A Systematic Literature Review of the Predictive Maintenance from Transportation Systems Aspect
Abstract
:1. Introduction
2. Main Framework of the Systematic Literature Review
2.1. Systematic Literature Review Application Method
- Research questions:
- Literature survey databases: Well-known scientific databases used for literature survey, which are IEEE Xplore, ResearchGate, ScienceDirect and YokTez (for theses).
- Inclusion criteria:
- Exclusion criteria:
2.2. Database Survey Strings
- String 1: “Predictive Maintenance” and “Transportation” or “Transport”
- String 2: “Predictive Maintenance” and “Automotive” or “Automobile”
- String 3: “Predictive Maintenance” and “Aircraft” or “Aeronautic” or “Jet Engine”
- String 4: “Predictive Maintenance” and “Railway” or “Train” or “Wagon”
- String 5: “Predictive Maintenance” and “Marine” or “Maritime” or “Ship”
- String 6: “Predictive Maintenance” and “Vehicle”
3. Systematic Literature Review
3.1. Answers to RQ1: The Trend of the PdM in Transportation Sector in Last 5 Years
3.2. Answers to RQ2: Distribution of Studies by Publishers’ Fields
3.3. Answers to RQ3: Distribution of Studies by Journals’ Indexing
3.4. Answers to RQ4: Distribution of Studies by Different Transportation Fields
3.5. Answers to RQ5: Distribution of Studies by Input Parameters and Sensors
3.6. Answers to RQ6: Distribution of Studies by Algorithms and Methods
3.7. Answers to RQ7: Distribution of Studies by Output Parameters
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
List of Abbreviations | |
AI | Artificial Intelligence |
ARIMA | Autoregressive Integrated Moving Average |
CNN | Convolutional Neural Network |
DCNN | Deep Convolutional Neural Network |
DE | Differential Evolution |
DL | Deep Learning |
DT | Decision Tree |
EMD | Empirical Mode Decomposition |
GA | Genetic Algorithm |
GB | Gradient Boosting |
GP | Gaussian Processes |
GRA | Grey Relationship Analysis |
GRU | Gated Recurrent Unit |
I4.0 | Industry 4.0 |
IoT | Internet of Things |
k-NN | k-Nearest Neighbors |
LR | Linear Regression |
LSTM | Long Short-Term Memory Network |
ML | Machine Learning |
MLP | Multi-layer Perceptron |
NB | Naïve Bayes |
PdM | Predictive Maintenance |
RF | Random Forests |
RNN | Recurrent Neural Network |
RUL | Remaining Useful Life |
RVM | Relevance Vector Machine |
SLR | Systematic Literature Review |
SVM | Support Vector Machine |
SVR | Support Vector Regression |
References
- Zonta, T.; da Costa, C.A.; Righi, R.D.R.; de Lima, M.J.; da Trindade, E.S.; Li, G.P. Predictive maintenance in the Industry 4.0: A systematic literature review. Comput. Ind. Eng. 2020, 150, 106889. [Google Scholar] [CrossRef]
- Benabbou, L.; Malki, Z.; Sankaran, K.; Bouzekri, H. Machine Learning-based Predictive Maintenance for Renewable Energy: The Case of Power Plants in Morocco. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; Volume 1, pp. 5–7. [Google Scholar]
- Keartland, S. Automating predictive maintenance using oil analysis and machine learning. In Proceedings of the 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa, 29–31 January 2020. [Google Scholar]
- Mallouk, I.; Sallez, Y.; El Majd, B.A. Machine learning approach for predictive maintenance of transport systems. In Proceedings of the 2021 3rd International Conference on Transportation and Smart Technologies, Tangier, Morocco, 27–28 May 2021. [Google Scholar] [CrossRef]
- Wudhikarn, R. Implementation of Overall Equipment Effectiveness in Wire Mesh Manufacturing. In Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 6–9 December 2011; pp. 819–823. [Google Scholar] [CrossRef]
- Zwolińska, B.; Wiercioch, J. Selection of Maintenance Strategies for Machines in a Series-Parallel System. Sustainability 2022, 14, 11953. [Google Scholar] [CrossRef]
