Virtual Carbon Flow in China’s Capital Economic Circle: A Multi-Regional Input–Output Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. CEC Carbon-Extended Multi-Regional Input–Output Model
2.2.1. CEC Three-Region Input–Output Model
2.2.2. Carbon Emission Coefficients of CEC
- (1)
- Direct carbon emission coefficient
- (2)
- Complete carbon emission coefficient
- (3)
- Carbon emissions pull coefficient
2.2.3. Virtual Carbon Net Flow of CEC
- (1)
- The virtual carbon net flow matrix
- (2)
- Multi-regional virtual carbon trade flow matrix
3. Results and Disscusion
3.1. Industrial Sector Carbon Emission Coefficients
3.2. Industrial Virtual Carbon Flow and Space Movement in CEC
3.3. Virtual Carbon Trade in CEC
3.3.1. Regional Physical Carbon Emission
3.3.2. Regional Virtual Carbon Trade
4. Conclusions and Policy Recommendation
4.1. Conclusions
4.2. Policy Recommendation
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Name | Acronym | Name | Acronym |
---|---|---|---|
Single regional input-output model | SRIO | Multi-regional input-output model | MRIO |
China’s Capital Economic Circle | CEC | Direct carbon emission coefficient | DCE |
Beijing | BJ | Complete carbon emission coefficient | CCE |
Tianjin | TJ | Carbon emissions pull coefficient | CEP |
Hebei | HB | External regions | ER |
Intermediate use | Final Use | Total Final Use | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Region 1 | ··· | Region m | Region 1 | ··· | Region m | ||||||||
Sector 1 | ··· | Sector n | ··· | Sector 1 | ··· | Sector n | |||||||
Intermediate input | Region 1 | Sector 1 | |||||||||||
··· | ··· | ··· | |||||||||||
Sector n | |||||||||||||
··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ||||||
Region | Sector 1 | ||||||||||||
··· | ··· | ··· | |||||||||||
Sector n | |||||||||||||
Total Value Added | ··· | ||||||||||||
Total Input | ··· |
References
- Wu, X.; Liu, Z.; Yin, L.; Zheng, W.; Song, L.; Tian, J.; Yang, B.; Liu, S. A Haze Prediction Model in Chengdu Based on LSTM. Atmosphere 2021, 12, 1479. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Huang, W.; Yin, L.; Zheng, W.; Liu, S. A Haze Prediction Method Based on One-Dimensional Convolutional Neural Network. Atmosphere 2021, 12, 1327. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Huang, W.; Liu, S.; Yang, B.; Zheng, W. Spatiotemporal Analysis of Haze in Beijing Based on the Multi-Convolution Model. Atmosphere 2021, 12, 1408. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, J.; Zheng, W.; Yin, L. Spatial and temporal distribution characteristics of haze and pollution particles in China based on spatial statistics. Urban Clim. 2022, 41, 101031. [Google Scholar] [CrossRef]
- Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s recent emission pattern shifts. Earth’s Future 2021, 9, e2021EF002241. [Google Scholar] [CrossRef]
