Defining a Digital Strategy in a BIM Environment to Manage Existing Reinforced Concrete Bridges in the Context of Italian Regulation
Abstract
:1. Introduction
1.1. Regulatory Context for the Management of Bridges
1.2. Problem Statement, Proposal Aim and Structure
2. Overview of the Application of BIM Methodologies in the Management of Existing Bridges
2.1. Analysis of the BIM Context for the Authors’ Proposal
2.2. BIM Methodologies Integrated with Other Technologies
3. Development of a BIM-Based Solution to Manage Existing R.C. Bridges in the Context under Investigation
3.1. Organization and Objectives of the Proposal
3.2. Identification of Necessary Data and Definition of Information Strategy in the BIM Environment
3.2.1. Definition of the Proper LoIN in the Context Being Analyzed
3.3. Definition of a Digital Strategy for the Structural Management of Bridges in a BIM Environment
3.3.1. Data Entry Input and BIM Object Library Setting
3.3.2. 3D Model Generation
3.3.3. Model Information Management
3.3.4. Asset Information Management
4. Results
4.1. Description of the Case Studies
4.2. Implementation of the Proposal
4.2.1. BIM Model Generation
4.2.2. Information Management in the Context under Investigation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaewunruen, S.; Sresakoolchai, J.; Zhou, Z. Sustainability-based lifecycle management for bridge infrastructure using 6D BIM. Sustainability 2020, 12, 2436. [Google Scholar] [CrossRef]
- Shim, C.S.; Dang, N.S.; Lon, S.; Jeon, C.H. Development of a bridge maintenance system for prestressed concrete bridges using 3D digital twin model. Struct. Infrastruct. Eng. 2019, 15, 1319–1332. [Google Scholar] [CrossRef]
- Lu, Q.; Xie, X.; Heaton, J.; Parlikad, A.K.; Schooling, J. From BIM towards digital twin: Strategy and future development for smart asset management. Stud. Comput. Intell. 2020, 853, 392–404. [Google Scholar]
- Dang, N.S.; Kang, H.; Lon, S.; Shim, C.S. 3D digital twin models for bridge maintenance. In Proceedings of the 10th International Conference on Short and Medium Span Bridges, Quebec City, QC, Canada, 30 July–3 August 2018; pp. 1–9. [Google Scholar]
- Errandonea, I.; Beltrán, S.; Arrizabalaga, S. Digital Twin for maintenance: A literature review. Comput. Ind. 2020, 123, 103316. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E.; Hui, F.K.P.; Shirowzhan, S.; Foroozanfar, M.; Yang, L.; Aye, L. Lean practices using building information modeling (Bim) and digital twinning for sustainable construction. Sustainability 2021, 13, 161. [Google Scholar] [CrossRef]
- Cavka, H.B.; Staub-French, S.; Poirier, E.A. Developing owner information requirements for BIM-enabled project delivery and asset management. Autom. Constr. 2017, 83, 169–183. [Google Scholar] [CrossRef]
- Byun, N.; Han, W.S.; Kwon, Y.W.; Kang, Y.J. Development of bim-based bridge maintenance system considering maintenance data schema and information system. Sustainability 2021, 13, 4858. [Google Scholar] [CrossRef]
- Wan, C.; Zhou, Z.; Li, S.; Ding, Y.; Xu, Z.; Yang, Z.; Xia, Y.; Yin, F. Development of a bridge management system based on the building information modeling technology. Sustainability 2019, 11, 4583. [Google Scholar] [CrossRef]
- Ciccone, A.; Di Stasio, S.; Asprone, D.; Salzano, A.; Nicolella, M. Application of openBIM for the Management of Existing Railway Infrastructure: Case Study of the Cancello–Benevento Railway Line. Sustainability 2022, 14, 2283. [Google Scholar] [CrossRef]
- Bazán, Á.M.; Alberti, M.G.; Álvarez, A.A.; Trigueros, J.A. New perspectives for bim usage in transportation infrastructure projects. Appl. Sci. 2020, 10, 72. [Google Scholar] [CrossRef]
- Shim, C.S.; Kang, H.; Dang, N.S.; Lee, D. Development of BIM-based bridge maintenance system for cable-stayed bridges. Smart Struct. Syst. 2017, 20, 697–708. [Google Scholar] [CrossRef]
- Akcamete, A.; Akinci, B.; Garrett, J.H. Potential utilization of building information models for planning maintenance activities. In Proceedings of the EG-ICE 2010—17th International Workshop on Intelligent Computing in Engineering, Nottingham, UK, 30 June–2 July 2010. [Google Scholar]
- McGuire, B.; Atadero, R.; Clevenger, C.; Ozbek, M. Bridge Information Modeling for Inspection and Evaluation. J. Bridg. Eng. 2016, 21. [Google Scholar] [CrossRef]
- MIT Linee Guida per la Classificazione e Gestione del Rischio, la Valutazione della Sicurezza ed il Monitoraggio dei Ponti Esistenti; Ministero delle Infrastrutture e dei Trasporti. Consiglio Superiore dei Lavori Pubblici: Rome, Italy, 2020.