- Fernandes, S.; Antunes, M.; Santiago, A.R.; Barraca, J.P.; Gomes, D.; Aguiar, R.L. Forecasting Appliances Failures: A Machine-Learning Approach to Predictive Maintenance. Information 2020, 11, 208. [Google Scholar] [CrossRef] [Green Version]
- Klein, P.; Bergmann, R. Data generation with a physical model to support machine learning research for predictive maintenance. CEUR Workshop Proc. 2018, 2191, 179–190. [Google Scholar]
- Ong, K.S.H.; Wang, W.; Niyato, D.; Friedrichs, T. Deep-Reinforcement-Learning-Based Predictive Maintenance Model for Effective Resource Management in Industrial IoT. IEEE Internet Things J. 2021, 9, 5173–5188. [Google Scholar] [CrossRef]
- Martínez-Llop, P.G.; Bobi, J.D.D.S.; Jiménez, S.; Sánchez, J.G. Condition-based maintenance for normal behaviour characterisation of railway car-body acceleration applying neural networks. Sustainability 2021, 13, 12265. [Google Scholar] [CrossRef]
- Longo, N.; Serpi, V.; Jacazio, G.; Sorli, M. Model-based predictive maintenance techniques applied to automotive industry. In Proceedings of the PHM Society European Conference, Manchester, UK, 13–15 June 2018; pp. 1–7. [Google Scholar]
- Ouda, E.; Maalouf, M.; Sleptchenko, A. Machine learning and optimization for predictive maintenance based on predicting failure in the next five days. In Proceedings of the 10th International Conference on Operations Research and Enterprise Systems, Vienna, Austria, 4–6 February 2021; pp. 192–199. [Google Scholar] [CrossRef]
- Pon Kumar, S.S.; Tulsyan, A.; Gopaluni, B.; Loewen, P. A Deep Learning Architecture for Predictive Control. IFAC-PapersOnLine 2018, 51, 512–517. [Google Scholar] [CrossRef]
- Türker, A.K.; Ersöz, O.Ö.; İnal, A.F. Yapay Zeka Dijital Sistemler ve Uygulamaları; Papatya Bilim Yayınevi: Istanbul, Turkey, 2021; Chapter 10; pp. 259–290. ISBN 978-605-9594-88-2. [Google Scholar]
- Rutagarama, M. Deep Learning for Predictive Maintenance in Impoundment Hydropower Plants. Master’s Thesis, Ecole Polytechnique Fédérale de Lausanne, Écublens, Switzerland, 2019; pp. 1–56. [Google Scholar]
- Serradilla, O.; Zugasti, E.; Rodriguez, J.; Zurutuza, U. Deep learning models for predictive maintenance: A survey, comparison, challenges and prospects. Appl. Intell. 2022, 52, 10934–10964. [Google Scholar] [CrossRef]
- Cusati, V.; Corcione, S.; Memmolo, V. Potential Benefit of Structural Health Monitoring System on Civil Jet Aircraft. Sensors 2022, 22, 7316. [Google Scholar] [CrossRef]
- Trần, N.T.; Triệu, H.T.; Trần, V.T.; Ngô, H.H.; Đào, Q.K. An overview of the application of machine learning in predictive maintenance. Petrovietnam J. 2021, 10, 47–61. [Google Scholar] [CrossRef]
- Usuga-Cadavid, J.P.; Lamouri, S.; Grabot, B.; Fortin, A. Using deep learning to value free-form text data for predictive maintenance. Int. J. Prod. Res. 2021, 60, 4548–4575. [Google Scholar] [CrossRef]
- Welte, R.; Estler, M.; Lucke, D. A method for implementation of machine learning solutions for predictive maintenance in small and medium sized enterprises. Procedia CIRP 2020, 93, 909–914. [Google Scholar] [CrossRef]
- Scott, M.J.; Verhagen, W.J.C.; Bieber, M.T.; Marzocca, P. Defence Fixed-Wing Aircraft Sustainment and Operations. Sensors 2022, 22, 7070. [Google Scholar] [CrossRef] [PubMed]
- Serradilla, O.; Zugasti, E.; de Okariz, J.R.; Rodriguez, J.; Zurutuza, U. Adaptable and explainable predictive maintenance: Semi-supervised deep learning for anomaly detection and diagnosis in press machine data. Appl. Sci. 2021, 11, 7376. [Google Scholar] [CrossRef]
- Decker De Sousa, L.; Giommi, L.; Rossi Tisbeni, S.; Viola, F.; Martelli, B.; Bonacorsi, D. Big Data Analysis for Predictive Maintenance at the INFN-CNAF Data Center using Machine Learning Approaches. In Proceedings of the Conference of Open Innovations Association (FRUCT), Helsinki, Finland, 5–8 November 2019; pp. 448–451. Available online: https://fruct.org/publications/acm25/files/Dec.pdf (accessed on 1 November 2022).