- Shan, Y.; Huang, Q.; Guan, D.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 7, 54. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef]
- China Statistics Press. National Bureau of Statistics; China Statistical Yearbook 2020; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Zhang, W.; Zhang, J.; Wang, F.; Jiang, H.; Wang, J.; Jiang, L. Spatial Agglomeration of Industrial Air Pollutant Emission in Beijing-Tianjin-Hebei Region. Urban Dev. Stud. 2017, 24, 81–87. [Google Scholar]
- Wan, Y.; Cui, Y.; Wu, X.; Shen, Y.; Xue, Y. Characteristics of carbon dioxide emission in Beijing-Tianjin-Hebei region and its synergistic reduction potential with air pollutants. J. Cap. Norm. Univ. (Nat. Sci. Ed.) 2022, 43, 46–52, 74. [Google Scholar]
- Zhang, L.; Song, Y. Impacts of Beijing-Tianjin-Hebei (JJJ) industrial structural optimization on carbon emission based on dynamic panel GMM model and VAR model. Resour. Ind. 2020, 22, 18–28. [Google Scholar]
- Wang, N.; Xie, W. Research on development path of Beijing-Tianjin-Hebei urban agglomeration facing carbon neutrality. Enterp. Econ. 2021, 40, 44–52. [Google Scholar]
- Festus, V. Mitigating emissions in India: Accounting for the role of real income, renewable energy consumption and investment in energy. International Journal of Energy Economics and Policy. 2022, 12(1), 188–192. [Google Scholar]
- Majeed, A.; Wang, L.; Zhang, X.; Muniba; Kirikkaleli, D. Modeling the dynamic links among natural resources, economic globalization, disaggregated energy consumption, and environmental quality: Fresh evidence from GCC economies. Resour. Policy 2021, 73, 102204. [Google Scholar] [CrossRef]
- Sun, H.; Edziah, B.K.; Kporsu, A.K.; Sarkodie, S.A.; Taghizadeh-Hesary, F. Energy efficiency: The role of technological innovation and knowledge spillover. Technol. Forecast. Soc. Change 2021, 167, 120659. [Google Scholar] [CrossRef]
- Majeed, A.; Ye, C.; Ye, C.; Xu, W. Roles of natural resources, globalization, and technological innovations in mitigation of environmental degradation in BRI economies. PLoS ONE 2022, 17, e0265755. [Google Scholar] [CrossRef]
- Wu, X.; Majeed, A.; Dinara, D.; Yameogo, C.; Hussain, N. Natural resources abundance, economic globalization, and carbon emissions: Advancing sustainable development agenda. Sustain. Dev. 2021, 29, 1037–1048. [Google Scholar]
- Wang, Z.; Gao, L.; Wei, Z.; Majeed, A.; Alam, L. How FDI and technology innovation mitigate CO2 emissions in high-tech industries: Evidence from province-level data of China. Environ. Sci. Pollut. Res. 2022, 29, 4641–4653. [Google Scholar] [CrossRef]
- Sun, H.; Kporsu, A.K.; Taghizadeh-Hesary, F.; Edziah, B.K. Estimating environmental efficiency and convergence: 1980 to 2016. Energy 2020, 208, 118224. [Google Scholar] [CrossRef]
- Gong, Q.; Wang, Y.; Tong, Y. Population’s Pressure on Carbon Emissions in Beijing-Tianjin-Hebei Region: Spatial Pattern and Change Analysis. J. Cap. Univ. Econ. Bus. 2020, 22, 56–67. [Google Scholar]
- Zheng, H.; Gao, X.; Sun, Q.; Han, X.; Wang, Z. The impact of regional industrial structure differences on carbon emission differences in China: An evolutionary perspective. J. Clean. Prod. 2020, 257, 120506. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Chen, W.; Qiu, L.; Wang, B.; Niu, W. Exploring the path of inter-provincial industrial transfer and carbon transfer in China via combination of multi-regional input–output and geographically weighted regression model. Ecol. Indic. 2021, 125, 107547. [Google Scholar] [CrossRef]
- Allan, J. ‘Virtual Water’: A Long Term Solution for Water Short Middle Eastern Economies? British Association Festival of science; University of Leeds: London, UK, 1997. [Google Scholar]
- Li, Y.; Su, B.; Dasgupta, S. Structural path analysis of India’s carbon emissions. Energy Econ. 2018, 76, 457–469. [Google Scholar] [CrossRef]
- Moon, J.; Yun, E.; Lee, J. Identifying the Sustainable Industry by Input-Output Analysis Combined with CO2 Emissions: A Time Series Study from 2005 to 2015 in South Korea. Sustainability 2020, 12, 6043. [Google Scholar] [CrossRef]
- Wiedmann, T.; Wood, R.; Minx, J.C.; Lenzen, M.; Guan, D.; Harris, R. A Carbon Footprint Time Series of the UK—Results from a Multi-Region Input-Output Model. Econ. Syst. Res. 2010, 22, 19–42. [Google Scholar] [CrossRef]
- Hung, C.; Hsu, S.; Cheng, K. Quantifying city-scale carbon emissions of the construction sector based on multi-regional input-output analysis. Resour. Conserv. Recycl. 2019, 149, 75–85. [Google Scholar] [CrossRef]
- Isard, W. Interregional and regional input-output analysis: A model of a space-economy. Rev. Econ. Stat. 1951, 33, 318–328. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, H.; He, L. Embodied carbon emissions and regional transfer characteristics—Evidence from China. Sustainability 2022, 14, 1969. [Google Scholar] [CrossRef]
- Lin, J.; Hu, Y.; Zhao, X.; Shi, L.; Kang, J. Developing a city-centric global multiregional input-output model (CCG-MRIO) to evaluate urban carbon footprints. Energy Policy 2017, 108, 460–466. [Google Scholar] [CrossRef]
- Xing, Z.; Jiao, Z.; Wang, H. Carbon footprint and embodied carbon transfer at city level: A nested MRIO analysis of Central Plain urban agglomeration in China. Sustain. Cities Soc. 2022, 83, 103977. [Google Scholar] [CrossRef]
- Brizga, J.; Feng, K.; Hubacek, K. Household carbon footprints in the Baltic States: A global multi-regional input–output analysis from 1995 to 2011. Appl. Energy 2017, 189, 780–788. [Google Scholar] [CrossRef]
- Duarte, R.; Pinilla, V.; Serrano, A. Factors Driving Embodied Carbon in International Trade: A Multiregional Input-Output Gravity Model. Econ. Syst. Res. 2018, 30, 545–566. [Google Scholar] [CrossRef]
- Gilles, E.; Ortiz, M.; Cadarso, M.-Á.; Monsalve, F.; Jiang, X. Opportunities for city carbon footprint reductions through imports source shifting: The case of Bogota. Resour. Conserv. Recycl. 2021, 172, 105684. [Google Scholar] [CrossRef]
- Zheng, H.; Bai, Y.; Wei, W.; Meng, J.; Zhang, Z.; Song, M.; Guan, D. Chinese provincial multi-regional input-output database for 2012, 2015, and 2017. Sci. Data 2021, 8, 244. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Liu, J.; Liu, Z.; Xu, X.; Shao, S.; Wang, P.; Guan, D. New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Appl. Energy 2016, 184, 742–750. [Google Scholar] [CrossRef]
- Deng, R.; Yang, G. Has inter-regional trade led to the transfer of inter-regional carbon emissions: An empirical study based on inter-regional input-output model from 2002 to 2012. J. Nanjing Univ. Financ. Econ. 2018, 211, 1–11. [Google Scholar]
- Sun, L.; Luo, Y. The spatial spillover effect of economic growth in Sichuan and Chongqing region: Based on inter-regional input-output tables. J. Chongqing Inst. Technol. 2021, 35, 37–48. [Google Scholar]
- Shi, M.; Wang, Y.; Zhang, Z.; Zhou, X. Regional Carbon Footprint and Interregional Transfer of Carbon Emissions in China. Acta Geogr. Sin. 2012, 67, 1327–1338. [Google Scholar]
- Zhang, Z.; Liu, R. Carbon emissions in the construction sector based on input-output analyses. J. Tsinghua Univ. (Sci. Technol.) 2013, 53, 53–57. [Google Scholar]
- Zhang, H.; Xia, B.; Wang, Y. Analysis of Water Consumption of China’s Industries Based on the Input-Output Method. Resour. Sci. 2011, 33, 1218–1224. [Google Scholar]
- Wang, S.; Lu, W. Consumption and trade of virtual water in Jiangxi based on input-output analysis. Resour. Environ. Yangtza Basin 2011, 20, 933–937. [Google Scholar]
- Yan, Y. Carbon footprint’s trends, space, industrial distribution in Beijing-Tianjin-Hebei region. Res. Econ. Manag. 2016, 37, 75–81. [Google Scholar]
- Tan, F.; Zhang, L.; Li, M. Accounting of Embodied Carbon Emission in Beijing-Tianjin-Hebei Trade Based on MRIO Model. Stat. Decis. 2018, 34, 30–34. [Google Scholar]
- Chen, H. Analysis of embodied CO2 emissions including industrial process emissions. China Popul. Resour. Environ. 2009, 19, 25–30. [Google Scholar]
- Yang, G. A Forecast on Carbon Compensation Cost of Three Provinces in Northeast China Based on Theoretical Carbon Deficit. J. Dongbei Univ. Financ. Econ. 2019, 1, 87–96. [Google Scholar]
- Sun, L.; Han, Y.; Du, J. Influencing factors of carbon footprint of high energy consumption industry in Beijing, Tianjin and Hebei: Based on De Bruyn model. J. Technol. Econ. 2019, 38, 86–92, 118. [Google Scholar]
- Cao, S.; Xie, G. Tracking Analysis of Carbon Footprint Flow of China’s Industrial Sectors. Resour. Sci. 2010, 32, 2046–2052. [Google Scholar]
- Xu, X.; Niu, D.; Xiao, B.; Guo, X.; Zhang, L.; Wang, K. Policy analysis for grid parity of wind power generation in China. Energy Policy 2020, 138, 111225. [Google Scholar] [CrossRef]
2012 | 2015 | 2017 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sectors | Regions | DCE | CCE | CEP | DCE | CCE | CEP | DCE | CCE | CEP |
Agriculture | BJ | 0.42 | 0.70 | 1.66 | 0.38 | 0.66 | 1.75 | 0.18 | 0.36 | 1.93 |
TJ | 0.63 | 2.04 | 3.24 | 0.55 | 1.75 | 3.17 | 1.97 | 2.25 | 1.14 | |
HB | 0.40 | 1.47 | 3.64 | 0.29 | 1.33 | 4.63 | 0.22 | 0.78 | 3.51 | |
CEC | 1.45 | 4.21 | 8.54 | 1.22 | 3.74 | 9.55 | 2.37 | 3.39 | 6.58 | |
Food and tobacco | BJ | 1.20 | 2.55 | 2.12 | 0.45 | 1.65 | 3.64 | 0.11 | 0.26 | 2.36 |
TJ | 1.48 | 2.33 | 1.57 | 0.07 | 0.37 | 5.43 | 0.07 | 0.27 | 3.73 | |
HB | 2.90 | 7.15 | 2.47 | 3.68 | 6.85 | 1.86 | 0.62 | 2.72 | 4.40 | |
CEC | 0.36 | 3.08 | 24.32 | 0.26 | 2.90 | 31.54 | 0.16 | 1.7 | 37.11 | |
Mining and Dressing | BJ | 0.07 | 0.41 | 5.99 | 0.05 | 0.37 | 8.14 | 0.02 | 0.21 | 10.57 |
TJ | 0.11 | 0.88 | 8.35 | 0.07 | 0.74 | 10.43 | 0.09 | 0.54 | 5.98 | |
HB | 0.18 | 1.79 | 9.98 | 0.14 | 1.79 | 12.97 | 0.05 | 0.95 | 20.56 | |
CEC | 5.58 | 12.03 | 6.16 | 4.20 | 8.87 | 10.93 | 0.8 | 3.25 | 10.49 | |
Textile and Clothing | BJ | 0.08 | 0.32 | 4.20 | 0.09 | 0.26 | 2.85 | 5.19 | 5.43 | 1.05 |
TJ | 0.21 | 0.88 | 4.26 | 0.05 | 0.58 | 12.85 | 0.22 | 0.41 | 1.85 | |
HB | 0.21 | 2.73 | 13.2 | 0.15 | 2.22 | 14.88 | 0.02 | 1.54 | 75.63 | |
CEC | 0.50 | 3.93 | 21.66 | 0.29 | 3.06 | 30.58 | 5.43 | 7.38 | 78.53 | |
Wood processing | BJ | 0.06 | 0.54 | 8.73 | 0.07 | 0.43 | 6.02 | 0.11 | 0.59 | 5.44 |
TJ | 0.28 | 1.11 | 3.90 | 0.11 | 0.77 | 6.86 | 0.39 | 0.79 | 2.01 | |
HB | 0.14 | 4.67 | 32.45 | 0.09 | 3.93 | 41.96 | 0.10 | 2.21 | 22.77 | |
CEC | 0.48 | 6.32 | 45.08 | 0.27 | 5.13 | 54.84 | 0.60 | 3.59 | 30.22 | |
Papermaking and printing | BJ | 0.09 | 0.81 | 8.84 | 0.08 | 0.56 | 7.39 | 0.08 | 0.32 | 3.72 |
TJ | 0.21 | 1.98 | 9.59 | 0.1 | 1.63 | 15.97 | 0.09 | 0.42 | 4.39 | |
HB | 0.25 | 5.68 | 23.14 | 0.18 | 4.77 | 26.91 | 0.04 | 1.97 | 51.03 | |
CEC | 0.55 | 8.47 | 41.57 | 0.36 | 6.96 | 50.27 | 0.21 | 2.71 | 59.14 | |
Petrochemical | BJ | 0.45 | 0.77 | 1.70 | 0.53 | 0.82 | 1.55 | 0.53 | 0.72 | 1.35 |
TJ | 0.61 | 3.69 | 6.07 | 0.58 | 3.18 | 5.53 | 0.29 | 0.59 | 2.02 | |
HB | 0.81 | 5.58 | 6.9 | 0.77 | 4.63 | 6.04 | 0.39 | 2.47 | 6.29 | |
CEC | 1.87 | 10.04 | 14.67 | 1.88 | 8.63 | 13.12 | 1.21 | 3.78 | 9.66 | |
Metal and non-metal | BJ | 0.71 | 2.26 | 3.20 | 0.61 | 1.70 | 2.78 | 0.19 | 0.94 | 5.06 |
TJ | 2.07 | 5.18 | 2.50 | 1.95 | 4.99 | 2.56 | 0.66 | 1.26 | 1.91 | |
HB | 6.55 | 14.48 | 2.21 | 7.02 | 14.02 | 2.00 | 4.63 | 8.06 | 1.74 | |
CEC | 9.33 | 21.92 | 7.91 | 9.58 | 20.71 | 7.34 | 5.48 | 10.26 | 8.71 | |
Equipment manufacturing | BJ | 0.03 | 0.57 | 18.63 | 0.04 | 0.38 | 8.71 | 0.05 | 0.27 | 5.15 |
TJ | 0.06 | 1.37 | 21.23 | 0.08 | 1.16 | 13.75 | 0.02 | 0.27 | 15.66 | |
HB | 0.17 | 7.52 | 45.00 | 0.12 | 6.30 | 50.67 | 0.12 | 3.47 | 29.02 | |
CEC | 0.26 | 9.46 | 84.86 | 0.24 | 7.84 | 73.13 | 0.19 | 4.01 | 49.83 | |
Other manufacturing | BJ | 0.20 | 0.81 | 4.13 | 0.08 | 0.55 | 7.28 | 0.11 | 0.29 | 2.68 |
TJ | 0.07 | 0.94 | 12.87 | 0.07 | 1.00 | 13.73 | 0.01 | 0.21 | 84.38 | |
HB | 0.12 | 6.43 | 51.44 | 0.11 | 4.88 | 44.78 | 0.01 | 2.28 | 171.62 | |
CEC | 0.39 | 8.18 | 68.44 | 0.26 | 6.43 | 65.79 | 0.12 | 2.78 | 258.68 | |
Electric and water supply | BJ | 4.81 | 8.68 | 1.80 | 4.70 | 8.53 | 1.82 | 4.01 | 7.36 | 1.83 |
TJ | 19.95 | 27.39 | 1.37 | 16.10 | 22.47 | 1.40 | 1.11 | 1.68 | 1.52 | |
HB | 29.30 | 43.18 | 1.47 | 21.08 | 33.52 | 1.59 | 21.83 | 25.06 | 1.15 | |
CEC | 54.06 | 79.25 | 4.64 | 41.88 | 64.52 | 4.81 | 26.95 | 34.10 | 4.50 | |
Construction | BJ | 0.04 | 1.24 | 28.99 | 0.03 | 0.84 | 32.37 | 0.04 | 0.75 | 20.95 |
TJ | 0.12 | 2.31 | 19.23 | 0.09 | 1.93 | 21.08 | 0.53 | 1.00 | 1.87 | |
HB | 0.03 | 6.89 | 220.34 | 0.04 | 6.11 | 145.28 | 1.54 | 5.13 | 3.32 | |
CEC | 0.19 | 10.44 | 268.56 | 0.16 | 8.88 | 198.73 | 2.11 | 6.88 | 26.14 | |
Service | BJ | 0.19 | 0.49 | 2.63 | 0.16 | 0.43 | 2.59 | 0.14 | 0.34 | 2.48 |
TJ | 0.24 | 1.16 | 4.74 | 0.17 | 0.90 | 5.17 | 0.18 | 0.38 | 2.10 | |
HB | 0.33 | 2.14 | 6.55 | 0.25 | 1.71 | 6.82 | 0.40 | 1.83 | 4.53 | |
CEC | 0.76 | 3.79 | 13.92 | 0.58 | 3.04 | 14.58 | 0.72 | 2.55 | 9.11 |
Sectors | Total/Unit Emission | 2012 | 2015 | 2017 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
BJ | TJ | HB | BJ | TJ | HB | BJ | TJ | HB | ||
Agriculture | Total emission | 1.00 | 1.32 | 8.36 | 0.73 | 1.24 | 7.04 | 0.37 | 1.28 | 6.94 |
Unit emission | 0.34 | 0.54 | 0.24 | 0.28 | 0.42 | 0.18 | 0.14 | 0.79 | 0.21 | |
Mining and Dressing | Total emission | 1.82 | 5.90 | 41.62 | 0.07 | 1.91 | 38.61 | 0.03 | 1.20 | 37.98 |
Unit emission | 0.30 | 0.40 | 1.43 | 0.02 | 0.18 | 2.11 | 0.01 | 0.08 | 2.26 | |
Food and tobacco | Total emission | 0.35 | 0.73 | 2.55 | 0.20 | 0.53 | 2.34 | 0.12 | 0.29 | 2.36 |
Unit emission | 0.06 | 0.07 | 0.25 | 0.04 | 0.04 | 0.25 | 0.02 | 0.04 | 0.15 | |
Textile and Clothing | Total emission | 0.11 | 0.26 | 0.99 | 0.06 | 0.10 | 1.04 | 0.04 | 0.08 | 0.89 |
Unit emission | 0.06 | 0.09 | 0.10 | 0.05 | 0.02 | 0.08 | 0.03 | 0.03 | 0.09 | |
Wood processing | Total emission | 0.04 | 0.10 | 0.33 | 0.04 | 0.06 | 0.30 | 0.06 | 0.06 | 0.25 |
Unit emission | 0.05 | 0.16 | 0.22 | 0.05 | 0.07 | 0.13 | 0.06 | 0.12 | 0.11 | |
Papermaking and printing | Total emission | 0.13 | 0.36 | 1.16 | 0.09 | 0.32 | 1.07 | 0.07 | 0.16 | 1.14 |
Unit emission | 0.06 | 0.18 | 0.32 | 0.05 | 0.08 | 0.23 | 0.04 | 0.07 | 0.25 | |
Petrochemical | Total emission | 3.43 | 7.58 | 17.64 | 3.28 | 7.51 | 19.32 | 2.44 | 5.47 | 11.52 |
Unit emission | 0.20 | 0.66 | 0.79 | 0.24 | 0.58 | 0.74 | 0.15 | 0.40 | 0.38 | |
Metal and non-metal | Total emission | 4.28 | 48.47 | 336.21 | 2.55 | 51.48 | 363.23 | 0.56 | 43.77 | 365.20 |
Unit emission | 0.53 | 2.46 | 7.03 | 0.44 | 2.49 | 6.98 | 0.08 | 2.88 | 5.39 | |
Equipment manufacturing | Total emission | 0.63 | 1.35 | 4.75 | 0.44 | 1.31 | 4.54 | 0.39 | 1.84 | 4.39 |
Unit emission | 0.01 | 0.04 | 0.26 | 0.01 | 0.03 | 0.17 | 0.01 | 0.06 | 0.17 | |
Other manufacturing | Total emission | 0.06 | 0.09 | 0.11 | 0.03 | 0.08 | 0.09 | 0.03 | 0.07 | 0.09 |
Unit emission | 0.09 | 0.03 | 0.07 | 0.02 | 0.03 | 0.09 | 0.03 | 0.09 | 0.06 | |
Electric and water supply | Total emission | 37.35 | 68.26 | 278.05 | 33.07 | 63.68 | 279.93 | 28.50 | 62.42 | 290.01 |
Unit emission | 2.61 | 21.52 | 38.92 | 1.72 | 15.55 | 31.16 | 1.22 | 12.08 | 18.30 | |
Construction | Total emission | 1.43 | 3.43 | 1.68 | 1.16 | 3.88 | 2.33 | 1.18 | 4.03 | 2.14 |
Unit emission | 0.05 | 0.25 | 0.09 | 0.03 | 0.20 | 0.11 | 0.03 | 0.32 | 0.08 | |
Service | Total emission | 32.67 | 15.77 | 29.79 | 34.32 | 14.33 | 28.99 | 35.15 | 14.82 | 28.92 |
Unit emission | 0.16 | 0.20 | 0.28 | 0.13 | 0.13 | 0.21 | 0.09 | 0.16 | 0.19 |
2012 | 2015 | 2017 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BJ | TJ | HB | ER | BJ | TJ | HB | ER | BJ | TJ | HB | ER | |
Inflow | 25.25 | 69.27 | 0.88 | 47.14 | 30.19 | 60.12 | 31.11 | 44.41 | 25.95 | 91.73 | 15.79 | 35.45 |
Outflow | 0.85 | 0.23 | 94.33 | 2863.37 | 2.64 | 6.02 | 133.93 | 3184.69 | 2.42 | 8.24 | 160.67 | 3280.30 |
Net Inflow | 24.40 | 69.05 | –93.45 | –2816.24 | 27.55 | 54.1 | –102.82 | –3140.28 | 23.53 | 83.49 | –144.88 | –3244.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, C.; Liu, Y.; Cui, Y. Virtual Carbon Flow in China’s Capital Economic Circle: A Multi-Regional Input–Output Approach. Sustainability 2022, 14, 11782. https://doi.org/10.3390/su141811782
Yin C, Liu Y, Cui Y. Virtual Carbon Flow in China’s Capital Economic Circle: A Multi-Regional Input–Output Approach. Sustainability. 2022; 14(18):11782. https://doi.org/10.3390/su141811782
Chicago/Turabian StyleYin, Chong, Yue Liu, and Yingxin Cui. 2022. "Virtual Carbon Flow in China’s Capital Economic Circle: A Multi-Regional Input–Output Approach" Sustainability 14, no. 18: 11782. https://doi.org/10.3390/su141811782
APA StyleYin, C., Liu, Y., & Cui, Y. (2022). Virtual Carbon Flow in China’s Capital Economic Circle: A Multi-Regional Input–Output Approach. Sustainability, 14(18), 11782. https://doi.org/10.3390/su141811782