- Santarsiero, G.; Masi, A.; Picciano, V.; Digrisolo, A. The Italian Guidelines on Risk Classification and Management of Bridges: Applications and Remarks on Large Scale Risk Assessments. Infrastructures 2021, 6, 111. [Google Scholar] [CrossRef]
- ISO/TC 59/SC 13 ISO 19650-1:2018; Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 1: Concepts and Principles. ISO: Geneva, Switzerland, 2018.
- UNI. EN UNI EN 17412-1:2021. Available online: http://store.uni.com/catalogo/uni-en-17412-1-2021?josso_back_to=http://store.uni.com/josso-security-check.php&josso_cmd=login_optional&josso_partnerapp_host=store.uni.com (accessed on 1 March 2022).
- Musella, C.; Serra, M.; Salzano, A.; Menna, C.; Asprone, D. Open BIM Standards: A Review of the Processes for Managing Existing Structures in the Pre- and Post-Earthquake Phases. CivilEng 2020, 1, 291–309. [Google Scholar] [CrossRef]
- Borrmann, A.; Muhic, S.; Hyvärinen, J.; Chipman, T.; Jaud, S.; Castaing, C.; Dumoulin, C.; Liebich, T.; Mol, L. The IFC-Bridge project—Extending the IFC standard to enable high-quality exchange of bridge information models. In Proceedings of the 2019 European Conference for Computing in Construction, Crete, Greece, 10–12 July 2019; University College Dublin: Dublin, Ireland, 2019; Volume 1, pp. 377–386. [Google Scholar]
- Sánchez-Rodríguez, A.; Esser, S.; Abualdenien, J.; Borrmann, A.; Riveiro, B. From point cloud to IFC: A masonry arch bridge case study. In Proceedings of the EG-ICE 2020 International Workshop on Intelligent Computing in Engineering, Online, 1–3 July 2020; pp. 422–431. [Google Scholar]
- Jiang, S.; Jiang, L.; Han, Y.; Wu, Z.; Wang, N. OpenBIM: An enabling solution for information interoperability. Appl. Sci. 2019, 9, 5358. [Google Scholar] [CrossRef]
- Moretti, N.; Xie, X.; Merino, J.; Brazauskas, J.; Parlikad, A.K. An openbim approach to iot integration with incomplete as-built data. Appl. Sci. 2020, 10, 8287. [Google Scholar] [CrossRef]
- Sacks, R.; Kedar, A.; Borrmann, A.; Ma, L.; Singer, D.; Kattel, U. SeeBridge information delivery manual (IDM) for next generation bridge inspection. In Proceedings of the 33rd International Symposium on Automation and Robotics in Construction and Mining (ISARC 2016), Auburn, AL, USA, 18–21 July 2016; pp. 826–834. [Google Scholar] [CrossRef]
- Isailović, D.; Petronijević, M.; Hajdin, R. The future of BIM and Bridge Management Systems. In Proceedings of the IABSE Symposium. 2019. (3 Parts) Towards a Resilient Built Environment—Risk and Asset Management, Guimaraes, Portugal, 27–29 March 2019; pp. 1673–1680. [Google Scholar] [CrossRef]
- Jensen, J.S. Innovative and sustainable operation and maintenance of bridges. Struct. Infrastruct. Eng. 2020, 16, 72–83. [Google Scholar] [CrossRef]
- Artus, M.; Koch, C. Modeling geometry and semantics of physical damages using IFC. In Proceedings of the EG-ICE 2020 International Workshop on Intelligent Computing in Engineering, Online, 1–3 July 2020; pp. 144–153. [Google Scholar]
- Esser, S.; Aicher, K. IfcBridge Model Generation using Visual Programming. In Proceedings of the Forum Bauinformatik 2019, Berlin, Germany, 11–13 September 2019; pp. 101–108. [Google Scholar]
- Ding, L.; Li, K.; Zhou, Y.; Love, P.E.D. An IFC-inspection process model for infrastructure projects: Enabling real-time quality monitoring and control. Autom. Constr. 2017, 84, 96–110. [Google Scholar] [CrossRef]
- Tanaka, F.; Hori, M.; Onosato, M.; Date, H.; Kanai, S. Bridge Information Model Based on IFC Standards and Web Content Providing System for Supporting an Inspection Process. In Proceedings of the 16th International Conference on Computing in Civil and Building Engineering (ICCCBE 2016), Osaka, Japan, 6–8 July 2015. [Google Scholar]
- Dang, N.S.; Shim, C.S. Bridge assessment for PSC girder bridge using digital twins model. Lect. Notes Civ. Eng. 2020, 54, 1241–1246. [Google Scholar] [CrossRef]
- Cheng, J.C.P.; Lu, Q.; Deng, Y. Analytical review and evaluation of civil information modeling. Autom. Constr. 2016, 67, 31–47. [Google Scholar] [CrossRef]
- Ait-Lamallam, S.; Sebari, I.; Yaagoubi, R.; Doukari, O. IFCInfra4OM: An ontology to integrate operation and maintenance information in highway information modelling. ISPRS Int. J. Geo-Inf. 2021, 10, 305. [Google Scholar] [CrossRef]
- Abualdenien, J.; Borrmann, A. Levels of detail, development, definition, and information need: A critical literature review. J. Inf. Technol. Constr. 2022, 27, 363–392. [Google Scholar] [CrossRef]
- Collao, J.; Lozano-galant, F.; Lozano-galant, J.A. BIM Visual Programming Tools Applications in Infrastructure Projects: A State-of-the-Art Review. Appl. Sci. 2021, 11, 8343. [Google Scholar] [CrossRef]
- Girardet, A.; Boton, C. Automation in Construction A parametric BIM approach to foster bridge project design and analysis. Autom. Constr. 2021, 126, 103679. [Google Scholar] [CrossRef]
- Blanco Rávena, R.; Martínez García, J.; Mozas González, B.; García Alberti, M.; Arcos Álvarez, A.A. Uso de la metodología BIM en la remodelación de un puente existente = Use of BIM methodology in the re-modelling of an existing bridge. An. Edif. 2019, 5, 100. [Google Scholar] [CrossRef]
- Biancardo, S.A.; Viscione, N.; Cerbone, A.; Dessì, E. BIM-Based Design for Road Infrastructure: A Critical Focus on Modeling Guardrails and Retaining Walls. Infrastructures 2020, 5, 59. [Google Scholar] [CrossRef]
- Hui, W.; Xu, H.; Li, Z.; Ma, C. Parametric Design and Application of Assembled Steel Plate Composite Beam Bridge Based on BIM Technology. IOP Conf. Ser. Earth Environ. Sci. 2019, 371, 022074. [Google Scholar] [CrossRef]
- Biancardo, S.A.; Intignano, M.; Viscione, N.; Guerra De Oliveira, S.; Tibaut, A. Procedural Modeling-Based BIM Approach for Railway Design. J. Adv. Transp. 2021, 2021, 8839362. [Google Scholar] [CrossRef]
- Biancardo, S.A.; Capano, A.; de Oliveira, S.G.; Tibaut, A. Integration of BIM and procedural modeling tools for road design. Infrastructures 2020, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Biancardo, S.A.; Intignano, M.; Abramović, B.; Abbondati, F.; Dell’Acqua, G. Horizontal Building Information Modeling: The Croatian railway Gradec-Sveti Ivan Žabno case study. Ing. Ferrov. 2021, 76, 979–994. [Google Scholar]
- Abbondati, F.; Biancardo, S.A.; Sicignano, G.; de Oliveira, S.; Tibaut, A.; Dell’Acqua, G. Bim parametric modelling of a railway underpass. Ing. Ferrov. 2020, 75, 443–459. [Google Scholar]
- Pasetto, M.; Giordano, A.; Borin, P.; Giacomello, G. Integrated railway design using Infrastructure-Building Information Modeling. the case study of the port of Venice. Transp. Res. Procedia 2020, 45, 850–857. [Google Scholar] [CrossRef]
- Zou, Y.; Kiviniemi, A.; Jones, S.W. A review of risk management through BIM and BIM-related technologies. Saf. Sci. 2017, 97, 88–98. [Google Scholar] [CrossRef]
- Salamak, M.; Januszka, M. Brim bridge inspections in the context of industry 4.0 trends. In Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges. Proceedings of the Ninth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2018), Melbourne, Australia, 9–13 July 2018; CRC Press: London, UK, 2018; pp. 2260–2267. [Google Scholar] [CrossRef]
- Zou, Y.; Kiviniemi, A.; Jones, S.W.; Walsh, J. Risk Information Management for Bridges by Integrating Risk Breakdown Structure into 3D/4D BIM. KSCE J. Civ. Eng. 2019, 23, 467–480. [Google Scholar] [CrossRef]