- Aivaliotis, P.; Georgoulias, K.; Arkouli, Z.; Makris, S. Methodology for enabling Digital Twin using advanced physics-based modelling in predictive maintenance. Procedia CIRP 2019, 81, 417–422. [Google Scholar] [CrossRef]
- Carvalho, T.P.; Soares, F.A.A.M.N.; Vita, R.; Francisco, R.D.P.; Basto, J.P.; Alcalá, S.G.S. A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [Google Scholar] [CrossRef]
- Andriani, A.Z.; Kurniati, N.; Santosa, B. Enabling predictive maintenance using machine learning in industrial machines with sensor data. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Singapore, 7–11 March 2021; Volume 2019, p. 2366. [Google Scholar]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Ben-Akiva, M.; Bierlaire, M. Discrete Choice Methods and their Applications to Short Term Travel Decisions. In Handbook of Transportation Science; International Series in Operations Research & Management Science; Hall, R.W., Ed.; Springer: Boston, MA, USA, 1999. [Google Scholar] [CrossRef]
- Tinessa, F.; Papola, A.; Marzano, V. The importance of choosing appropriate random utility models in complex choice contexts. In Proceedings of the 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Naples, Italy, 26–28 June 2017; pp. 884–888. [Google Scholar] [CrossRef]
- Zhao, X.; Yan, X.; Yu, A.; Van Hentenryck, P. Prediction and behavioral analysis of travel mode choice: A comparison of machine learning and logit models. Travel Behav. Soc. 2020, 20, 22–35. [Google Scholar] [CrossRef]
- Van Cranenburgh, S.; Wang, S.; Vij, A.; Pereira, F.; Walker, J. Choice modelling in the age of machine learning—Discussion paper. J. Choice Model. 2022, 42, 100340. [Google Scholar] [CrossRef]
- Pattanasak, P.; Anantana, T.; Paphawasit, B.; Wudhikarn, R. Critical Factors and Performance Measurement of Business Incubators: A Systematic Literature Review. Sustainability 2022, 14, 4610. [Google Scholar] [CrossRef]
- Train, K.E. Discrete Choice Methods with Simulation; Cambridge University Press: Cambridge, UK, 2003; Volume 9780521816, ISBN 9780511753930. [Google Scholar] [CrossRef] [Green Version]
- Tahir, T.; Rasool, G.; Gencel, C. A systematic literature review on software measurement programs. Inf. Softw. Technol. 2016, 73, 101–121. [Google Scholar] [CrossRef]
- Theissler, A.; Pérez-Velázquez, J.; Kettelgerdes, M.; Elger, G. Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry. Reliab. Eng. Syst. Saf. 2021, 215, 107864. [Google Scholar] [CrossRef]
- Cheng, J.C.; Chen, W.; Chen, K.; Wang, Q. Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms. Autom. Constr. 2020, 112, 103087. [Google Scholar] [CrossRef]
- Cheng, X.; Chaw, J.K.; Goh, K.M.; Ting, T.T.; Sahrani, S.; Ahmad, M.N.; Abdul Kadir, R.; Ang, M. Systematic Literature Review on Visual Analytics of Predictive Maintenance in the Manufacturing Industry. Sensors 2022, 22, 6321. [Google Scholar] [CrossRef] [PubMed]
- Adryan, F.A.; Sastra, K.W. Predictive Maintenance for Aircraft Engine Using Machine Learning: Trends and Challenges. AVIA 2021, 3, 37–44. [Google Scholar] [CrossRef]
- Kumbala, B.R. Predictive Maintenance of Nox Sensor using Deep Learning. Master’s Thesis, Blekinge Institute of Technology, Karlskrona, Sweden, 2019; pp. 1–43. [Google Scholar]
- Lee, S.; Yu, H.; Yang, H.; Song, I.; Choi, J.; Yang, J.; Lim, G.; Kim, K.-S.; Choi, B.; Kwon, J. A study on deep learning application of vibration data and visualization of defects for predictive maintenance of gravity acceleration equipment. Appl. Sci. 2021, 11, 1564. [Google Scholar] [CrossRef]
- Hermawan, A.P.; Kim, D.S.; Lee, J.M. Predictive Maintenance of Aircraft Engine using Deep Learning Technique. In Proceedings of the International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 21–23 October 2020; pp. 1296–1298. [Google Scholar] [CrossRef]
- Liu, Z.; Meyendorf, N.; Mrad, N. The role of data fusion in predictive maintenance using digital twin. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 1949. [Google Scholar] [CrossRef]
- Çelikmıh, K. Predicting Aircraft Maintenance Periods and Failure Counts through Artificial Intelligence Techniques. Ph.D. Thesis, Konya Technical University, Konya, Turkey, 2020. [Google Scholar]
- Adhikari, P.; Rao, H.G.; Buderath, D.I.M. Machine Learning based Data Driven Diagnostics & Prognostics Framework for Aircraft Predictive Maintenance. In Proceedings of the 10th International Symposium on NDT in Aerospace, Dresden, Germany, 24–26 October 2018; pp. 1–15. Available online: https://www.ndt.net/article/aero2018/papers/We.5.B.3.pdf (accessed on 1 November 2022).
