Dual-Level Voltage Bipolar Thermal Energy Harvesting System from Solar Radiation in Malaysia
Abstract
:1. Introduction
2. Thermoelectric Generator
2.1. TEG in the Series Array Configuration
2.2. TEG in the Parallel Array Configuration
3. Method and Instrument of Preliminary Work for Real-Time Data
4. Energy Harvesting Circuit Design and Development
4.1. Topology of the Harvesting Circuit
4.2. Thermal Harvesting Circuit
5. Result
5.1. Individual Stage Experimental Testing
5.2. Circuit Experimental Test
5.3. Circuit Field Test
6. Discussion
7. Conclusions
8. Directions for Future Research
- -
- Comparison of different roofing materials to harvest thermal energy.
- -
- The development of integrated TEHS and roofing materials for flexibility, mobility, and ease of installation.
- -
- Integrate the TEHS system with IoT technology.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Nomenclature | |
RE | Renewable energy |
FiT | Feed-in-Tariff |
NEM | Net energy metering |
PCM | Phase change material |
ZT | Figure of merit |
TEHS | Thermal energy harvesting system |
TEG | Thermoelectric generator |
LV | Low voltage |
STEG | Solar thermoelectric generator |
Voc | Open-circuit voltage |
TEH | Thermal energy harvesting |
CPV | Concentrated photovoltaic |
CPVT | Concentrated photovoltaic thermal |
MCHP | Micro-channel heat pipe |
DC | Direct current |
HV | High voltage |
PCB | Printed circuit board |
PV | Photovoltaic |
TEM | Thermoelectric generator module |
DLVB | Dual-level voltage bipolar |
MPPT | Maximum power point tracking |
ZCS | Zero-crossing switch |
DCM | Discontinuous mode |
ADA | Absolute data analysis |
MPP | Maximum power point |
PCB | Printed circuit board |
DPDT | Double-pole double-throw |
PWM | Pulse width modulation |
Symbol | |
QH | Heat source |
QC | Heat dispersed |
RTEG | TEG internal resistance |
TH | Hot side temperature |
TC | Cold side temperature |
ΔT | Temperature difference |
Tamb | Ambient temperature |
I | Current |
Rload | Load resistance |
V | Voltage |
Pmax | Maximum power |
ηp | Power efficiency |
Pout | Output power |
PTEG | TEG input power |
N | Number of TEG modules |
Subscript | |
oc | Open-circuit |
°C | Degrees Celsius |
µ | Micro |
W | Watt |
mW | milliwatt |
Ω | Ohm |
H | Hot |
C | Cold |
V | Volt |
Greek symbol | |
α | Seebeck coefficient |
λ | Thermal conductivity |
K | Thermal conductance |
References
- Zulakmal, M.Y.; Fudholi, A.; Rukman, N.S.; Nazri, N.S.; Yen, C.H.; Asim, N.; Mat, S.; Sopian, K. Computational fluid dynamics analysis of thermoelectric generators performance under solar photovoltaic-thermal (PVT) system. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 56, 223–232. [Google Scholar]
- Rejab, M.N.; Johar, M.A.; Wan Jamaludin, W.A.; Saleh, U.A. Rooftop and Attic Area Thermal Energy from Solar Radiation as Renewable Energy in Malaysia. In Proceedings of the 2021 9th International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), Sarawak, Malaysia, 15–17 October 2021. [Google Scholar]
- Imran, M.; Alafiza, N.; Zafuan, A.; Kaassim, M.; Hashim, M. Pathways and challenges of solar thermal utilisation in the industry: ASEAN and Malaysia scenarios. Sustain. Energy Technol. Assess. 2022, 52, 102046. [Google Scholar]
- Félix-Herrán, L.C.; García-Juárez, A.; García-Delgado, L.A.; González-Aguayo, P.S.; Lozoya-Santos, J.D.J.; Noriega, J.R. Characterization System for Heat-Energy to Electric-Energy Conversion from Concrete by Means of a Thermoelectric Module. Sensors 2022, 22, 1881. [Google Scholar] [CrossRef] [PubMed]