- Vitiello, U.; Ciotta, V.; Salzano, A.; Asprone, D.; Manfredi, G.; Cosenza, E. BIM-based approach for the cost-optimization of seismic retrofit strategies on existing buildings. Autom. Constr. 2019, 98, 90–101. [Google Scholar] [CrossRef]
- Panah, R.S.; Kioumarsi, M. Application of building information modelling (BIM) in the health monitoring and maintenance process: A systematic review. Sensors 2021, 21, 837. [Google Scholar] [CrossRef] [PubMed]
- Dang, N.S.; Shim, C.S. BIM authoring for an image-based bridge maintenance system of existing cable-supported bridges. IOP Conf. Ser. Earth Environ. Sci. 2018, 143, 012032. [Google Scholar] [CrossRef]
- Artus, M.; Koch, C. State of the art in damage information modeling for RC bridges—A literature review. Adv. Eng. Inform. 2020, 46, 101171. [Google Scholar] [CrossRef]
- Borin, P.; Cavazzini, F. Condition assessment of RC bridges. integrating machine learning, photogrammetry and bim. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2019, 42, 201–208. [Google Scholar] [CrossRef]
- Zhao, Z.; Gao, Y.; Hu, X.; Zhou, Y.; Zhao, L.; Qin, G.; Guo, J.; Liu, Y.; Yu, C.; Han, D. Integrating BIM and IoT for smart bridge management. IOP Conf. Ser. Earth Environ. Sci. 2019, 371, 022034. [Google Scholar] [CrossRef] [Green Version]
- Banfi, F.; Barazzetti, L.; Previtali, M.; Roncoroni, F. Historic bim: A new repository for structural health monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2017, 42, 269–274. [Google Scholar] [CrossRef]
- Rio, J.; Ferreira, B.; Poças-Martins, J. Expansion of IFC model with structural sensors. Inf. Constr. 2013, 65, 219–228. [Google Scholar] [CrossRef]
- Davila, M.; Butler, L.J.; Manuel Davila Delgado, J.; Brilakis, I.; Reader, R.; ZEB Elshafie, M.; Senior Lecturer, R.; Middleton, C.R.; Professor, R. Structural Performance Monitoring Using a Dynamic Data-Driven BIM Environment. J. Comput. Civ. Eng. 2018, 32. [Google Scholar] [CrossRef]
- Theiler, M.; Smarsly, K. IFC Monitor—An IFC schema extension for modeling structural health monitoring systems. Adv. Eng. Inform. 2018, 37, 54–65. [Google Scholar] [CrossRef]
- Floros, G.S.; Ellul, C. LOSS of INFORMATION during DESIGN & CONSTRUCTION for HIGHWAYS ASSET MANAGEMENT: A GEOBIM PERSPECTIVE. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 8, 83–90. [Google Scholar] [CrossRef]
- Pan, Y.; Dong, Y.; Wang, D.; Chen, A.; Ye, Z. Three-dimensional reconstruction of structural surface model of heritage bridges using UAV-based photogrammetric point clouds. Remote Sens. 2019, 11, 1204. [Google Scholar] [CrossRef]
- Chan, B.; Guan, H.; Hou, L.; Jo, J.; Blumenstein, M.; Wang, J. Defining a conceptual framework for the integration of modelling and advanced imaging for improving the reliability and efficiency of bridge assessments. J. Civ. Struct. Health Monit. 2016, 6, 703–714. [Google Scholar] [CrossRef]
- Lu, R.; Brilakis, I. Generating bridge geometric digital twins from point clouds. In Proceedings of the 2019 European Conference on Computing in Construction, Crete, Greece, 10–12 July 2019; Volume 1, pp. 367–376. [Google Scholar] [CrossRef]
- Lu, R.; Brilakis, I. Digital twinning of existing reinforced concrete bridges from labelled point clusters. Autom. Constr. 2019, 105, 102837. [Google Scholar] [CrossRef]
- Lu, R.; Brilakis, I.; Middleton, C.R. Detection of Structural Components in Point Clouds of Existing RC Bridges. Comput. Civ. Infrastruct. Eng. 2019, 34, 191–212. [Google Scholar] [CrossRef] [Green Version]
- Popescu, C.; Täljsten, B.; Blanksvärd, T.; Elfgren, L. 3D reconstruction of existing concrete bridges using optical methods. Struct. Infrastruct. Eng. 2019, 15, 912–924. [Google Scholar] [CrossRef]
- Barazzetti, L.; Banfi, F.; Brumana, R.; Gusmeroli, G.; Previtali, M.; Schiantarelli, G. Cloud-to-BIM-to-FEM: Structural simulation with accurate historic BIM from laser scans. Simul. Model. Pract. Theory 2015, 57, 71–87. [Google Scholar] [CrossRef]
- Nordestgaard, P.M.; Jensen, J.; Mortensen, P.; Wyrtz, M.; Mikulenas, M.; Trifan, A.E. Application of Parametric Design in Project Containing Steel Structures: Parametric Light-Rail Steel Bridge. Ce/Papers 2019, 3, 767–772. [Google Scholar] [CrossRef]
- Park, S.I.; Lee, S.H.; Almasi, A.; Song, J.H. Extended IFC-based strong form meshfree collocation analysis of a bridge structure. Autom. Constr. 2020, 119, 103364. [Google Scholar] [CrossRef]
- Heaton, J.; Parlikad, A.K.; Schooling, J. Design and development of BIM models to support operations and maintenance. Comput. Ind. 2019, 111, 172–186. [Google Scholar] [CrossRef]
- Dang, N.S.; Rho, G.T.; Shim, C.S. A master digital model for suspension bridges. Appl. Sci. 2020, 10, 7666. [Google Scholar] [CrossRef]
- Chang, K.M.; Dzeng, R.J.; Wu, Y.J. An automated IoT visualization BIM platform for decision support in facilities management. Appl. Sci. 2018, 8, 1086. [Google Scholar] [CrossRef]
- Bucher, D.F.; Hall, D.M. Common data environment within the AEC ecosystem: Moving collaborative platforms beyond the open versus closed dichotomy. In Proceedings of the EG-ICE 2020 International Workshop on Intelligent Computing in Engineering, Online, 1–3 July 2020; pp. 491–500. [Google Scholar]
- Poinet, P.; Stefanescu, D.; Papadonikolaki, E. Collaborative Workflows and Version Control Through Open-Source and Distributed Common Data Environment. Lect. Notes Civ. Eng. 2021, 98, 228–247. [Google Scholar] [CrossRef]
- Davila Delgado, J.M.; Oyedele, L.O. BIM data model requirements for asset monitoring and the circular economy. J. Eng. Des. Technol. 2020, 18, 1269–1285. [Google Scholar] [CrossRef]
- Grilo, A.; Jardim-Goncalves, R. Value proposition on interoperability of BIM and collaborative working environments. Autom. Constr. 2010, 19, 522–530. [Google Scholar] [CrossRef]
- Eastman, C.M.; Jeong, Y.-S.; Sacks, R.; Kaner, I. Exchange Model and Exchange Object Concepts for Implementation of National BIM Standards. J. Comput. Civ. Eng. 2010, 24. [Google Scholar] [CrossRef]
- Zhang, P.; Portillo, L.; Kezunovic, M. Compatibility and interoperability evaluation for all-digital protection system through automatic application test. In Proceedings of the 2006 IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006; pp. 1–7. [Google Scholar] [CrossRef]
- Shirowzhan, S.; Sepasgozar, S.M.E.; Edwards, D.J.; Li, H.; Wang, C. BIM compatibility and its differentiation with interoperability challenges as an innovation factor. Autom. Constr. 2020, 112, 103086. [Google Scholar] [CrossRef]
- Ait-Lamallam, S.; Yaagoubi, R.; Sebari, I.; Doukari, O. Extending the IFC Standard to Enable Road Operation and Maintenance Management through OpenBIM. ISPRS Int. J. Geo-Inf. 2021, 10, 496. [Google Scholar] [CrossRef]
- Lutz, M. Learning Python; O’Reilly: Sebastopol, CA, USA, 2008; ISBN 9780874216561. [Google Scholar]
- Xu, X.; Huang, Q.; Ren, Y.; Zhao, D.Y.; Zhang, D.Y.; Sun, H. Bin Condition evaluation of suspension bridges for maintenance, repair and rehabilitation: A comprehensive framework. Struct. Infrastruct. Eng. 2019, 15, 555–567. [Google Scholar] [CrossRef]
- Huston, D.; Burns, D.; Razinger, J. Structural health monitoring and maintenance aided by building information modelling and repair information tools. Sustain. City XI 2016, 1, 897–907. [Google Scholar] [CrossRef]
- León-Robles, C.A.; Reinoso-Gordo, J.F.; González-Quiñones, J.J. Heritage building information modeling (H-BIM) applied to a stone bridge. ISPRS Int. J. Geo-Inf. 2019, 8, 121. [Google Scholar] [CrossRef]
- Sacks, R.; Kedar, A.; Borrmann, A.; Ma, L.; Brilakis, I.; Hüthwohl, P.; Daum, S.; Kattel, U.; Yosef, R.; Liebich, T.; et al. SeeBridge as next generation bridge inspection: Overview, Information Delivery Manual and Model View Definition. Autom. Constr. 2018, 90, 134–145. [Google Scholar] [CrossRef] [Green Version]
Layers | LGP | AINOP | NTC |
---|---|---|---|
L0 | ✓ | ✓ | |
L1 | ✓ | ||
L2 | ✓ | ||
L3 | ✓ | ✓ | |
L4 | ✓ | ✓ |
Layer | IFC Class | PSet | Description |
---|---|---|---|
IfcBuilding | SBM_L0_BridgeStatus | General information about the bridge’s in-service status | |
SBM_L0_Classification | Information regarding transport networks or waterways | ||
SBM_L0_ConsequenceClasses | Information about consequence classes | ||
SBM_L0_DesignDocuments | Project information (at different design levels) and maintenance documents | ||
SBM_L0_DL22012004 | Information about DL n. 42 on 22 January 2004 | ||
SBM_L0_GeneralInformation | Information about bridge (e.g., IOP Code, name, owner, etc.) | ||
SBM_L0_GeometricalData | Geometrical data and characteristics (e.g., spans, lengths, etc.) | ||
SBM_L0_HydrogeologicalRiskDocuments | Documents about hydrogeological risk | ||
SBM_L0_InspectionsMonitoringHystory | Information about the previous inspections and monitoring activities | ||
SBM_L0_Localization | Information about localization and seismic hazard | ||
SBM_L0_MaintenanceHystory | Information about previous maintenance plan and related operations | ||
SBM_L0_ProjectData | Information about the project (e.g., designers, project approvals, codes, etc.) | ||
SBM_L0_RoadNetwork | Information about road network and daily traffic levels | ||
SBM_L0_StructuralInformation | Information about structural characteristics (regarding elements, materials, etc.) | ||
IfcSite | SBM_L0_GeomorphologicalData | Information about the site morphology | |
1 | IfcBuilding | SBM_L1_LastBridgeInspection | Information about last inspections through numerical values (e.g., DR) |
SBM_L1_StructuralSketchforLastInspection | Information about last inspections through a link to drawings, photos and other | ||
IfcSite | SBM_L1_LastGeotechnicalInspection | Information about last geotechnical inspection | |
SBM_L1_LandslideRisk | Information about the landslide risk (state of activity, type, etc.) | ||
SBM_L1_HydraulicRiskGeneralInformation | General Information about hydraulic risk | ||
SBM_L1_HydraulicOverflowRisk | Specific information about hydraulic overflow risk | ||
SBM_L1_HydraulicErosionRisk | Specific information about hydraulic erosion risk | ||
2 | IfcBuilding | SBM_L2_CdABridgeInformation | Information about the CdA values as a result of the implemented approach |
IfcElement | SBM_L2_ElementInformation | Information about condition status related to each structural element | |
3 | IfcBuilding | SBM_L3_BridgePreliminaryCheck | Bridge structure information regarding a “preliminary” structural verification |
IfcElement | SBM_L3_ElementPreliminaryCheck | Structural element information regarding a “preliminary” structural verification | |
4 | IfcBuilding | SBM_L4_BridgeStructuralVerification | Bridge structure information about an “accurate” structural verification |
IfcElement | SBM_L4_RCBeamStructuralVerification | Structural element information regarding an “accurate” structural verification | |
SBM_L4_RCColumnStructuralVerification | |||
SBM_L4_RCWallStructuralVerification | |||
SBM_L4_RCFoundationStructuralVerification | |||
SBM_L4_RCSlabStructuralVerification |
Property Set | Property Name | Value | Meaning |
---|---|---|---|
SBM_L2_CdABridgeInformation | CdA | Text | CdA overall value for the considered bridge |
CdAStructuralAndFoundationalRisk | Text | CdA value regarding the considered risk (Structural and Foundational Risk) | |
CdASeismicRisk | Text | CdA value regarding the considered risk (Seismic Risk) | |
CdALandslidesRisk | Text | CdA value regarding considered risk (Landslide Risk) | |
CdAHydraulicRisk | Text | CdA value regarding considered risk (Hydraulic Risk) | |
RelativeDefectiveness | Real | Information about condition of the bridge and its structural elements | |
CdAReport | Text | Information about CdA report | |
LastOrdinaryInspectionDate | Text | Date of the last ordinary inspection | |
OrdinaryInspectionsFrequency | Text | Frequency regarding ordinary inspections activities | |
LastExtraordinaryInspectionDate | Text | Date of the last extraordinary inspection | |
ExtraordinaryInspectionsFrequency | Text | Frequency regarding extraordinary inspections activities | |
LastSpecialInspectionDate | Text | Date of the last special inspections |
Property Set | Property Name | Value | Meaning |
---|---|---|---|
SBM_L4_RCBeamStructuralVerification | BendingSF,min | Real | Minimum Safety Factor (Bending Moment) among all sections of the considered element. |
ShearSF,min | Real | Minimum Safety Factor (Shear) among all sections of the considered element. | |
TorsionSF,min | Real | Minimum Safety Factor (Torsion) among all sections of the considered element. | |
Zita,e,min | Real | The ratio between the maximum value due to seismic load, carried by the considered structural element, and the related value considered in the design of new construction. | |
Zita,v,min | Real | The ratio between the maximum value due to variable vertical load, carried by the considered structural element, and the related value used in the design of new construction. |
Information Delivery Milestone | Operation and Maintenance Phases | |||
---|---|---|---|---|
Purpose | Record information, managing risk, checking and monitoring of the structural safety | |||
Actor | Structural Engineer | |||
| “Beam” | |||
| Requested | |||
| Simplified representation | |||
| 3D | |||
| Absolute | |||
| Digital | |||
| Not Requested | |||
| Requested | |||
| Alphanumerical code | |||
| SBM_L2_ElementInformation SBM_L3_ElementPreliminaryCheck SBM_L4_RCBeamStructuralVerification | |||
| Requested | |||
| Sketches, drawings, documents, reports, photos (e.g., regarding condition status), etc. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciccone, A.; Suglia, P.; Asprone, D.; Salzano, A.; Nicolella, M. Defining a Digital Strategy in a BIM Environment to Manage Existing Reinforced Concrete Bridges in the Context of Italian Regulation. Sustainability 2022, 14, 11767. https://doi.org/10.3390/su141811767
Ciccone A, Suglia P, Asprone D, Salzano A, Nicolella M. Defining a Digital Strategy in a BIM Environment to Manage Existing Reinforced Concrete Bridges in the Context of Italian Regulation. Sustainability. 2022; 14(18):11767. https://doi.org/10.3390/su141811767
Chicago/Turabian StyleCiccone, Angelo, Pompilio Suglia, Domenico Asprone, Antonio Salzano, and Maurizio Nicolella. 2022. "Defining a Digital Strategy in a BIM Environment to Manage Existing Reinforced Concrete Bridges in the Context of Italian Regulation" Sustainability 14, no. 18: 11767. https://doi.org/10.3390/su141811767
APA StyleCiccone, A., Suglia, P., Asprone, D., Salzano, A., & Nicolella, M. (2022). Defining a Digital Strategy in a BIM Environment to Manage Existing Reinforced Concrete Bridges in the Context of Italian Regulation. Sustainability, 14(18), 11767. https://doi.org/10.3390/su141811767