- Demidova, L.A. Recurrent Neural Networks’ Configurations in the Predictive Maintenance Problems. IOP Conf. Ser. Mater. Sci. Eng. 2020, 714, 012005. [Google Scholar] [CrossRef]
- Yu, H.; Chen, C.; Lu, N.; Wang, C. Deep auto-encoder and deep forest-assisted failure prognosis for dynamic predictive maintenance scheduling. Sensors 2021, 21, 8373. [Google Scholar] [CrossRef]
- Kaleli, A.Y.; Unal, A.F.; Ozer, S. Simultaneous Prediction of Remaining-Useful-Life and Failure-Likelihood with GRU-based Deep Networks for Predictive Maintenance Analysis. In Proceedings of the 2021 44th International Conference on Telecommunications and Signal Processing (TSP), Brno, Czech Republic, 26–28 July 2021; pp. 301–304. [Google Scholar]
- Bruneo, D.; De Vita, F. On the use of LSTM networks for predictive maintenance in smart industries. In Proceedings of the 2019 IEEE International Conference on Smart Computing, SMARTCOMP 2019, Washington, DC, USA, 12–15 June 2019; pp. 241–248. [Google Scholar] [CrossRef]
- Yurek, O.E. Remaining Useful Life Estimation for Predictive Maintenance Using Feature Engineering. In Proceedings of the 2019 Innovations in Intelligent Systems and Applications Conference (ASYU), Izmir, Turkey, 31 October–2 November 2019. [Google Scholar]
- Behera, S.; Choubey, A.; Kanani, C.S.; Patel, Y.S.; Misra, R.; Sillitti, A. Ensemble trees learning based improved predictive maintenance using IioT for turbofan engines. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, Limassol, Cyprus, 8–12 April 2019; pp. 842–850. [Google Scholar]
- Xiong, M.; Wang, H.; Fu, Q.; Xu, Y. Digital twin–driven aero-engine intelligent predictive maintenance. Int. J. Adv. Manuf. Technol. 2021, 114, 3751–3761. [Google Scholar] [CrossRef]
- Hesabi, H.; Nourelfath, M.; Hajji, A. A deep learning predictive model for selective maintenance optimization. Reliab. Eng. Syst. Saf. 2022, 219, 108191. [Google Scholar] [CrossRef]
- Chen, C.; Lu, N.; Jiang, B.; Wang, C. A Risk-Averse Remaining Useful Life Estimation for Predictive Maintenance. IEEE/CAA J. Autom. Sin. 2021, 8, 412–422. [Google Scholar] [CrossRef]
- Kizrak, M.A.; Bolat, B. Predictive Maintenance of Aircraft Motor Health with Long-Short Term Memory Method. J. Inf. Technol. 2019, 12, 103–109. [Google Scholar] [CrossRef]
- Öztanır, O. Predictive Maintenance by Using Machine Learning. Master’s Thesis, Hacettepe University, Ankara, Turkey, 2018. [Google Scholar]
- Strauß, P.; Schmitz, M.; Wöstmann, R.; Deuse, J. Enabling of Predictive Maintenance in the Brownfield through Low-Cost Sensors, an IioT-Architecture and Machine Learning. In Proceedings of the 2018 IEEE International Conference on Big Data, Seattle, WA, USA, 10–13 December 2018; pp. 1474–1483. [Google Scholar] [CrossRef]
- Salini, C.; Madhavi, K.R.; Kaku, H.B.; Vatchala, S. Detection of critical diagnostic faults in automobiles using Convolutional Neural network architecture. Mater. Today Proc. 2021; in press. [Google Scholar] [CrossRef]
- Rajesh, P.; Manikandan, N.; Ramshankar, C.; Vishwanathan, T.; Sathishkumar, C. Digital Twin of an Automotive Brake Pad for Predictive Maintenance. Procedia Comput. Sci. 2019, 165, 18–24. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y.; Sun, X.; Di Cairano-Gilfedder, C.; Titmus, S. An integrated deep learning-based approach for automobile maintenance prediction with GIS data. Reliab. Eng. Syst. Saf. 2021, 216, 107919. [Google Scholar] [CrossRef]
- Giordano, D.; Giobergia, F.; Pastor, E.; La Macchia, A.; Cerquitelli, T.; Baralis, E.; Mellia, M.; Tricarico, D. Data-driven strategies for predictive maintenance: Lesson learned from an automotive use case. Comput. Ind. 2022, 134, 103554. [Google Scholar] [CrossRef]
- Giobergia, F.; Baralis, E.; Camuglia, M.; Cerquitelli, T.; Mellia, M.; Neri, A.; Tricarico, D.; Tuninetti, A. Mining sensor data for predictive maintenance in the automotive industry. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics, DSAA, Turin, Italy, 1–3 October 2018; pp. 351–360. [Google Scholar] [CrossRef]
- Tessaro, I.; Mariani, V.C.; Coelho, L.D.S. Machine Learning Models Applied to Predictive Maintenance in Automotive Engine Components. Proceedings 2020, 64, 26. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y.; Sun, X.; Di Cairano-Gilfedder, C.; Titmus, S. Automobile maintenance prediction using deep learning with GIS data. Procedia CIRP 2019, 81, 447–452. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y.; Wang, S.; Sun, X.; Di Cairano-Gilfedder, C.; Titmus, S.; Syntetos, A.A. Predictive maintenance using cox proportional hazard deep learning. Adv. Eng. Inform. 2020, 44, 101054. [Google Scholar] [CrossRef]
- Moghadam, F.K.; Rebouças, G.F.D.S.; Nejad, A.R. Digital twin modeling for predictive maintenance of gearboxes in floating offshore wind turbine drivetrains. Forsch. Ing./Eng. Res. 2021, 85, 273–286. [Google Scholar] [CrossRef]
- Makridis, G.; Kyriazis, D.; Plitsos, S. Predictive maintenance leveraging machine learning for time-series forecasting in the maritime industry. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020, Rhodes, Greece, 20–23 September 2020. [Google Scholar] [CrossRef]
- Davari, N.; Veloso, B.; Ribeiro, R.P.; Pereira, P.M.; Gama, J. Predictive maintenance based on anomaly detection using deep learning for air production unit in the railway industry. In Proceedings of the 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA), Porto, Portugal, 6–9 October 2021. [Google Scholar] [CrossRef]
- Yang, J.; Sun, Y.; Cao, Y.; Hu, X. Predictive Maintenance for Switch Machine Based on Digital Twins. Information 2021, 12, 485. [Google Scholar] [CrossRef]
- Putra, H.G.P.; Supangkat, S.H.; Nugraha, I.G.B.B.; Hidayat, F.; Kereta, P.T. Designing Machine Learning Model for Predictive Maintenance of Railway Vehicle. In Proceedings of the 8th International Conference on ICT for Smart Society: Digital Twin for Smart Society, ICISS 2021, Bandung, Indonesia, 2–4 August 2021. [Google Scholar] [CrossRef]
- Rokhforoz, P.; Fink, O. Hierarchical multi-agent predictive maintenance scheduling for trains using price-based approach. Comput. Ind. Eng. 2021, 159, 107475. [Google Scholar] [CrossRef]
- Daniyan, I.; Mpofu, K.; Oyesola, M.; Ramatsetse, B.; Adeodu, A. Artificial intelligence for predictive maintenance in the railcar learning factories. Procedia Manuf. 2020, 45, 13–18. [Google Scholar] [CrossRef]
- Chen, J.C.; Chen, T.-L.; Liu, W.-J.; Cheng, C.; Li, M.-G. Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery. Adv. Eng. Inform. 2021, 50, 101405. [Google Scholar] [CrossRef]
- Luo, W.; Hu, T.; Ye, Y.; Zhang, C.; Wei, Y. A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin. Robot. Comput. Manuf. 2020, 65, 101974. [Google Scholar] [CrossRef]
- Villalobos, K.; Suykens, J.; Illarramendi, A. A flexible alarm prediction system for smart manufacturing scenarios following a forecaster–analyzer approach. J. Intell. Manuf. 2020, 32, 1323–1344. [Google Scholar] [CrossRef]
- Liu, C.; Tang, D.; Zhu, H.; Nie, Q. A novel predictive maintenance method based on deep adversarial learning in the intelligent manufacturing system. IEEE Access 2021, 9, 49557–49575. [Google Scholar] [CrossRef]
- Bampoula, X.; Siaterlis, G.; Nikolakis, N.; Alexopoulos, K. A deep learning model for predictive maintenance in cyber-physical production systems using LSTM autoencoders. Sensors 2021, 21, 972. [Google Scholar] [CrossRef]
- Cachada, A.; Barbosa, J.; Leitño, P.; Gcraldcs, C.A.; Deusdado, L.; Costa, J.; Teixeira, C.; Teixeira, J.; Moreira, A.H.; Moreira, P.M.; et al. Maintenance 4.0: Intelligent and Predictive Maintenance System Architecture. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, Turin, Italy, 4–7 September 2018; pp. 139–146. [Google Scholar] [CrossRef]
- Ullah, I.; Yang, F.; Khan, R.; Liu, L.; Yang, H.; Gao, B.; Sun, K. Predictive maintenance of power substation equipment by infrared thermography using a machine-learning approach. Energies 2017, 10, 1987. [Google Scholar] [CrossRef] [Green Version]
- Kavana, V.; Neethi, M. Fault Analysis and Predictive Maintenance of Induction Motor Using Machine Learning. In Proceedings of the 3rd International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques, ICEECCOT 2018, Msyuru, India, 14–15 December 2018; pp. 963–966. [Google Scholar] [CrossRef]
- Hoong Ong, K.S.; Niyato, D.; Yuen, C. Predictive Maintenance for Edge-Based Sensor Networks: A Deep Reinforcement Learning Approach. In Proceedings of the 2020 IEEE 6th World Forum on Internet of Things, New Orleans, LA, USA, 2–16 June 2020. [Google Scholar] [CrossRef]
- Wu, H.; Huang, A.; Sutherland, J. Avoiding Environmental Consequences of Equipment Failure via an LSTM-Based Model for Predictive Maintenance. Procedia Manuf. 2020, 43, 666–673. [Google Scholar] [CrossRef]
- Aivaliotis, P.; Georgoulias, K.; Chryssolouris, G. The use of Digital Twin for predictive maintenance in manufacturing. Int. J. Comput. Integr. Manuf. 2019, 32, 1067–1080. [Google Scholar] [CrossRef]
- Centomo, S.; Dall’ora, N.; Fummi, F. The Design of a Digital-Twin for Predictive Maintenance. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; pp. 1781–1788. [Google Scholar] [CrossRef]
- Dallapiccola, A.D. Predictive Maintenance of Centrifugal Pumps: A Neural Network Approach. Master’s Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2020. [Google Scholar]
- Akpudo, U.E.; Hur, J.-W. A CEEMDAN-Assisted Deep Learning Model for the RUL Estimation of Solenoid Pumps. Electronics 2021, 10, 2054. [Google Scholar] [CrossRef]
- Cakir, M.; Guvenc, M.A.; Mistikoglu, S. The experimental application of popular machine learning algorithms on predictive maintenance and the design of IioT based condition monitoring system. Comput. Ind. Eng. 2020, 151, 106948. [Google Scholar] [CrossRef]
- Yurtsever, M. Makine Öğrenmesi ve Derin Öğrenme Yöntemleri İle Titreşim Analizi Tabanlı Arıza Teşhis ve Kestirimci Bakım Sistem Tasarımı. Ph.D. Thesis, Ege University, Izmir, Turkey, 2020. [Google Scholar]
- Schwendemann, S.; Amjad, Z.; Sikora, A. A survey of machine-learning techniques for condition monitoring and predictive maintenance of bearings in grinding machines. Comput. Ind. 2020, 125, 103380. [Google Scholar] [CrossRef]
- Chazhoor, A.; Mounika, Y.; Sarobin, M.V.R.; Sanjana, M.V.; Yasashvini, R. Predictive Maintenance using Machine Learning Based Classification Models. IOP Conf. Ser. Mater. Sci. Eng. 2020, 954, 012001. [Google Scholar] [CrossRef]
- Butte, S.; Prashanth, A.R.; Patil, S. Machine Learning Based Predictive Maintenance Strategy: A Super Learning Approach with Deep Neural Networks. In Proceedings of the 2018 IEEE Workshop on Microelectronics and Electron Devices, WMED 2018, Boise, ID, USA, 20 April 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Ayvaz, S.; Alpay, K. Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time. Expert Syst. Appl. 2021, 173, 114598. [Google Scholar] [CrossRef]
- Patil, S.S.; Bewoor, A.K.; Kumar, R.; Ahmadi, M.H.; Sharifpur, M.; PraveenKumar, S. Development of Optimized Maintenance Program for a Steam Boiler System Using Reliability-Centered Maintenance Approach. Sustainability 2022, 14, 10073. [Google Scholar] [CrossRef]
- Giommi, L.; Bonacorsi, D.; Diotalevi, T.; Tisbeni, S.R.; Rinaldi, L.; Morganti, L.; Falabella, A.; Ronchieri, E.; Ceccanti, A.; Martelli, B. Towards Predictive Maintenance with Machine Learning at the INFN-CNAF Computing Centre. In Proceedings of the Science 2019, ISGC2019, Taipei, Taiwan, 1 March–5 April 2019 ; Available online: https://pos.sissa.it/351/003 (accessed on 1 November 2022).
- Ferraro, A.; Galli, A.; Moscato, V.; Sperli, G. A novel approach for predictive maintenance combining GAF encoding strategies and deep networks. In Proceedings of the 2020 IEEE 6th International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application (DependSys), Nadi, Fiji, 14–16 December 2020; pp. 127–132. [Google Scholar] [CrossRef]
- Cinar, Z.M.; Abdussalam Nuhu, A.; Zeeshan, Q.; Korhan, O.; Asmael, M.; Safaei, B. Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability 2020, 12, 8211. [Google Scholar] [CrossRef]
- Arena, F.; Collotta, M.; Luca, L.; Ruggieri, M.; Termine, F.G. Predictive Maintenance in the Automotive Sector: A Literature Review. Math. Comput. Appl. 2021, 27, 2. [Google Scholar] [CrossRef]
- Calabrese, M.; Cimmino, M.; Fiume, F.; Manfrin, M.; Romeo, L.; Ceccacci, S.; Paolanti, M.; Toscano, G.; Ciandrini, G.; Carrotta, A.; et al. SOPHIA: An event-based IoT and machine learning architecture for predictive maintenance in industry 4.0. Information 2020, 11, 202. [Google Scholar] [CrossRef]
Ref. | Transp. Field | Equipment/Case | Method/Algorithm | Goal/Output | Publ. * |
---|---|---|---|---|---|
[41] | Aeronautics | Aircraft engine | ML, DL, LSTM | RUL | CP |
[42] | Aeronautics | Aircraft equipment | Dig. Twin | DT integration | CP |
[43] | Aeronautics | Aircraft equipment | MLP, SVR, LR, GA, DE | Fault classification | PhD |
[44] | Aeronautics | Aircraft equipment | SVM, k-Means, k-NN, ARIMA, RVM | RUL | CP |
[45] | Aeronautics | NASA’s C-MAPSS | ANN | Fault diagnosis | CP |
[46] | Aeronautics | NASA’s C-MAPSS | RF, DL | Fault diagnosis | J |
[47] | Aeronautics | NASA’s C-MAPSS | GRU, LSTM, RNN, DL | RUL | CP |
[48] | Aeronautics | NASA’s C-MAPSS | ML, DL, LSTM, I4.0 | RUL | CP |
[49] | Aeronautics | NASA’s C-MAPSS | ML, LR, RF | RUL | CP |
[50] | Aeronautics | NASA’s C-MAPSS | RF, GB | RUL | CP |
[51] | Aeronautics | NASA’s C-MAPSS | LSTM | RUL | J |
[52] | Aeronautics | NASA’s C-MAPSS | LSTM, Mathematical Programming | RUL | J |
[53] | Aeronautics | NASA’s C-MAPSS | LSTM, SVM | RUL | J |
[54] | Aeronautics | NASA’s C-MAPSS | ML, DL, LSTM, ANN | RUL | J |
[55] | Aeronautics | NASA’s C-MAPSS | LSTM, LR, k-Means, SVM | RUL | MSc |
[56] | Automotive | Automobile crane | ML, IoT, I4.0 | Fault diagnosis | CP |
[57] | Automotive | Automobile maint. | ML ANN | Fault diagnosis | J |
[58] | Automotive | Automobile maint. | Dig. Twin, Simulation | RUL | CP |
[59] | Automotive | Automobile maint. | LSTM, DL | RUL | J |
[60] | Automotive | Automobile maint. | ML, Time Series | RUL | J |
[61] | Automotive | Engine | SVM, DT, ANN | Fault diagnosis | CP |
[62] | Automotive | Engine | RF, NN, SVM, GP | Fault diagnosis | J |
[63] | Automotive | Fleet management | DCNN, NB, k-Means | Fault diagnosis | J |
[64] | Automotive | Fleet management | LSTM, DCNN, RNN, ANN, SVM | Fault diagnosis | J |
[65] | Automotive | Gearbox | Dig. Twin | RUL | J |
[66] | Maritime | Cruiser maintenance | ML, DL, LR | Fault diagnosis | CP |
[67] | Railway | Air compressor | DL, LR, Time Series | Fault diagnosis | CP |
[68] | Railway | Switch machine | Dig. Twin, LSTM, ARIMA, IoT, I4.0 | DT integration | J |
[69] | Railway | Train maintenance | ML | RUL | CP |
[70] | Railway | Train maintenance | Agents | RUL | J |
[71] | Railway | Wheels | ANN | RUL | J |
[72] | Vehicle parts | Battery | EMD, GRA, RNN, LSTM | RUL | J |
[73] | Vehicle parts | CNC machines | Dig. Twin, Simulation | DT integration | J |
[74] | Vehicle parts | CNC machines | LSTM, CNN, ARIMA, RNN | Fault diagnosis | J |
[75] | Vehicle parts | CNC machines | LSTM, DL | Fault diagnosis | J |
[76] | Vehicle parts | CNC machines | LSTM, DL | RUL | J |
[77] | Vehicle parts | Electrical equipment | Dig. Twin | DT integration | CP |
[78] | Vehicle parts | Electrical equipment | ML, ANN | Fault diagnosis | J |
[79] | Vehicle parts | Engine | ML, ANN | Fault classification | CP |
[80] | Vehicle parts | Engine | Agents, DL | Fault diagnosis | CP |
[81] | Vehicle parts | Engine | LSTM, DL, ANN | Fault diagnosis | J |
[82] | Vehicle parts | Industrial robot | Dig. Twin | RUL | CP |
[83] | Vehicle parts | Industrial robot | Dig. Twin, Simulation | RUL | J |
[84] | Vehicle parts | Pump | ML, Deep Leaning, ANN, LSTM | Fault diagnosis | MSc |
[85] | Vehicle parts | Pump | DL, EMD, NN | RUL | J |
[86] | Vehicle parts | Roller | SVM, RF, DT, k-Means | Fault classification | J |
[87] | Vehicle parts | Roller | Softmax, k-Means, SVM, DT, NB | Fault diagnosis | PhD |
[88] | Vehicle parts | Roller | ML, DL | RUL | J |
[89] | Vehicle parts | Semiconductor | k-NN, LR, RF | RUL | CP |
[90] | Vehicle parts | Semiconductor | ML, DL, ANN, RF, GB | RUL | CP |
[91] | Vehicle parts | Vehicle parts | Dig. Twin | Fault diagnosis | CP |
[92] | Vehicle parts | Vehicle parts | RF, GB, AdaBoost, MLP, SVR | RUL | J |
Journal Title | Publication Year(s) | |
---|---|---|
Advanced Engineering Informatics | 2020 | 2021 |
Computers & Industrial Engineering | 2021 | 2021 |
Computers in Industry | 2021 | 2022 |
Procedia Manufacturing | 2020 | 2020 |
Reliability Engineering & System Safety | 2021 | 2022 |
Sensors MDPI | 2021 | 2021 |
Electronics MDPI | 2021 | |
Energies MDPI | 2017 | |
Expert Systems with Applications | 2021 | |
Forschung im Ingenieurwesen | 2021 | |
IEEE Access | 2021 | |
IEEE/CAA Journal of Automatica Sinica | 2021 | |
Information MDPI | 2021 | |
International Journal of Advanced Manufacturing Technology | 2021 | |
International Journal of Computer Integrated Manufacturing | 2019 | |
Journal of Information Technologies (JIT) | 2019 | |
Journal of Intelligent Manufacturing | 2020 | |
Materials Today: Proceedings | 2022 | |
Procedia CIRP | 2019 | |
Proceedings MDPI | 2020 | |
Robotics and Computer-Integrated Manufacturing | 2020 |
Publishing Conference | Publication Year(s) | |
---|---|---|
Int. Conf. on Data Science and Advanced Analytics | 2018 | 2021 |
Int. Conf. on Emerging Technologies and Factory Automation (ETFA) | 2018 | 2020 |
ACM/SIGAPP Symposium on Applied Computing | 2019 | |
AIP Conference Proceedings | 2018 | |
CIRP Conference on Manufacturing Systems | 2019 | |
Innovations in Intelligent Systems and Applications Conference (ASYU) | 2019 | |
Int. Conf. on Big Data (Big Data) | 2018 | |
Int. Conf. on Electrical, Electronics, Comm., Comp. Tech. and Opti. Technq. | 2018 | |
Int. Conf. on ICT for Smart Society (ICISS) | 2021 | |
Int. Conf. on Information and Communication Technology Convergence | 2020 | |
Int. Conf. on Intelligent Transportation Systems (ITSC) | 2020 | |
Int. Conf. on Mathematics and Mathematics Education (ICMME 2021) | 2020 | |
Int. Conf. on Recent Trends In Advanced Computing 2019 | 2019 | |
Int. Conf. on Smart Computing (SMARTCOMP) | 2019 | |
Int. Conf. on Telecommunications and Signal Processing | 2021 | |
International Symposium on NDT in Aerospace | 2018 | |
IOP Conference Series: Materials Science and Engineering | 2020 | |
Workshop on Microelectronics and Electron Devices (WMED) | 2018 | |
World Forum on Internet of Things (WF-IoT) | 2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ersöz, O.Ö.; İnal, A.F.; Aktepe, A.; Türker, A.K.; Ersöz, S. A Systematic Literature Review of the Predictive Maintenance from Transportation Systems Aspect. Sustainability 2022, 14, 14536. https://doi.org/10.3390/su142114536
Ersöz OÖ, İnal AF, Aktepe A, Türker AK, Ersöz S. A Systematic Literature Review of the Predictive Maintenance from Transportation Systems Aspect. Sustainability. 2022; 14(21):14536. https://doi.org/10.3390/su142114536
Chicago/Turabian StyleErsöz, Olcay Özge, Ali Fırat İnal, Adnan Aktepe, Ahmet Kürşad Türker, and Süleyman Ersöz. 2022. "A Systematic Literature Review of the Predictive Maintenance from Transportation Systems Aspect" Sustainability 14, no. 21: 14536. https://doi.org/10.3390/su142114536
APA StyleErsöz, O. Ö., İnal, A. F., Aktepe, A., Türker, A. K., & Ersöz, S. (2022). A Systematic Literature Review of the Predictive Maintenance from Transportation Systems Aspect. Sustainability, 14(21), 14536. https://doi.org/10.3390/su142114536