The Impact of Factor Market Distortion on the Efficiency of Technological Innovation: A Spatial Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. Definition, Calculation, and Extension of the Efficiency of Technological Innovation
2.2. Definition, Calculation, and Extension of Factor Market Distortion
2.3. Research on the Nexus of Factor Market Distortion and Technological Innovation
3. Study Design
3.1. Spatial Correlation Test Method
3.2. Spatial Econometric Regression Model
3.3. Variables and Data
4. Results and Discussion
4.1. Geographical Distribution and Spatial Autocorrelation of Technological Innovation Efficiency
4.2. Identification of Spatial Econometric Model
4.3. Empirical Regression Results
4.4. Endogeneity Analysis
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Bureau of Statistics of China. Available online: http://www.stats.gov.cn/ztjc/zthd/bwcxljsm/70znxc/201907/t20190723_1680978.html (accessed on 23 July 2019).
- Shmelev, S.E.; Sagiyeva, R.K.; Kadyrkhanova, Z.M.; Chzhan, Y.Y.; Shmeleva, I.A. Comparative Sustainability Analysis of Two Asian Cities: A Multidimensional Assessment of Taipei and Almaty. J. Asian Financ. Econ. Bus. 2018, 5, 143–155. [Google Scholar] [CrossRef]
- Chen, Y.P. Comparative Analysis of the Input-Output Efficiency of Science and Technology in China and the United States——Based on the Contribution of R&D Investment to Economic Growth. Technoecon. Manag. Res. 2019, 6, 20–24. [Google Scholar]
- You, J.H. Stages of Development, Government Functions and China’s Urbanization Process: Why Does China’s Urbanization Lag? Ind. Econ. Res. 2022, 2, 14–26+84. [Google Scholar]
- Han, J.W.; Miao JJShi, Y.; Miao, Z. Can the semi-urbanization of population promote or inhibit the Improvement of energy efficiency in China? Sustain. Prod. Consum. 2021, 26, 921–932. [Google Scholar] [CrossRef]
- Li, J.; Pan, Y.Z. Factor Market Distortion and China’s Innovation Capability—Based on China’s Provincial Panel Data Analysis. J. Cent. Univ. Financ. Econ. 2018, 3, 87–99. [Google Scholar]
- Zhang, E.Z. How China Climbs the Global Value Chain—Also Commentary on “China Climbing the Global Value Chain: Realization Mechanism and Strategic Adjustment”. Jianghai Acad. J. 2017, 1, 230–233. [Google Scholar]
- Wang, X.G.; Zhang, Y.W.; Liu, Y. Accelerate the construction of a unified national market. Enterp. Manag. 2022, 6, 18–21. [Google Scholar]
- Ray, S.C.; Desli, E. Productivity growth, technical progress, and efficiency change in industrialized countries: Comment. Am. Econ. Rev. 1997, 87, 1033–1039. [Google Scholar]
- Bai, J.H.; Bian, Y.C. Factor Market Distortion and Efficiency Loss of China’s Innovative Production. China Ind. Econ. 2016, 11, 39–55. [Google Scholar]
- Chen, Y.E.; Li, X.; Li, W. Analysis of Influencing Factors and Spatial Heterogeneity of China’s Provincial S&T Innovation Efficiency. China Soft Sci. 2021, 4, 137–149. [Google Scholar]
- Cinzia, D.; Kristiaan, K.; Thyago, N.; Robin, C.S. Empirical surveys of frontier applications: A meta-review. Int. Trans. Oper. Res. 2020, 27, 709–738. [Google Scholar]
- Li, L.S.; Bao, Y.F.; Liu, J. Research on the Impact of Intelligence on Total Factor Productivity of China’s Manufacturing Industry. Sci. Res. 2020, 4, 609–618+722. [Google Scholar]
- Shmelev, S.E.; Shmeleva, I.A. (Eds.) Sustainability Analysis: An Interdisciplinary Approach; Palgrave: London, UK, 2012; 335p. [Google Scholar]
- Li, D.H. Industrial specialization agglomeration, diversification agglomeration and regional innovation efficiency: An empirical investigation based on spatial econometric model. Technoecon. Manag. Res. 2022, 5, 111–117. [Google Scholar]
- Bai, J.H. On regional innovation efficiency: Evidence from panel data of China’s different provinces. Reg. Stud. 2013, 47, 773–788. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Li, Y. Natural resources, urbanization and regional innovation capabilities. Resour. Policy 2020, 66, 101643. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Ma, C. Chinese innovation-driving factors: Regional structure, innovation effect, and economic development–Empirical research based on panel data. Ann. Reg. Sci. 2017, 59, 43–68. [Google Scholar] [CrossRef]
- Acharya, V.; Xu, Z. Financial dependence and innovation: The case of public versus private firms. J. Financ. Econ. 2017, 124, 223–243. [Google Scholar] [CrossRef]
- Alguezaui, S.; Filieri, R. Investigating the role of social capital in innovation: Sparse versus dense network. J. Knowl. Manag. 2010, 14, 891–909. [Google Scholar] [CrossRef]
- Dakhli, M.; De Clercq, D. Human capital, social capital, and innovation: A multi-country study. Entrep. Region. Dev. 2004, 16, 107–128. [Google Scholar] [CrossRef]
- Shen, T.; Chen, H.H.; Zhao, D.H.; Qiao, S. Examining the impact of environment regulatory and resource endowment on technology innovation efficiency: From the microdata of Chinese renewable energy enterprises. Energy Rep. 2022, 8, 3919–3929. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, Y.; Liu XZhang, H. Can public R&D subsidy facilitate firms’ exploratory innovation? The heterogeneous effects between central and local subsidy programs. Res. Policy 2021, 50, 104221. [Google Scholar]
- Broekel, T. Do cooperative research and development (R&D) subsidies stimulate regional innovation efficiency? Evidence from Germany. Reg. Stud. 2015, 49, 1087–1110. [Google Scholar]
- Guan, J.C.; Yam, R.C.M. Effects of government financial incentives on firms’ innovation performance in China: Evidences from Beijing in the 1990s. Res. Policy 2015, 44, 273–282. [Google Scholar] [CrossRef]
- Alexander, E.A. The effects of legal, normative, and cultural–cognitive institutions on innovation in technology alliances. Manag. Int. Rev. 2012, 52, 791–815. [Google Scholar] [CrossRef]
- Blind, K.; Petersen, S.S.; Riillo, C. The impact of standards and regulation on innovation in uncertain markets. Res. Policy 2017, 46, 249–264. [Google Scholar] [CrossRef]
- Bhagwati, J.; Ramaswami, V.K. Domestic Distortions, Tariffs and the Theory of Optimum Subsidy. J. Political Econ. 1969, 77, 1011–1013. [Google Scholar] [CrossRef]
- Chacholiades, M. International Trade Theory and Policy; McGraw-Hill: Auckland, New Zealand; Singapore, 1978. [Google Scholar]
- Ljungwall, C.; Tingvall, P.G. Is China Different? A Meta-Analysis of the Growth-Enhancing Effect from R&D Spending in China. China Econ. Rev. 2015, 36, 272–278. [Google Scholar]
- Miao, J.J.; Han, J.W. Market Distortion of Factors of Production and China’s Industrial Structure Imbalance. Commer. Res. 2020, 12, 53–65. [Google Scholar]
- Zhao, Z.F.; Shi, J.C. Loss of Industrial Efficiency in China’s Factor Market Distortion: An Empirical Analysis Based on the DEA Method. China Ind. Econ. 2006, 10, 40–48. [Google Scholar]
- Zhang, J.; Zhou, X.Y.; Li, Y. Distortion of the factor market restrains the R&D of Chinese enterprises? Econ. Res. J. 2011, 8, 78–91. [Google Scholar]
- Sun, C.Z.; Lin, Y.Y. The impact of factor market distortion on marine economic efficiency in China’s coastal areas. Mar. Sci. Bull. 2021, 4, 369–378+386. [Google Scholar]
- Geng, X.H.; Wu, X.R.; Zhao, W. Distortion of China’s factor market and loss of economic efficiency: Decomposition and influence mechanism. Inq. Into Econ. Issues 2021, 6, 30–43. [Google Scholar]
- Bian, Y.C.; Wu, L.H.; Bai, J.H.; Yang, Y.Z. Does the distortion of factor market restrain the growth of green economy? World Econ. Pap. 2021, 2, 105–119. [Google Scholar]
- Liu, W.R. The impact of factor market distortions on the high-quality development of manufacturing. Econ. Probl. 2021, 9, 74–82. [Google Scholar]
- Wu, G.S.; Yao, S. Research on the measurement and effect of agricultural green total factor productivity under factor market distortion. Ecol. Econ. 2021, 1, 96–102+115. [Google Scholar]
- Li, L.; Liu, N.Q. Factor Market Distortion and Enterprise Cost Markup—An Empirical Analysis Based on Micro Data of Manufacturing Enterprises. Commer. Res. 2022, 1, 1–11. [Google Scholar]
- Fan, A.J.; Zheng, Z.Q.; Ma, Y.J. Factor Market Distortion and Enterprise Export Product Quality: Theoretical Mechanism and Empirical Test. Rev. Ind. Econ. (Shandong Univ.) 2021, 4, 119–143. [Google Scholar]
- Wang, K.; Hu, F. The influence of factor market distortions on the behavior of foreign direct investment of enterprises: Micro-evidence from Chinese listed companies. Int. Bus. (J. Univ. Int. Bus. Econ.) 2021, 3, 82–96. [Google Scholar]
- Yi, Y.Y.; Ji, N. Research on the influence of market distortion of R&D factors on innovation performance of high-tech industries. J. Beijing Univ. Posts Telecommun. (Soc. Sci. Ed.) 2021, 1, 60–68. [Google Scholar]
- Sen, Q.; Dong, H.Z.; Zi, X.G.; Zhang, T. Factor price distortions, environmental regulation and innovation efficiency: An empirical study on China’s power enterprises. Energy Policy 2022, 164, 112887. [Google Scholar]
- Luo, F.; Shi, J.L. Factor Market Distortion, Innovation and Regional Economic Growth: An Analysis Based on China’s Provincial Panel Data. Res. Dev. 2021, 3, 8–14. [Google Scholar]
- Shi, D.Q.; Zhang, W.D.; He, S. Does factor market distortion inhibit regional innovation efficiency? Forum Sci. Technol. China 2016, 6, 69–74. [Google Scholar]
- Li, X.S.; Wang, C. Does factor market distortion inhibit the improvement of innovation efficiency? Empirical analysis based on China’s inter-provincial dynamic panel data. J. Yunnan Univ. Financ. Econ. 2019, 3, 24–36. [Google Scholar]
- Zhou, J.; Gao, J.; Zhou, Y.W.Q. The theory of spatial econometrics model setting and its new progress. J. Econ. 2016, 2, 161–190. [Google Scholar]
- Lin, G.P.; Long, Z.H.; Wu, M. A Spatial Econometric Empirical Analysis of Regional Economic Convergence in China: 1978–2002. China Econ. Q. 2005, 4, 67–82. [Google Scholar]
- Li, L.; Tian, Y.X.; Zhang, G.X.; Zhang, H.L. Spatial Weight Matrix Construction and Economic Space Gravitational Effect Analysis—An Empirical Test in the Background of the European Debt Crisis. Syst. Eng.-Theory Pract. 2015, 8, 1918–1927. [Google Scholar]
- Han, J.W.; Miao, J.J.; Du, G.; Yan, D.; Miao, Z. Can market-oriented reform inhibit carbon dioxide emissions in China? A new perspective from factor market distortion. Sustain. Prod. Consum. 2021, 27, 1498–1513. [Google Scholar] [CrossRef]
- Hua, C.; Miao, J.J.; Liu, W.P.; Du, G.; Wang, X. The impact mechanism of industrial agglomeration on energy efficiency-Evidence from producer service industry in China. Energy Sources Part B Econ. Plan. Policy 2021, 16, 740–758. [Google Scholar] [CrossRef]
- Elhorst, J.P. Specification and estimation of spatial panel data models. Int. Reg. Sci. Rev. 2003, 26, 244–268. [Google Scholar] [CrossRef]
- Miao, J.J.; Hua, C.; Feng, J.C. The upgrading effect and carbon emission of industrial synergistic agglomeration: An empirical analysis based on a spatial econometric model. Ecol. Econ. 2020, 2, 28–33. [Google Scholar]
- Zhao, Z.Y.; Liu, X.L.; Lu, B.Y. Estimation of China’s Factor Output Elasticity. Econ. Theory Bus. Manag. 2006, 6, 5–11. [Google Scholar]
- Wang, X.; Hua, C.; Miao, J. The Spatial Effect of Factor Market Distortion on Green Agriculture Development in China. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 1–17. [Google Scholar] [CrossRef]
- Shan, H.J. Re-estimation of China’s capital stock K: 1952~2006. J. Quant. Technol. Econ. 2008, 10, 17–31. [Google Scholar]
- Shmelev, S.E. (Ed.) Sustainable Cities Reimagined: Multidimensional Assessment and Smart Solutions; Routledge: London, UK, 2019; 335p. [Google Scholar]
- Zhu, J.; Xia, Y. Spatial econometric analysis of the spillover from the efficiency of scientific and technological innovation to the regional economy. J. Sci. Teach. Coll. Univ. 2021, 10, 16–20. [Google Scholar]
- Guo, J.; Xiao, H. A Study on the Impact of Factor Market Distortion on Regional Innovation Efficiency. Sci.-Technol. Manag. 2019, 5, 27–33. [Google Scholar]
- Li, X.S.; Wang, C. Does factor market distortion inhibit the improvement of innovation efficiency? Based on the perspective of regional differences. J. Nanjing Audit Univ. 2019, 1, 48–58. [Google Scholar]
Variable | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
FDI (Foreign direct investment, RMB 100 million) | 206.9635 | 253.8656 | 0.4426656 | 1210.101 |
HR (Human capital, year) | 24.73188 | 9.777492 | 6.712547 | 66.88777 |
INDH (Advanced industrial structure) | 0.9652054 | 0.4958656 | 0.4943743 | 4.236677 |
OPEN (Openness, RMB 100 million) | 3690.56 | 8338.981 | 11.65556 | 84,195.82 |
INF (Infrastructure level, kilometer) | 113,606.2 | 72,853.93 | 6078 | 329,950.5 |
RDY (Innovation output, pieces per item) | 23,439.15 | 45,594.98 | 70 | 332,652 |
RDL (Innovative labor input, people per year) | 79,668.85 | 97,562.6 | 848 | 565,287 |
RDK (Innovative capital investment, RMB 100 million) | 466.7934 | 723.0964 | 1.961 | 4820.477 |
GDP (Gross domestic product, RMB 100 million) | 14,002.23 | 14,576.3 | 300.13 | 89,705.23 |
L (Labor, 10,000 people) | 2531.93 | 1684.57 | 279 | 6767 |
K (Capital, RMB 100 million) | 21,576.79 | 21,214.93 | 753.07 | 115,917.3 |
Year | Wg | We | Wc | |||
---|---|---|---|---|---|---|
Moran’s I | Z-Value | Moran’s I | Z-Value | Moran’s I | Z-Value | |
2001 | 0.197 *** | 2.509 | 0.146 ** | 1.821 | 0.212 *** | 2.731 |
2002 | 0.199 *** | 2.527 | 0.145 ** | 1.805 | 0.214 *** | 2.746 |
2003 | 0.202 *** | 2.543 | 0.143 ** | 1.788 | 0.216 *** | 2.761 |
2004 | 0.204 *** | 2.560 | 0.142 ** | 1.772 | 0.218 *** | 2.776 |
2005 | 0.206 *** | 2.577 | 0.141 ** | 1.756 | 0.220 *** | 2.790 |
2006 | 0.208 *** | 2.593 | 0.140 ** | 1.739 | 0.222 *** | 2.804 |
2007 | 0.210 *** | 2.609 | 0.138 ** | 1.723 | 0.224 *** | 2.818 |
2008 | 0.212 *** | 2.625 | 0.137 ** | 1.707 | 0.226 *** | 2.832 |
2009 | 0.214 *** | 2.640 | 0.136 ** | 1.691 | 0.227 *** | 2.845 |
2010 | 0.216 *** | 2.656 | 0.135 ** | 1.675 | 0.229 *** | 2.858 |
2011 | 0.218 *** | 2.671 | 0.133 ** | 1.660 | 0.231 *** | 2.871 |
2012 | 0.220 *** | 2.686 | 0.132 * | 1.644 | 0.232 *** | 2.884 |
2013 | 0.221 *** | 2.701 | 0.131 * | 1.628 | 0.234 *** | 2.896 |
2014 | 0.223 *** | 2.716 | 0.130 * | 1.613 | 0.236 *** | 2.908 |
2015 | 0.225 *** | 2.730 | 0.128 * | 1.598 | 0.237 *** | 2.920 |
2016 | 0.227 *** | 2.745 | 0.127 * | 1.582 | 0.239 *** | 2.932 |
2017 | 0.229 *** | 2.759 | 0.126 * | 1.567 | 0.240 *** | 2.943 |
Statistics | Wg | We | Wc |
---|---|---|---|
LM-lag | 498.1181 *** | 44.0582 *** | 486.4842 *** |
Robust LM-lag | 732.8229 *** | 70.7428 *** | 673.6970 *** |
LM-err | 62.5318 *** | 1.8092 | 66.7600 *** |
Robust LM-err | 297.2366 *** | 28.4938 *** | 253.9728 *** |
Wald-lag | 107.19 *** | 206.57 *** | 103.87 *** |
Wald-err | 57.51 *** | 207.62 *** | 109.18 *** |
LR-lag | 114.19 *** | 167.22 *** | 96.03 *** |
LR-err | 97.25 *** | 167.73 *** | 94.98 *** |
SFE LR-test | 1934.0749 *** | 2043.6645 *** | 1940.6092 *** |
TFE LR-test | 86.2638 *** | 383.8302 *** | 57.6661 *** |
Hausman test | 196.6666 *** | 320.2763 *** | 195.4008 *** |
Variable | Wg | We | Wc |
---|---|---|---|
DL | −0.003 ** | −0.0087 *** | −0.0026 * |
DK | −0.0160 *** | −0.0207 *** | −0.0145 *** |
FDI | 0.0030 | −0.0052 | −0.0019 |
HR | 0.0417 ** | −0.0601 *** | 0.0335 * |
INDH | 0.0345 *** | −0.0577 *** | 0.0686 |
OPEN | 0.0022 | −0.0239 *** | −0.0108 ** |
INF | 0.0240 * | 0.0337 ** | 0.0203 |
W*DL | −0.0035 | −0.0109 *** | 0.0064 |
W*DK | 0.0048 | −0.0240 *** | 0.0217 |
W*FDI | −0.0177 ** | 0.0780 *** | −0.0375 *** |
W*HR | 0.1993 *** | −0.0456 | 0.2667 *** |
W*INDH | 0.0888 *** | −0.0917 *** | −0.0336 |
W*OPEN | −0.0174 | 0.0598 *** | −0.0921 *** |
W*INF | 0.0968 *** | 0.1510 *** | 0.1363 *** |
W*dep.var. | 0.9044 *** | −0.0954 | 0.5794 *** |
R2 | 0.9734 | 0.9975 | 0.9979 |
log-lik | 808.0711 | 960.0760 | 982.2676 |
Variable | Wg | We | Wc | |||
---|---|---|---|---|---|---|
Direct Effect | Indirect Effect | Direct Effect | Indirect Effect | Direct Effect | Indirect Effect | |
DL | −0.0060 ** | −0.0584 | −0.0085 *** | −0.0094 *** | −0.0020 ** | 0.0104 |
DK | −0.0207 *** | −0.0873 | −0.0203 *** | −0.0205 *** | −0.0128 *** | 0.0288 |
FDI | −0.0050 | −0.1565 * | −0.006 * | 0.0736 *** | −0.0074 * | −0.0868 *** |
HR | 0.0450 ** | 1.6286 *** | 0.0595 *** | −0.0377 | 0.0016 | 0.5539 *** |
INDH | −0.0045 | 0.5559 *** | 0.0559 *** | −0.0804 *** | 0.0796 *** | −0.1664 * |
OPEN | −0.0058 | −0.1545 | −0.0249 *** | 0.0574 *** | −0.0248 *** | −0.2209 *** |
INF | 0.0162 | 0.7503 *** | 0.0301 * | 0.1385 *** | 0.0023 | 0.2801 *** |
Variable | Coefficient and Significance | |||
---|---|---|---|---|
Constant | 0.192 *** | 0.124 *** | −2.01366 *** | 0.81654 *** |
DL | −0.38095 *** | |||
DL(−1) | 0.00718 *** | |||
DL(−2) | 0.00548 *** | |||
DK | 0.05750 *** | |||
DK(−1) | −0.00777 *** | |||
DK(−2) | −0.02880 *** |
Variable | Coefficient | Variable | Coefficient |
---|---|---|---|
DL | −0.0044 ** | W*DL | 0.0013 |
DK | −0.0225 *** | W*DK | 0.0174 |
FDI | −0.0032 | W*FDI | −0.0145 * |
HR | −0.0528 *** | W*HR | 0.1605 *** |
INDH | −0.0442 *** | W*INDH | 0.0219 |
OPEN | 0.0018 | W*OPEN | −0.0345 *** |
INF | −0.0197 | W*INF | 0.0477 ** |
Uncentered Rsq | 0.9952 | ||
Cragg–Donald Wald F statistics | 119.943 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Hua, C.; Miao, J. The Impact of Factor Market Distortion on the Efficiency of Technological Innovation: A Spatial Analysis. Sustainability 2022, 14, 12064. https://doi.org/10.3390/su141912064
Lu Q, Hua C, Miao J. The Impact of Factor Market Distortion on the Efficiency of Technological Innovation: A Spatial Analysis. Sustainability. 2022; 14(19):12064. https://doi.org/10.3390/su141912064
Chicago/Turabian StyleLu, Qian, Chao Hua, and Jianjun Miao. 2022. "The Impact of Factor Market Distortion on the Efficiency of Technological Innovation: A Spatial Analysis" Sustainability 14, no. 19: 12064. https://doi.org/10.3390/su141912064
APA StyleLu, Q., Hua, C., & Miao, J. (2022). The Impact of Factor Market Distortion on the Efficiency of Technological Innovation: A Spatial Analysis. Sustainability, 14(19), 12064. https://doi.org/10.3390/su141912064