Mitigating Environmental Impact of Perishable Food Supply Chain by a Novel Configuration: Simulating Banana Supply Chain in Sri Lanka
Abstract
:1. Introduction
- How to mitigate high GHG emissions and PHLs in the banana supply chain through configuration with due consideration to the perishability nature?
- How to match demand and supply at the retailer points?
- Introducing a novel configuration to the banana supply chain in Sri Lanka, making multiple supply chain decisions.
- Integrating both optimization and simulation modeling approaches in finding supply chain configurations optimizing the overall transportation and thereby reducing the environmental impact.
2. Literature Review
3. Materials and Methods
3.1. Introduction to Case Study
3.2. Simulating the Existing Supply Chain
- Fields, Farmers, and Vehicles
- ○
- Embilipitiya Fields—EF
- ○
- Thambuththegama Fields—TF
- ○
- Farmer—F
- ○
- Vehicles of Embilipitiya Farmer—EFV
- ○
- Vehicles of Thambuththegama Farmer—TFV
- Collection Centers and Vehicles
- ○
- Embilipitiya Collection Center—ECC
- ○
- Thambuththegama Collection Center—TCC
- ○
- Vehicles of Embilipitiya Collection Center—ECV
- ○
- Vehicles of Thambuththegama Collection Center—TCV
- Wholesalers and Vehicles
- ○
- Embilipitiya Wholesaler—Colombo Manning
- ○
- Thambuththegama Wholesaler—Dambulla
- ○
- Vehicles of Embilipitiya Wholesaler—EWV
- ○
- Vehicles of Thambuththegama Wholesaler—TWV
3.3. Improvements on Strategic Decision Level
3.4. Improvements on Tactical/Operational Decision Level
3.4.1. Notation
- DDi—Distance between Dambulla wholesale to ith retailers
- DCi—Distance between Colombo Manning Market to ith retailers
- CD—Capacity of Dambulla wholesale
- CC—Capacity of Colombo Manning Market
- Ci—Capacity of each retailer point
3.4.2. Decision Variables
- XDi—1 or 0 indicating whether Dambulla Wholesaler is supplying to the ith retailer
- XCi—1 or 0 indicating whether Colombo Manning Market is supplying to the ith retailer
3.4.3. Decision Variables
3.4.4. Constraints
- XDi, XCi—binary and non-negative
3.5. Calculation of Performance Measures
4. Results
4.1. Results of the Strategic Level Decisions
4.2. Results of the Tactical/Operational Level Decisions
5. Discussion
5.1. PHL (kg)
5.2. GWP (kgCo2eq)
5.3. Lead Time (h) and Distance (km)
5.4. Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalantari, F.; Hosseininezhad, S.J. A Multi-objective cross entropy-based algorithm for sustainable global food supply chain with risk considerations: A case study. Comput. Ind. Eng. 2022, 164, 107766. [Google Scholar] [CrossRef]
- Adamashvili, N.; State, R.; Tricase, C.; Fiore, M. Blockchain-based wine supply chain for the industry advancement. Sustainability 2021, 13, 13070. [Google Scholar] [CrossRef]
- Adamashvili, N.; Fiore, M.; Contò, F.; La Sala, P. Ecosystem for Successful Agriculture. Collaborative Approach as a Driver for Agricultural Development. Eur. Countrys. 2020, 12, 242–256. [Google Scholar] [CrossRef]
- Orjuela-castro, J.A.; Orejuela-cabrera, J.P.; Adarme-jaimes, W. Multi-objective model for perishable food logistics networks design considering availability and access. OPSEARCH 2022, 1–27. [Google Scholar] [CrossRef]
- Kumar, A.; Mangla, S.K.; Kumar, P.; Karamperidis, S. Challenges in perishable food supply chains for sustainability management: A developing economy perspective. Bus. Strategy Environ. 2020, 29, 1809–1831. [Google Scholar] [CrossRef]
- Fikry, I.; Gheith, M.; Eltawil, A. A New Integrated Mathematical Model for Agro-Food Supply Chain. In Proceedings of the 2021 IEEE 8th International Conference on Industrial Engineering and Applications, Kyoto, Japan, 27–29 April 2021; pp. 432–438. [Google Scholar]
- Flores, H.; Villalobos, J.R. A Stochastic Planning Framework for the Discovery of Complementary, Agricultural Systems. Eur. J. Oper. Res. 2019, 280, 707–729. [Google Scholar] [CrossRef]
- Gupta, M.; Kaur, H.; Singh, S.P. Multi-echelon agri-food supply chain network design integrating operational and strategic objectives: A case of public distribution system in India. Ann. Oper. Res. 2021, 1–58. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.; Zhao, L.; Faiz, N.; Ullah, H.; Gong, J.; Jiang, W. One belt one road influence on perishable food supply chain robustness. Environ. Dev. Sustain. 2022, 24, 9447–9463. [Google Scholar] [CrossRef]
- Jaigirdar, S.M.; Das, S.; Chowdhury, A.R.; Ahmed, S.; Chakrabortty, R.K. Multi-objective multi-echelon distribution planning for perishable goods supply chain: A case study. Int. J. Syst. Sci. Oper. Logist. 2022, 1–19. [Google Scholar] [CrossRef]
- Gong, W.; Zhou, L.; Ye, F. Multi-Agent GIS Simulation for Railway Logistics Optimization. In Proceedings of the 2019 4th International Conference on Intelligent Transportation Engineering (ICITE), Singapore, 5–7 September 2019; IEEE: New York, NY, USA, 2019; pp. 64–68. [Google Scholar]
- Amer, H.H.; Galal, N.M.; El-Kilany, K.S. A simulation study of sustainable agri-food supply chain. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Bandung, Indonesia, 6–8 March 2018; Volume 2018, pp. 2264–2275. [Google Scholar]
- Aiello, G.; Enea, M.; Muriana, C. The expected value of the traceability information. Eur. J. Oper. Res. 2015, 244, 176–186. [Google Scholar] [CrossRef]
- Zhao, X.I.A.; Wu, F. Coordination of agri-food chain with revenue-sharing contract under stochastic output and stochastic demand. Asia-Pasific J. Oper. Res. 2011, 28, 487–510. [Google Scholar] [CrossRef]
- Albrecht, W.; Steinrücke, M. Coordinating continuous-time distribution and sales planning of perishable goods with quality grades grades. Int. J. Prod. Res. 2018, 7543, 2646–2665. [Google Scholar] [CrossRef]
- Zhang, Y.; Che, A.; Chu, F. Improved model and efficient method for bi-objective closed-loop food supply chain problem with returnable transport items. Int. J. Prod. Res. 2022, 60, 1051–1068. [Google Scholar] [CrossRef]
- Esteso, A.; Alemany, M.; Ortiz, A.; Iannacone, R. Collaborative plan to reduce inequalities among the farms through optimization. In Proceedings of the 22nd IFIP WG 5.5 Working Conference on VIRTUAL ENTERPRISES, Saint-Étienne, France, 22–24 November 2021. [Google Scholar]
- Chen, H.; Chen, Z.; Lin, F.; Zhuang, P. Effective Management for Blockchain-Based Agri-Food Supply Chains Using Deep Reinforcement Learning. IEEE Access 2021, 9, 36008–36018. [Google Scholar] [CrossRef]
- Violi, A.; Laganá, D.; Paradiso, R. The inventory routing problem under uncertainty with perishable products: An application in the agri-food supply chain. Soft Comput. 2019, 24, 13725–13740. [Google Scholar] [CrossRef]
- Chen, S.; Min, J.; Teng, J.; Li, F. Inventory and shelf-space optimization for fresh produce with expiration date under freshness- and-stock-dependent demand rate. J. Oper. Res. Soc. 2017, 5682, 884–896. [Google Scholar] [CrossRef]
- Esteso, A.; Alemany, M.M.E.; Ortiz, Á. Impact of product perishability on agri-food supply chains design. Appl. Math. Model. 2021, 96, 20–38. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, H.; Zuo, M.; Zhu, H.; Zuo, Y. Optimal procurement strategy of fresh produce retailer under stochastic product qualification and market demand. J. Control Decis. 2021, 8, 192–200. [Google Scholar] [CrossRef]
- Cui, L.; Guo, S.; Zhang, H. Coordinating a green agri-food supply chain with revenue-sharing contracts considering retailers ’ green marketing eff orts. Sustainability 2020, 12, 1289. [Google Scholar] [CrossRef]
- Paam, P.; Berretta, R.; García-flores, R.; Paul, S.K. Multi-warehouse, multi-product inventory control model for agri-fresh products–A case study. Comput. Electron. Agric. 2022, 194, 106783. [Google Scholar] [CrossRef]
- Qasem, A.G.; Aqlan, F.; Shamsan, A.; Alhendi, M. A simulation-optimisation approach for production control strategies in perishable food supply chains. J. Simul. 2021, 1–17. [Google Scholar] [CrossRef]
- Bo, V.; Bortolini, M.; Malaguti, E.; Monaci, M.; Mora, C.; Paronuzzi, P. Models and algorithms for integrated production and distribution problems. Comput. Ind. Eng. 2021, 154, 107003. [Google Scholar] [CrossRef]
- Suryawanshi, P.; Dutta, P. Distribution planning problem of a supply chain of perishable products under disruptions and demand stochasticity. Int. J. Prod. Perform. Manag. 2021; Iahead-of-print. [Google Scholar] [CrossRef]
- Widener, M.J.; Metcalf, S.S.; Bar-yam, Y. Developing a mobile produce distribution system for low-income urban residents in food deserts. J. Urban Health Bull. N. Y. Acad. Med. 2012, 89, 733–745. [Google Scholar] [CrossRef] [PubMed]
- Bahinipati, B.K. The Procurement Perspectives of Fruits and Vegetables Supply Chain Planning. Int. J. Supply Chain Manag. 2014, 3, 111–131. [Google Scholar]
- Zhao, X.; Dou, J. A hybrid particle swarm optimization approach for design of agri-food supply chain network. In Proceedings of the 2011 IEEE International Conference on Service Operations, Logistics and Informatics, Beijing, China, 10–12 July 2011; pp. 162–167. [Google Scholar]
- Tao, Q.; Huang, Z.; Gu, C.; Zhang, C. Optimization of green agri-food supply chain network using chaotic PSO algorithm. In Proceedings of the 2013 IEEE International Conference on Service Operations and Logistics, and Informatics, Dongguan, China, 28–30 July 2013; pp. 462–467. [Google Scholar]
- El Yasmin, A.S.L.; Ghani, B.A.; Trentesaux, D.; Bouziane, B. Supply chain management using multi-agent systems in the agri-food industry. In Service Orientation in Holonic and Multi-Agent Manufacturing and Robotics; Springer: Berlin/Heidelberg, Germany, 2014; Volume 42, pp. 145–155. [Google Scholar] [CrossRef]
- Raba, D.; Juan, A.A.; Panadero, J.; Bayliss, C. Combining the Internet of Things with simulation-based optimization to enhance logistics in an agri-food supply chain. In Proceedings of the 2019 Winter Simulation Conference, National Harbor, MD, USA, 8–11 December 2019. [Google Scholar]
- Onggo, B.S.; Panadero, J.; Corlu, C.G.; Juan, A.A. Agri-Food Supply Chains with Stochastic Demands: A Multi-Period Inventory Routing Problem with Perishable Products. Simul. Model. Pract. Theory 2019, 97, 101970. [Google Scholar] [CrossRef]
- Raoui, H.E.; Oudani, M.; Pelta, D.A.; Alaoui, A.E.H. A Metaheuristic Based Approach for the Customer-Centric Perishable Food Distribution Problem. Electronics 2021, 10, 2018. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, C.; Hou, H. Risk management in perishable food distribution operations whale optimization algorithm. Ind. Manag. Data Syst. 2020, 120, 291–311. [Google Scholar] [CrossRef]
- Patidar, R.; Venkatesh, B.; Pratap, S.; Daultani, Y. A Sustainable Vehicle Routing Problem for Indian Agri-Food Supply Chain Network Design. In Proceedings of the 2018 International Conference on Production and Operations Management Society (POMS), Peradeniya, Sri Lanka, 14–16 December 2018; IEEE: New York, NY, USA, 2018; pp. 1–5. [Google Scholar]
- Ge, H.; Canning, P.; Goetz, S.; Perez, A.; Li, J. Embedding economies of scale concepts in the model of optimal locations of fresh produce aggregation hubs. Agric. Resour. Econ. Rev. 2019, 3, 365–387. [Google Scholar] [CrossRef]
- Etemadnia, H.; Goetz, S.J.; Canning, P.; Tavallali, M.S. Optimal wholesale facilities location within the fruit and vegetables supply chain with bimodal transportation options: An LP-MIP heuristic approach. Eur. J. Oper. Res. 2015, 244, 648–661. [Google Scholar] [CrossRef]
- Pereze-Mesa, J.C.; Serrano-arcos, M.M.; Jimenez-Guerrero, J.F.; Sanchez-Fernandez, R. Addressing the location problem of a perishables redistribution center in the middle of europe. Foods 2021, 10, 1091. [Google Scholar] [CrossRef]
- Han, J.; Lin, N.; Ruan, J.; Wang, X.; Wei, W.; Lu, H. A Model for Joint Planning of Production and Distribution of Fresh Produce in Agricultural Internet of Things. IEEE Internet Things J. 2020, 8, 9683–9696. [Google Scholar] [CrossRef]
- Brulard, N.; Cung, V.; Catusse, N.; Dutrieux, C. An integrated sizing and planning problem in designing diverse vegetable farming systems. Int. J. Prod. Res. 2019, 7543, 1018–1036. [Google Scholar] [CrossRef]
- Perez-Salazar, M.d.R.; Aguilar-Lesserre, A.A.; Cedillo-Campos, M.G.; Posada-Gomez, R.; del Moral-Argumedo, M.J.; Hernandez-Gonzalez, J.C. An Agent-Based Model Driven Decision Support System for Reactive Aggregate Production Scheduling in the Green Coffee Supply Chain. Appl. Sci. 2019, 9, 4903. [Google Scholar] [CrossRef]
- Yuan, Y.; Viet, N.; Behdani, B. The impact of information sharing on the performance of horizontal logistics collaboration: A simulation study in an agri-food supply chhain. IFAC Pap. 2019, 52, 2722–2727. [Google Scholar] [CrossRef]
- Shi, H.; Quan, M.; Liu, H.; Duan, C. A Novel Integrated Approach for Green Supplier Selection with Interval-Valued Intuitionistic Uncertain Linguistic Information: A Case Study in the Agri-Food Industry. Sustainability 2018, 10, 733. [Google Scholar] [CrossRef]
- Galal, N.M.; El-Kilany, K.S. Sustainable agri-food supply chain with uncertain demand and lead time. Int. J. Simul. Model. 2016, 15, 485–496. [Google Scholar] [CrossRef]
- Kanchanasuntorn, K.; Techanitisawad, A. An approximate periodic model for fixed-life perishable products in a two-echelon inventory–distribution system. Int. J. Prod. Econ. 2006, 100, 101–115. [Google Scholar] [CrossRef]
- Allaoui, H.; Guo, Y.; Choudhary, A.; Bloemhof, J. Sustainable agro-food supply chain design using two-stage hybrid multi-objective decision-making approach. Comput. Oper. Res. 2018, 89, 369–384. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, F.; Che, A. Bi-objective optimization for closed-loop food supply chain involving returnable transport items. In Proceedings of the 2019 International Conference on Industrial Engineering and Systems Management (IESM), Shanghai, China, 25–27 September 2019; IEEE: New York, NY, USA, 2019; pp. 1–6. [Google Scholar]
- Yakavenka, V.; Mallidis, I.; Vlachos, D.; Iakovou, E.; Eleni, Z. Development of a multi-objective model for the design of sustainable supply chains: The case of perishable food products. Ann. Oper. Res. 2020, 294, 593–621. [Google Scholar] [CrossRef]
- Chan, F.T.S.; Wang, Z.X.; Goswami, A.; Singhania, A.; Tiwari, M.K. Multi-objective particle swarm optimisation based integrated production inventory routing planning for efficient perishable food logistics operations. Int. J. Prod. Res. 2020, 58, 5155–5174. [Google Scholar] [CrossRef]
- Derrouiche, R.; Moutaoukil, A.; Neubert, G. Integration of Social Concerns in Collaborative Logistics and Transportation Networks. In Working Conference on Virtual Enterprises; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Giallanza, A.; Puma, G.L. Fuzzy green vehicle routing problem for designing a three echelons supply chain. J. Clean. Prod. 2020, 259, 730–738. [Google Scholar] [CrossRef]
- La Scalia, G.; Micale, R.; Miglietta, P.P.; Toma, P. Reducing waste and ecological impacts through a sustainable and efficient management of perishable food based on the Monte Carlo simulation. Ecol. Indic. 2019, 97, 363–371. [Google Scholar] [CrossRef]
- Orjuela-Castro, J.A.; Orjuela-Cabrera, J.P.; Adarme-Jaimes, W. Logistics network configuration for seasonal perishable food supply chains. J. Ind. Eng. Manag. 2021, 14, 135–151. [Google Scholar] [CrossRef]
- Bortolini, M.; Galizia, F.G.; Mora, C.; Botti, L.; Rosano, M. Bi-objective design of fresh food supply chain networks with reusable and disposable packaging containers. J. Clean. Prod. 2018, 184, 375–388. [Google Scholar] [CrossRef]
- Zhao, X.; Lv, Q. Optimal Design of Agri-Food Chain Network: An Improved Particle Swarm Optimization Approach. In Proceedings of the 2011 International Conference on Management and Service Science, Wuhan, China, 12–14 August 2011. [Google Scholar]
- Prajapati, D.; Chan, F.T.S.; Daultani, Y.; Pratap, S. Sustainable vehicle routing of agro-food grains in the e-commerce industry. Int. J. Prod. Res. 2022, 1–26. [Google Scholar] [CrossRef]
- Kailaku, S.I.; Arkeman, Y.; Purwanto, Y.A.; Udin, F. Logistics network configuration: The solution for quality-related problems in long-distance transportation of mango in Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, West Java, Indonesia, 29 August 2019. [Google Scholar]
- Jonkman, J.; Barbosa-povoa, A.P.; Bloemhof, J.M. Integrating harvesting decisions in the design of agro-food supply chains. Eur. J. Oper. Res. 2018, 276, 247–258. [Google Scholar] [CrossRef]
- Gong, W.; Li, D.; Liu, X.; Yue, J.; Fu, Z. Improved two - grade delayed particle swarm optimisation ( TGDPSO ) for inventory facility location for perishable food distribution centres in Beijing. N. Zeal. J. Agric. Res. 2010, 8233, 771–779. [Google Scholar] [CrossRef]
- Dündar, A.O.; Tekin, M.; Peker, K.; Şahman, M.A.; Karaoǧlan, I. A mathematical model for multi-period multi-stage multi-mode multi-product capacitated wheat supply network design problem and a case study. J. Fac. Eng. Archit. Gazi Univ. 2022, 37, 265–281. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, B. Fuzzy vehicle routing model with credibility measure and its hybrid intelligent algorithm. Appl. Math. Comput. 2006, 176, 673–683. [Google Scholar] [CrossRef]
- Nguyen, C.; Goff, Z.; Accorsi, R. Mathematical modeling of food and agriculture distribution. In Sustainable Food Supply Chains; Academic Press: Cambridge, MA, USA, 2019; pp. 145–158. ISBN 9780128134115. [Google Scholar]
- Bosona, T.G. Cluster Building and Logistics Network Integration of Local Food Supply Chain. Biosyst. Eng. 2011, 108, 293–302. [Google Scholar] [CrossRef]
- Suraraksa, J.; Shin, K.S. Urban transportation network design for fresh fruit and vegetables using GIS–The case of Bangkok. Appl. Sci. 2019, 9, 5048. [Google Scholar] [CrossRef]
- Amorim, P.; Almada-Lobo, B. The impact of food perishability issues in the vehicle routing problem. Comput. Ind. Eng. 2014, 67, 223–233. [Google Scholar] [CrossRef]
- Estrada-moreno, A.; Hirsch, P.; Juan, A.A. A biased-randomized algorithm for redistribution of perishable food inventories in supermarket chains. Int. Trans. Oper. Res. 2019, 26, 2077–2095. [Google Scholar] [CrossRef]
- Orjuela-castro, J.A.; Sepulveda-garcia, D.A. Effects of Using Multimodal Transport over the Logistics Performance of the Food Chain of Uchuva Effects of Using Multimodal Transport over the Logistics Performance of the Food Chain of Uchuva. In Workshop on Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Coltro, L.; Karaski, T.U. Environmental indicators of banana production in Brazil: Cavendish and Prata varieties. J. Clean. Prod. 2019, 207, 363–378. [Google Scholar] [CrossRef]
- Craig, A.J.; Blanco, E.E.; Craig, A.J.; Blanco, E.E.; Sheffi, Y. ESD Working Paper Series a Supply Chain View of Product Carbon Footprints: Results from the Banana Supply Chain ESD-WP-2012-25 a Supply Chain View of Product Carbon Footprints: Results from the Banana Supply Chain. 2012. Available online: https://dspace.mit.edu/handle/1721.1/102939 (accessed on 1 August 2022).
- Iriarte, A.; Almeida, M.G.; Villalobos, P. Carbon footprint of premium quality export bananas: Case study in Ecuador, the world’s largest exporter. Sci. Total Environ. 2014, 472, 1082–1088. [Google Scholar] [CrossRef]
- Roibás, L.; Elbehri, A.; Hospido, A. Evaluating the sustainability of Ecuadorian bananas: Carbon footprint, water usage and wealth distribution along the supply chain. Sustain. Prod. Consum. 2015, 2, 3–16. [Google Scholar] [CrossRef]
- dos Santos, S.F.; Cardoso, R.d.C.V.; Borges, Í.M.P.; Almeida, A.C.e.; Andrade, E.S.; Ferreira, I.O.; Ramos, L.d.C. Post-harvest losses of fruits and vegetables in supply centers in Salvador, Brazil: Analysis of determinants, volumes and reduction strategies. Waste Manag. 2020, 101, 161–170. [Google Scholar] [CrossRef]
- Kamalakkannan, S.; Wasala, W.M.C.B.; Kulatunga, A.K.; Gunawardena, C.R.; Bandara, D.M.S.P.; Jayawardana, J.; Rathnayake, R.M.R.N.K.; Wijewardana, R.M.N.A.; Weerakkody, W.A.P.; Ferguson, I.; et al. Life Cycle Assessment of Food Loss Impacts: Case of Banana Postharvest Losses in Sri Lanka. Procedia CIRP 2022, 105, 859–864. [Google Scholar] [CrossRef]
- Fiore, M.; Colantuono, F.; Conto, F.; Adamashvili, N. Investigating the role of community of practice for sharing knowledge in agriculture sector. J. Glob. Bus. Adv. 2020, 13, 162. [Google Scholar] [CrossRef]
Source | Decision Addressed | Modeling Technique | Obj. | Solution Approach | Performance Measures | Entities | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Facility Locating | No. of facilities | Product flow | Facility capacities | Packing method | Route Optimization | Producer clustering | Inventory | Demand distribution | Cost balancing | Area allocation | Production quantity | Processed quantity | Waste | Facility availability | Transport mode | Travel time | Travel distance | Fairness among drivers | MILP | GP | RA - COG | JIAP | ILP | MINLP | Single | Multiple | Ε-Constraint | DA | WSM | VPA | NCM | Route Logix software | PSO | SA | GP | Minmax Weighting | AHP | OWA | CEA | Losses | Lead time | No. of clients | Transport cost | No. of suppliers | Total cost | Setup cost | Co2 emission | Distance | No. of routes | Gros margin | Production Cost | No. of locations | Coverage | No. of jobs | Producer | Collector | Processor/Factory | Distribution Center | Wholesaler | Retailer | |
[1] | x | x | x | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||||||||
[4] | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||||||
[10] | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
[50] | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||||
[55] | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||
[56] | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||||
[57] | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||||
[59] | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||||
[60] | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||
[61] | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||||||
[65] | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||||
[66] | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||||
[48] | x | x | x | x | x | x | x | x | x | x | x | x |
Source | Decision Addressed | Modeling Technique | Obj. | Solution Approach | Performance Measures | Entities | |||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Product Flow | Route Selection | Vehicle Selection | Vehicle Speed | Facility Locating | Customer Allocating | Farmer Allocating | Optimal Parcel Pickup | Perishability | Food safety Risk | MINLP | MILP | FCCP | FO | DSM | LP | Single | Multiple | PSO | SA | FA | E-Constraint | NSGA-II | DA | MCDM | BRT | GA | FS | CLD | WOA | MOEA | Lead time | Transport Cost | Total Cost | Penalty Cost | Distance | No. of Vehicles | Co2 Emission | Supply Cost | Producer/Farmer | Collector/pickup Center | Processor/Factory | Distributor/Wholesaler | Vehicle Depot | Retailer | |
[37] | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||||||||||||||||
[52] | x | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||||
[53] | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||
[58] | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||
[62] | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||
[63] | x | x | x | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||
[36] | x | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||||
[67] | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||
[68] | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||
[69] | x | x | x | x | x | x | x |
Stage | Existing | New Configuration | ||||||
---|---|---|---|---|---|---|---|---|
PHL | Net GWP | PHL | Net GWP | |||||
(kg) | Production (kgCo2eq) | PHL (kgCo2eq) | Transport (tCo2eq) | (kg) | Production (kgCo2eq) | PHL (kgCo2eq) | Transport tCo2eq | |
Farmer | 61.99 | 557.66 | 17.36 | 61.99 | 557.66 | 17.36 | ||
Farmer–Collector | 36.35 | 18.27 | ||||||
Collector | 34.78 | 9.74 | 28.33 | 7.93 | ||||
Collector–Wholesaler | 296.56 | 308.93 | ||||||
Wholesaler | 82.30 | 23.04 | 83.09 | 23.27 | ||||
Wholesaler-Retailer | 390.57 | 285.51 | ||||||
Retailer | 64.82 | 22.09 | 65.22 | 22.22 | ||||
Total | 243.89 | 724.10 (tCo2eq) | 238.63 | 613.47 (tCo2eq) | ||||
Total travel distance | 602,954.94 km | 479,526.55 km | ||||||
Lead times | 47.39 h | 33.74 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandrasiri, C.; Dharmapriya, S.; Jayawardana, J.; Kulatunga, A.K.; Weerasinghe, A.N.; Aluwihare, C.P.; Hettiarachchi, D. Mitigating Environmental Impact of Perishable Food Supply Chain by a Novel Configuration: Simulating Banana Supply Chain in Sri Lanka. Sustainability 2022, 14, 12060. https://doi.org/10.3390/su141912060
Chandrasiri C, Dharmapriya S, Jayawardana J, Kulatunga AK, Weerasinghe AN, Aluwihare CP, Hettiarachchi D. Mitigating Environmental Impact of Perishable Food Supply Chain by a Novel Configuration: Simulating Banana Supply Chain in Sri Lanka. Sustainability. 2022; 14(19):12060. https://doi.org/10.3390/su141912060
Chicago/Turabian StyleChandrasiri, Chethana, Subodha Dharmapriya, Janappriya Jayawardana, Asela K. Kulatunga, Amanda N. Weerasinghe, Chethana P. Aluwihare, and Dilmini Hettiarachchi. 2022. "Mitigating Environmental Impact of Perishable Food Supply Chain by a Novel Configuration: Simulating Banana Supply Chain in Sri Lanka" Sustainability 14, no. 19: 12060. https://doi.org/10.3390/su141912060
APA StyleChandrasiri, C., Dharmapriya, S., Jayawardana, J., Kulatunga, A. K., Weerasinghe, A. N., Aluwihare, C. P., & Hettiarachchi, D. (2022). Mitigating Environmental Impact of Perishable Food Supply Chain by a Novel Configuration: Simulating Banana Supply Chain in Sri Lanka. Sustainability, 14(19), 12060. https://doi.org/10.3390/su141912060