- Gautam, A.; Chamoli, S.; Kumar, A.; Singh, S. A review on technical improvements, economic feasibility and world scenario of solar water heating system. Renew. Sustain. Energy Rev. 2017, 68, 541–562. [Google Scholar] [CrossRef]
- Rimar, M.; Fedak, M.; Vahovsky, J.; Kulinov, A.; Oravec, P.; Kulikova, O.; Smajda, M.; Kana, M. Performance evaluation of elimination of stagnation of solar thermal systems. Processes 2020, 8, 621. [Google Scholar] [CrossRef]
- Sun, Z.; Luo, D.; Wang, R.; Li, Y.; Yan, Y.; Cheng, Z.; Chen, J. Evaluation of energy recovery potential of solar thermoelectric generators using a three-dimensional transient numerical model. Energy 2022, 256, 124667. [Google Scholar] [CrossRef]
- Shoeibi, S.; Kargarsharifabad, H.; Sadi, M.; Arabkoohsar, A.; Mirjalily, S.A.A. A review on using thermoelectric cooling, heating, and electricity generators in solar energy applications. Sustain. Energy Technol. Assess. 2022, 52, 102105. [Google Scholar] [CrossRef]
- Javadi, M.A.; Ahmadi, M.H.; Khalaji, M. Exergetic, economic, and environmental analyses of combined cooling and power plants with parabolic solar collector. Environ. Prog. Sustain. Energy 2020, 39, 13322. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Abdelgaied, M.; Harby, K.; Eisa, A. Augmentation of diurnal and nocturnal distillate of modified tubular solar still having copper tubes filled with PCM in the basin. J. Energy Storage 2020, 32, 101992. [Google Scholar] [CrossRef]
- Srivastava, S.; Deepak, C.S. Application of nano-PCMs in solar Photovoltaic. J. WEENTECH Proc. Energy 2020, 6, 47–58. [Google Scholar] [CrossRef]
- Mandal, S.K.; Kumar, S.; Singh, P.K.; Mishra, S.K.; Bishwakarma, H.; Choudhry, N.P.; Nayak, R.K.; Das, A.K. Performance investigation of CuO-paraffin wax nanocomposite in solar water heater during night. Thermochim. Acta 2019, 671, 36–42. [Google Scholar] [CrossRef]
- Shoeibi, S.; Kargarsharifabad, H.; Rahbar, N. Effects of nano-enhanced phase change material and nano-coated on the performance of solar stills. J. Energy Storage 2021, 42, 103061. [Google Scholar] [CrossRef]
- Shoeibi, S.; Rahbar, N.; Abedini Esfahlani, A.; Kargarsharifabad, H. Energy matrices, economic and environmental analysis of thermoelectric solar desalination using cooling fan. J. Therm. Anal. Calorim. 2022, 147, 9645–9660. [Google Scholar] [CrossRef]
- Demir, M.E.; Dincer, I. Development of an integrated hybrid solar thermal power system with thermoelectric generator for desalination and power production. Desalination 2017, 404, 59–71. [Google Scholar] [CrossRef]
- Al-Waeli, A.H.A.; Sopian, K.; Kazem, H.A.; Chaichan, M.T. Evaluation of the electrical performance of a photovoltaic thermal system using nano-enhanced paraffin and nanofluids. Case Study Therm. Eng. 2020, 21, 100678. [Google Scholar] [CrossRef]
- Olia, H.; Torabi, M.; Bahiraei, M.; Ahmadi, M.H.; Goodarzi, M.; Safaei, M.R. Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: State-of-the-art. Appl. Sci. 2019, 9, 463. [Google Scholar] [CrossRef]
- Syam Sundar, L.; Mesfin, S.; Tefera Sintie, Y.; Punnaiah, V.; Chamkha, A.J.; Sousa, A. A Review on the Use of Hybrid Nanofluid in a Solar Flat Plate and Parabolic Trough Collectors and Its Enhanced Collector Thermal Efficiency. J. Nanofluids 2021, 10, 147–171. [Google Scholar] [CrossRef]
- Zanganeh, P.; Goharrizi, A.S.; Ayatollahi, S.; Feilizadeh, M. Nano-coated condensation surfaces enhanced the productivity of the single-slope solar still by changing the condensation mechanism. J. Clean. Prod. 2020, 265, 121758. [Google Scholar] [CrossRef]
- Rubio, E.; Porta, M.A.; Fernández, J.L. Cavity geometry influence on mass flow rate for single and double slope solar stills. Appl. Therm. Eng. 2000, 20, 1105–1111. [Google Scholar] [CrossRef]
- Shoeibi, S.; Kargarsharifabad, H.; Rahbar, N.; Khosravi, G.; Sharifpur, M. An integrated solar desalination with evacuated tube heat pipe solar collector and new wind ventilator external condenser. Sustain. Energy Technol. Assess. 2022, 50, 101857. [Google Scholar] [CrossRef]
- Tohidi, F.; Ghazanfari Holagh, S.; Chitsaz, A. Thermoelectric Generators: A comprehensive review of characteristics and applications. Appl. Therm. Eng. 2022, 201, 117793. [Google Scholar] [CrossRef]
- Lekbir, A.; Hassani, S.; Ab Ghani, M.R.; Gan, C.K.; Mekhilef, S.; Saidur, R. Improved energy conversion performance of a novel design of concentrated photovoltaic system combined with thermoelectric generator with advance cooling system. Energy Convers. Manag. 2018, 177, 19–29. [Google Scholar] [CrossRef]
- Gu, W.; Ma, T.; Song, A.; Li, M.; Shen, L. Mathematical modelling and performance evaluation of a hybrid photovoltaic-thermoelectric system. Energy Convers. Manag. 2019, 198, 111800. [Google Scholar] [CrossRef]
- Mohsenzadeh, M.; Shafii, M.B. A novel concentrating photovoltaic/thermal solar system combined with thermoelectric module in an integrated design. Renew. Energy 2017, 113, 822–834. [Google Scholar] [CrossRef]
- Riahi, A.; Ali, A.B.H.; Fadhel, A.; Guizani, A.; Balghouthi, M. Performance investigation of a concentrating photovoltaic thermal hybrid solar system combined with thermoelectric generators. Energy Convers. Manag. 2020, 205, 112377. [Google Scholar] [CrossRef]
- Yin, E.; Li, Q.; Xuan, Y. Feasibility analysis of a concentrating photovoltaic-thermoelectric-thermal cogeneration. Appl. Energy 2019, 236, 560–573. [Google Scholar] [CrossRef]
- Li, G.; Zhao, X.; Ji, J. Conceptual development of a novel photovoltaic-thermoelectric system and preliminary economic analysis. Energy Convers. Manag. 2016, 126, 935–943. [Google Scholar] [CrossRef]
- Li, G.; Shittu, S.; Zhao, X.; Ma, X. Preliminary experiment on a novel photovoltaic-thermoelectric system in summer. Energy 2019, 188, 116041. [Google Scholar] [CrossRef]
- Shittu, S.; Li, G.; Zhao, X.; Zhou, J.; Ma, X.; Akhlaghi, Y.G. Experimental study and exergy analysis of photovoltaic-thermoelectric with flat plate micro-channel heat pipe. Energy Convers. Manag. 2020, 207, 112515. [Google Scholar] [CrossRef]
- Zhu, W.; Deng, Y.; Wang, Y.; Shen, S.; Gulfam, R. High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management. Energy 2016, 100, 91–101. [Google Scholar] [CrossRef]
- Shittu, S.; Li, G.; Zhao, X.; Akhlaghi, Y.G.; Ma, X.; Yu, M. Comparative study of a concentrated photovoltaic-thermoelectric system with and without flat plate heat pipe. Energy Convers. Manag. 2019, 193, 1–14. [Google Scholar] [CrossRef]
- Bjørk, R.; Nielsen, K.K. The maximum theoretical performance of unconcentrated solar photovoltaic and thermoelectric generator systems. Energy Convers. Manag. 2018, 156, 264–268. [Google Scholar] [CrossRef] [Green Version]
- Kossyvakis, D.N.; Voutsinas, G.D.; Hristoforou, E.V. Experimental analysis and performance evaluation of a tandem photovoltaic–thermoelectric hybrid system. Energy Convers. Manag. 2016, 117, 490–500. [Google Scholar] [CrossRef]
- Rajaee, F.; Rad, M.A.V.; Kasaeian, A.; Mahian, O.; Yan, W.M. Experimental analysis of a photovoltaic/thermoelectric generator using cobalt oxide nanofluid and phase change material heat sink. Energy Convers. Manag. 2020, 212, 112780. [Google Scholar] [CrossRef]
- Babu, C.; Ponnambalam, P. The theoretical performance evaluation of hybrid PV-TEG system. Energy Convers. Manag. 2018, 173, 450–460. [Google Scholar] [CrossRef]
- Motiei, P.; Yaghoubi, M.; GoshtashbiRad, E.; Vadiee, A. Two-dimensional unsteady state performance analysis of a hybrid photovoltaic-thermoelectric generator. Renew. Energy 2018, 119, 551–565. [Google Scholar] [CrossRef]
- Darkwa, J.; Calautit, J.; Du, D.; Kokogianakis, G. A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells. Appl. Energy 2019, 248, 688–701. [Google Scholar] [CrossRef]
- Roslan, Q.; Ibrahim, S.H.; Affandi, R.; Mohd Nawi, M.N.; Baharun, A. A literature review on the improvement strategies of passive design for the roofing system of the modern house in a hot and humid climate region. Front. Archit. Res. 2016, 5, 126–133. [Google Scholar] [CrossRef]
- Khamil, K.N.; Mohd Sabri, M.F.; Md Yusop, A.; Mohd Sa’at, F.A.Z.; Isa, A.N. High cooling performances of H-shape heat sink for thermoelectric energy harvesting system (TEHs) at asphalt pavement. Int. J. Energy Res. 2021, 45, 3242–3256. [Google Scholar] [CrossRef]
- Khamil, K.N.; Mohd Sabri, M.F.; Yusop, A.M. Thermoelectric energy harvesting system (TEHs) at asphalt pavement with a subterranean cooling method. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 27, 1–17. [Google Scholar] [CrossRef]
- Shatar, N.M.; Abdul Rahman, M.A.; Muhtazaruddin, M.N.; Shaikh Salim, S.A.Z.; Singh, B.; Muhammad Sukki, F.; Bani, N.A.; Mohd Saudi, A.S.; Ardilla Rey, J.A. Performance evaluation of unconcentrated photovoltaic-thermoelectric generator hybrid system under tropical climate. Sustainability 2019, 11, 6192. [Google Scholar] [CrossRef]
- Ruzaimi, A.; Shafie, S.; Hassan, W.Z.W.; Azis, N.; Ya’acob, M.E.; Supeni, E.E. Photovoltaic Panel Temperature and Heat Distribution Analysis for Thermoelectric Generator Application. In Proceedings of the 2018 IEEE 5th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA 2018), Songkhla, Thailand, 28–30 November 2018. [Google Scholar]
- Sharuddin, M.S.; Yusop, A.M.; Isira, A.S.M.; Kamaruddin, N.F.; Khamil, K.N. Evaluation of voltage generation and thermal distribution from road using thermoelectric technology. Int. J. Eng. Adv. Technol. 2019, 8, 4603–4608. [Google Scholar] [CrossRef]
- Khamil, K.N.; Sabri, M.F.M.; Yusop, A.M.; Sharuddin, M.S. An evaluation of TEC and TEG characterization for a road thermal energy harvesting. In Proceedings of the 2018 International Conference on Sustainable Energy Engineering and Application ICSEEA 2018, Tangerang, Indonesia, 1–2 November 2018. [Google Scholar]
- Wan Jamaludin, W.A.; Johar, M.A.; Faizan Marwah, O.M.; Amin, A.M. Evaluation of the potential of renewable thermal energy from shingles using thermoelectric generator (TEG) for residential use application. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 70, 50–58. [Google Scholar] [CrossRef]
- Baharin, N.A.; Arzami, A.A.; Singh, B.; Remeli, M.F.; Tan, L.; Oberoi, A. Passive flow heat exchanger simulation for power generation from solar pond using thermoelectric generators. AIP Conf. Proceed. 2017, 2017, 020021. [Google Scholar]
- Daud, M.M.M.; Nor, N.B.M.; Ibrahim, T. Novel hybrid photovoltaic and thermoelectric panel. In Proceedings of the 2012 IEEE International Power Engineering and Optimization Conference, Melaka, Malaysia, 6–7 June 2012. [Google Scholar]
- Wai, N.; Ahmad, S.; Hagishima, A.; Bahadur, H.; Yakub, F. Energy & Buildings Affordable retrofitting methods to achieve thermal comfort for a terrace house in Malaysia with a hot—humid climate. Energy Build. 2020, 223, 110072. [Google Scholar]
- Al-Obaidi, K.M.; Ismail, M.; Rahman, A.M.A. Passive cooling techniques through reflective and radiative roofs in tropical houses in Southeast Asia: A literature review. Front. Archit. Res. 2014, 3, 283–297. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Md Din, M.F.; Iwao, K.; Lee, Y.H.; Anting, N. Impact of thermal behaviour of different environmental conditions on ambient environment and thermal discomfort in Malaysia. Indoor Built Environ. 2020, 30, 520–534. [Google Scholar] [CrossRef]
- Hafeez, M.; Nasir, A.; Hassan, A.S. Thermal performance of double brick wall construction on the building envelope of high-rise hotel in Malaysia. J. Build. Eng. 2020, 31, 101389. [Google Scholar]
- Toe, D.H.C.; Kubota, T. Comparative assessment of vernacular passive cooling techniques for improving indoor thermal comfort of modern terraced houses in hot–humid climate of Malaysia. Sol. Energy 2015, 114, 229–258. [Google Scholar] [CrossRef]
- Dillersberger, H.; Deutschmann, B.; Tham, D. A bipolar ±13 mV self-starting and 85% peak efficiency DC/DC converter for thermoelectric energy harvesting. Energies 2020, 13, 5501. [Google Scholar] [CrossRef]
- Zhao, D.; Aili, A.; Yin, X.; Tan, G.; Yang, R. Roof-integrated radiative air-cooling system to achieve cooler attic for building energy saving. Energy Build. 2019, 203, 109453. [Google Scholar] [CrossRef]
- Ismail, M.I.; Yunus, N.A.; Hashim, H. The challenges and opportunities of solar thermal for palm oil industry in Malaysia. Chem. Eng. Trans. 2020, 78, 601–606. [Google Scholar]
- Wu, Z.; Zhang, S.; Liu, Z.; Mu, E.; Hu, Z. Thermoelectric converter: Strategies from materials to device application. Nano Energy 2022, 91, 106692. [Google Scholar] [CrossRef]
- Cao, P.; Hong, Z. A Bipolar-Input Bipolar-Output DC-DC Converter for Thermoelectric Energy Harvesting. In Proceedings of the 2019 IEEE International Symposium on Circuit and Systems (ISCAS), Hokkaido, Japan, 26–29 May 2019. [Google Scholar]
- Lineykin, S.; Sitbon, M.; Kuperman, A. Design and optimization of low-temperature gradient thermoelectric harvester for wireless sensor network node on water pipelines. Appl. Energy 2021, 283, 116240. [Google Scholar] [CrossRef]
- Kuai, Q.; Wan, Q.; Mok, P.K.T. An auto-polarity thermoelectric energy harvesting interface based on a boost/buck-boost converter. In Proceedings of the 2019 IEEE International Symposium on Circuit and Systems (ISCAS), Hokkaido, Japan, 26–29 May 2019. [Google Scholar]
- Cao, P.; Qian, Y.; Xue, P.; Lu, D.; He, J.; Hong, Z. 27.1 An 84% Peak Efficiency Bipolar-Input Boost/Flyback Hybrid Converter with MPPT and on-Chip Cold Starter for Thermoelectric Energy Harvesting. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference–(ISSCC), San Francisco, CA, USA, 17–21 February 2019. [Google Scholar]
- Cao, P.; Qian, Y.; Xue, P.; Lu, D.; He, J.; Hong, Z. A Bipolar-Input Thermoelectric Energy-Harvesting Interface with Boost/Flyback Hybrid Converter and On-Chip Cold Starter. IEEE J. Solid-State Circuits 2019, 54, 3362–3374. [Google Scholar] [CrossRef]
- Nozariasbmarz, A.; Collins, H.; Dsauza, K.; Polash, M.H.; Hosseini, M.; Hyland, M.; Liu, J.; Malhotra, A.; Ortiz, F.M.; Mohaddes, F.; et al. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Appl. Energy 2019, 258, 114069. [Google Scholar] [CrossRef]
- Rejab, M.N.; Johar, M.A. Evaluation of thermoelectric generator array configuration for thermal energy harvesting at the rooftop and attic area due to solar radiation in Malaysia. In Proceedings of the 2022 International Electrical Engineering Congress (iEECON), Khon Kaen, Thailand, 9–11 March 2022. [Google Scholar]
- Rejab, M.N.; Johar, M.A. A comprehensive data analysis method focuses on complex real-time temperature data of thermoelectric generator. In Proceedings of the 10th European Conference of Renewable Energy System (ECRES), Istanbul, Turkey, 7–9 May 2022. [Google Scholar]
- Islam, H.; Mekhilef, S.; Shah, N.B.M.; Soon, T.K.; Seyedmahmousian, M.; Horan, B.; Stojcevski, A. Performance evaluation of maximum power point tracking approaches and photovoltaic systems. Energies 2018, 11, 365. [Google Scholar] [CrossRef]
- Mamur, H.; Üstüner, M.A.; Bhuiyan, M.R.A. Future perspective and current situation of maximum power point tracking methods in thermoelectric generators. Sustain. Energy Technol. Assess. 2022, 50, 101824. [Google Scholar] [CrossRef]
- Amjad, M.; Farooq-i-azam, M.; Ni, Q.; Dong, M.; Ahmad, E. Wireless charging systems for electric vehicles. Renew. Sustain. Energy Rev. 2022, 167, 112730. [Google Scholar] [CrossRef]
- Dalala, Z.M.; Saadeh, O.; Bdour, M.; Zahid, Z.U. A new maximum power point tracking (MPPT) algorithm for thermoelectric generators with reduced voltage sensors count control. Energies 2018, 11, 1826. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, T.; Zeng, Y.; Yang, J.; Chen, W.; Li, Z. A 15 mV-input and 71%-efficiency boost converter with 22 mV output ripple for thermoelectric energy harvesting application. Microelectron. J. 2022, 121, 105353. [Google Scholar] [CrossRef]
- Wang, K.; Guan, M.; Chen, F.; Liao, W.H. A Low-Power Thermoelectric Energy Harvesting System for High Internal Resistance Thermoelectric Generators. J. Electron. Mater. 2019, 48, 5375–5389. [Google Scholar] [CrossRef]
- Kimura, K.; Koizumi, H. A bipolar power converter with bridgeless boost rectifier for thermoelectric energy harvesting. In Proceedings of the 2015 IEEE 2nd International Future Energy Electronic Conference (IFEEC), Taipei, Taiwan, 1–4 November 2015. [Google Scholar]
- Taeda, K.; Koizumi, H. A bipolar self-start up boost converter for thermoelectric energy harvesting. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017. [Google Scholar]
- Taeda, K.; Shiina, N.; Kimura, K.; Koizumi, H. A thermoelectric energy harvesting system with bridgeless boost/buck-boost rectifier. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronic Society, Beijing, China, 29 October–1 November 2017. [Google Scholar]
- Kimura, K.; Taeda, K.; Niikawa, S.; Koizumi, H. A Wireless Sensor Node Driving System with Bridgeless Bipolar Boost Rectifier Using Thermoelectric Energy Harvesting. In Proceedings of the 2018 IEEE International Symposium on Circuits and System, Florence, Italy, 27–30 May 2018. [Google Scholar]
- Sigrist, L.; Stricker, N.; Bernath, D.; Beutel, J.; Thiele, L. Thermoelectric Energy Harvesting from Gradients in the Earth Surface. IEEE Transit. Ind. Electron. 2020, 67, 9460–9470. [Google Scholar] [CrossRef]
- Siddique, A.R.M.; Mahmud, S.; Van Heyst, B. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renew. Sustain. Energy Rev. 2017, 73, 730–744. [Google Scholar] [CrossRef]
- Pappinisseri Puluckul, P.; Weyn, M. Battery-Less Environment Sensor Using Thermoelectric Energy Harvesting from Soil-Ambient Air Temperature Differences. Sensors 2022, 22, 4737. [Google Scholar] [CrossRef]
Types | Description | Remark | Conclusion |
---|---|---|---|
CPV-TEG | - Using TEG, CPV, and nanofluid cooling block (NCPV-T) to compare with sole PV, CPV-TEG with metal heatsink, and CPV-TEG with nano. Evaluate the absorbed thermal energy by the coolant as the output [23]. | - The result indicates that without a suitable heat exchanger, the TEG negatively affects the overall CPV system. | - However, the perspective of both systems’ reaction to a particular application makes it difficult and complex to unquestionably determine whether the hybridization is generally beneficial or not. - Nevertheless, the integration of TEG with CPV indicates the potential and advantages, but in the end, is a better comparison with other potential hybrid systems to understand the significant advantages of these systems. - TEG attached on the rear side of the PV negatively affects CPV compared to unconcentrated PV, no matter how efficient the heat exchanger at the cold side. |
- Investigated the performance of hybrid CPV-TEG via a thermal resistance model [24]. | - The CPV-TEG output power is 1.24–2.85% higher than sole CPV. However, the operating temperature of CPV-TEG is higher. | ||
- Proposed a parabolic trough reflector with a sun-tracking system and a receiver on its concentration axis [25]. | - The system’s daily average efficiency was 57.52% lower than the standalone PV. In addition, obtained a higher temperature of the PV cell (94 °C) than the standalone PV cell (52 °C). | ||
- Proposed a TEG to a CPV thermal (CPVT) system consisting of a parabolic trough concentrator with a hybrid receiver (PV-TEG) system [26]. | - The efficiency improved by 7.46%, and the output power was compared to the CPVT without a TEG. However, the operating temperature of the PV cell increased from 56 °C in the CPVT system to 63 °C in the proposed system. | ||
Techniques to bypass the negative effects of TEG on PV | - The use of the optical concentrator, PV, TEG, and two cooling cycles in the CPV-T-TEG system to overcome the disadvantages of the conventional hybrid systems [27]. | - The proposed system obtains a higher output power than CPV and slightly lower than CPV-TEG. Moreover, TEG contributes more than 8% to the overall output, with a 10% increase in cost per output power compared to the conventional system. | - The drawback of the method is a reduction of the PV performance and lifetime due to the high operating temperature. |
PV-TEG with thermal concentration | - The thermal concentrator used a flat-plate micro-channel heat pipe (MCHP) [28]. | - An extra cost is needed for hybridization compared to sole PV. | - The thermal resistance will increase when a heat exchanger or a conducting plate is applied between the PV and TEG. |
- Conducted preliminary experiments on a hybrid PV-MCHP- TEG system compared with sole PV [29]. | - The temperature of PV is higher (~50 °C) than sole PV (~40 °C), with a temperature difference of 10 °C at the TEG. | - Affect the amount of heat at TEG (hot side) and cooling load on PV. | |
- Proposed a hybrid PV-MCHP-TEG system by adding a water-cooling block to the cold side of the TEG [30]. | - The PV temperature obtains 62 °C, slightly lower than sole PV. | - The thermal concentration caused the increase of PV temperature and the temperature gradient. Thus, degradation of the performance of PV in long-term operation. | |
- TEG modules attach to a copper plate at the rear PV. A water-cooling block is used as a heat sink [31]. | - The maximum temperature of PV and temperature difference at TEG are 80 °C and 52 °C, respectively. | ||
Unconcentrated PV-TEG system | - The thermal contact resistance between the TEG and heat sink is the most influential on the system’s performance [32]. | - Neglected all the contact resistances, causing overestimation of the output power and efficiency of the hybrid system. | - The contribution of the TEG should be distinguished from the hybrid system to have a clear view due to the cooling effect provided by a heat exchanger. |
- The temperature gradient is difficult to maintain considerably across the TEG [33]. | - The TEG improved by 4.5% for the maximum efficiency. | ||
- Obtained an 8–43 °C temperature gradient across the TEG [34]. | - The system efficiency is approximately equal to sole PV under standard conditions. | ||
- The heat exchanger implements a water block with different solutions of cobalt oxide and the addition of phase change materials [35]. | -The temperature difference across the TEG reaches approximately 10 °C. | ||
- The TEG is mounted to the rear side of PV, and the TEG cold side temperature is constant at 20 °C [36]. | - The output energy increase was 5%, with a 6% increase in the overall efficiency obtained compared to a sole PV. | ||
- The TEG is directly attached to the rear side of a PV, and the TEG cold side was exposed to the ambient temperature [37]. | - The PV efficiency improves at 0.59% and the output power at 5.06%. The maximum temperature difference at TEG is 2.48 °C. | ||
- The TEG heat exchanger employed PCM [38]. | - The PV-TEG-PCM system obtained 9.5% power enhancement. It is observed that the system performs better when the cooling source is from the natural convection. |
Application | Temperature Difference, °C | Output | Thermal Energy Harvesting System | Year | References |
---|---|---|---|---|---|
Asphalt (Field) | 23 | 1.02 V | BQ25505 | 2021 | [40] |
Asphalt (Field) | 7.95 | 5.3 V | ECT 310 | 2020 | [41] |
PV-TEG (Experimental) | 8 | 0.5–3 mW based on Voc | No | 2019 | [42] |
PV-TEG (Numerical) | 56.1 | 119 W | No | 2019 | [43] |
Asphalt (Experimental) | 2.49 | 5.6 µW based on Voc | No | 2019 | [44] |
Asphalt (Experimental) | 29.77 | 2.39 V Voc | No | 2019 | [45] |
Shingle (Experimental) | 3 | 65.22 µW based on Voc | No | 2017 | [46] |
Solar pond (Simulation) | 40 to 100 | 8 W | No | 2017 | [47] |
PV-TEG (Experimental) | 10 to 40 | 0.3 to 1.35 V Voc | No | 2012 | [48] |
Parameter | Rechargeable Battery | Supercapacitor |
---|---|---|
Charge/discharge efficiency | Low | High |
Self-discharge rate | Low | High |
Energy density | High | Low |
Power density | