyzing human error contributions to maritime environmental risk in oil/chemical tanker ship. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 1838–1859. [Google Scholar] [CrossRef]
- Jiskani, I.M.; Yasli, F.; Hosseini, S.; Rehman, A.U.; Uddin, S. Improved Z-number based fuzzy fault tree approach to analyze health and safety risks in surface mines. Resour. Policy 2022, 76, 102591. [Google Scholar] [CrossRef]
No. | Retrieval Strategies | Data Set | Number of Records | Period | ACI | Data Set Used in Each Section |
---|---|---|---|---|---|---|
1 | TS = “accident tree analysis” | A | 2 | 1995–2021 | 9.00 | Not used |
2 | TS = “fault tree analysis” | B | 1468 | 1995–2021 | 18.71 | Not used |
4 | TS = “fault tree analysis” OR “accident tree analysis” | C | 147 | 1970–1995 | 11.52 | Not used |
5 | TS = “fault tree analysis” OR “accident tree analysis” | D | 1530 | 1990–2021 | 18.27 | Not used |
6 | TS = “fault tree analysis” OR “accident tree analysis” | A∪B | 1469 | 1995–2021 | 18.69 | Section 3.1–Section 3.6 |
No. | TL | TP | SOTC | CA | Proportion/% | H-Index |
---|---|---|---|---|---|---|
1 | Articles | 1419 | 26,123 | 16,564 | 96.60 | 74 |
2 | Proceedings Papers | 137 | 1899 | 1712 | 9.33 | 24 |
3 | Review Articles | 33 | 1233 | 1170 | 2.25 | 17 |
4 | Others | 35 | 130 | 129 | 2.38 | 5 |
Rank | Country | Region | Quantity | Percentage | ACI | H-Index | Total Link Strength |
---|---|---|---|---|---|---|---|
1 | China | East Asia | 446 | 30.36 | 15.63 | 42 | 107 |
2 | USA | North America | 213 | 14.50 | 19.05 | 37 | 89 |
3 | England | Western Europe | 139 | 9.46 | 24.85 | 31 | 62 |
4 | South Korea | East Asia | 90 | 6.13 | 12.34 | 18 | 14 |
5 | Canada | North America | 80 | 5.45 | 39.26 | 28 | 47 |
6 | India | Southern Asia | 73 | 4.97 | 26.41 | 24 | 14 |
7 | Iran | Western Asia | 72 | 4.90 | 14.31 | 16 | 25 |
8 | Germany | Central Europe | 60 | 4.08 | 17.53 | 15 | 29 |
9 | Italy | Southern Europe | 57 | 3.88 | 30.11 | 16 | 32 |
10 | Japan | East Asia | 40 | 2.72 | 7.60 | 9 | 6 |
NO. | Institution | Country | Quantity | Total Link Strength | STC | ACI |
---|---|---|---|---|---|---|
1 | Loughborough University | England | 40 | 2 | 785 | 19.63 |
2 | Memorial University of Newfoundland | Canada | 31 | 22 | 1861 | 60.03 |
3 | Korea Advanced Institute of Science and Technology | Korean | 24 | 11 | 389 | 16.21 |
4 | University of Electronic Science and Technology of China | China | 24 | 11 | 443 | 18.46 |
5 | Korea Atomic Energy Research Institute | Korean | 20 | 11 | 424 | 21.20 |
6 | Beijing Jiaotong University | China | 18 | 4 | 176 | 9.78 |
7 | University of Hull | England | 18 | 7 | 724 | 40.22 |
8 | University of Chinese Academy of Sciences | China | 17 | 23 | 226 | 13.29 |
9 | Islamic Azad University | Iran | 16 | 5 | 108 | 6.75 |
10 | China University of Petroleum | China | 15 | 3 | 339 | 22.60 |
11 | University of Strathclyde | Scotland | 15 | 4 | 332 | 22.13 |
12 | Istanbul University of Science and Technology | Turkey | 14 | 4 | 565 | 40.36 |
13 | Jiangxi University of Finance and Economics | China | 14 | 3 | 414 | 29.57 |
14 | Huazhong University of Science and Technology | China | 13 | 6 | 318 | 24.46 |
15 | Dalhousie University | Canada | 12 | 14 | 1068 | 89.00 |
NO. | Journal Title | Quantity | ACI | Citation Index | Impact Factor (2021) |
---|---|---|---|---|---|
1 | Reliability Engineering & System Safety | 126 | 37.05 | SCIE | 7.247 |
2 | Journal of Loss Prevention in the Process Industries | 70 | 30.74 | SCIE | 3.916 |
3 | Quality and Reliability Engineering International | 44 | 16.23 | SCIE | 3.007 |
4 | Safety Science | 36 | 33.78 | SCIE | 6.392 |
5 | IEEE Transactions on Reliability | 33 | 31.91 | SCIE | 5.883 |
6 | IEEE Access | 27 | 5.89 | SCIE | 3.476 |
7 | Process Safety and Environmental Protection | 25 | 39.36 | SCIE | 7.926 |
8 | Process Safety Progress | 23 | 6.57 | SCIE | 1.294 |
9 | Ocean Engineering | 23 | 22.78 | SCIE | 4.372 |
10 | Annals of Nuclear Energy | 20 | 12.55 | SCIE | 1.810 |
NO. | Title | Journal | Author | Year | IN | CN | ACY |
---|---|---|---|---|---|---|---|
1 | Improving the analysis of dependable systems by mapping fault trees into Bayesian networks | Reliability Engineering & System Safety | Bobbio et al. [29] | 2001 | 2 | 1 | 24.45 |
2 | Condition monitoring of wind turbines: Techniques and methods | Renewable Energy | García et al. [47] | 2012 | 2 | 2 | 46.91 |
3 | Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches | Reliability Engineering & System Safety | Khakzad et al. [48] | 2011 | 2 | 1 | 32.17 |
4 | A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation | Reliability Engineering & System Safety | Trucco et al. [49] | 2008 | 2 | 2 | 19.67 |
5 | Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly | Microelectronics Reliability | Shu et al. [23] | 2006 | 2 | 1 | 14.94 |
6 | A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems | Computers and Mathematics | Li [50] | 2010 | 2 | 1 | 16.92 |
7 | Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment | Reliability Engineering & System Safety | Rao et al. [27] | 2009 | 3 | 2 | 14.86 |
8 | Application of the fault tree analysis for assessment of power system reliability | Reliability Engineering & System Safety | Volkanovski et al. [51] | 2009 | 1 | 1 | 14.64 |
9 | Methods and models in process safety and risk management: Past, present and future | Process Safety and Environmental Protection | Khan et al. [52] | 2015 | 1 | 1 | 25.13 |
10 | Risk analysis and assessment methodologies in the work sites: On a review, classification and comparative study of the scientific literature of the period 2000–2009 | Journal of Loss Prevention in the Process Industries | Marhavilas, et al. [53] | 2011 | 2 | 1 | 16.75 |
Rank | Author | Quantities | Organization | Country | Links | ACI |
---|---|---|---|---|---|---|
1 | Andrews, J. D. | 32 | Loughborough University | England | 18 | 23.75 |
2 | Khan, Faisal | 29 | Memorial University Newfoundland | Canada | 44 | 65.69 |
3 | Huang, Hongzhong | 13 | University of Electronic Science and Technology of China | China | 31 | 19.54 |
4 | Kabir, Sohag | 13 | University of Hull | England | 17 | 48.54 |
5 | Li, Yanfeng | 13 | University of Electronic Science and Technology of China | China | 32 | 17.92 |
6 | Papadopoulos, Yiannis | 12 | University of Hull | England | 13 | 31.83 |
7 | Yazdi, Mohammad | 11 | Memorial University Newfoundland | Canada | 8 | 33.36 |
8 | Xing, Liudong | 10 | University of Electronic Science and Technology of China | China | 2 | 39.00 |
9 | Amyotte, Paul | 9 | Dalhousie University | Canada | 21 | 94.78 |
10 | Bartlett, Lm | 9 | James Cook University | Australia | 7 | 13.44 |
11 | Liu, Yu | 9 | University of Electronic Science and Technology of China | China | 18 | 23.22 |
12 | Wan, Shuping | 9 | Jiangxi University of Finance and Economics | China | 7 | 39.56 |
13 | Wang, Jin | 9 | Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences | China | 16 | 27.56 |
14 | Cepin, Marko | 8 | University of Ljubljana | Slovenia | 1 | 63.88 |
15 | Dugan, Jb | 8 | University of Virginia | USA | 5 | 23.88 |
NO. | Term | Cluster | Occurrence | APY |
---|---|---|---|---|
1 | ship | blue cluster | 22 | 2019.05 |
2 | fire | blue cluster | 45 | 2018.91 |
3 | significance | green cluster | 33 | 2018.82 |
4 | explosion accident | blue cluster | 16 | 2018.81 |
5 | critical event | blue cluster | 15 | 2018.80 |
6 | subsystem | red cluster | 49 | 2018.73 |
7 | life | green cluster | 30 | 2018.50 |
8 | applicability | blue cluster | 61 | 2018.46 |
9 | failure analysis | green cluster | 30 | 2018.40 |
10 | reliability assessment | red cluster | 44 | 2018.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, K.; Liu, H.; Gou, X.; Huang, R.; Ye, D.; Wang, H.; Glowacz, A.; Kong, J. Towards a Systematic Description of Fault Tree Analysis Studies Using Informetric Mapping. Sustainability 2022, 14, 11430. https://doi.org/10.3390/su141811430
Pan K, Liu H, Gou X, Huang R, Ye D, Wang H, Glowacz A, Kong J. Towards a Systematic Description of Fault Tree Analysis Studies Using Informetric Mapping. Sustainability. 2022; 14(18):11430. https://doi.org/10.3390/su141811430
Chicago/Turabian StylePan, Kai, Hui Liu, Xiaoqing Gou, Rui Huang, Dong Ye, Haining Wang, Adam Glowacz, and Jie Kong. 2022. "Towards a Systematic Description of Fault Tree Analysis Studies Using Informetric Mapping" Sustainability 14, no. 18: 11430. https://doi.org/10.3390/su141811430
APA StylePan, K., Liu, H., Gou, X., Huang, R., Ye, D., Wang, H., Glowacz, A., & Kong, J. (2022). Towards a Systematic Description of Fault Tree Analysis Studies Using Informetric Mapping. Sustainability, 14(18), 11430. https://doi.org/10.3390/su141811430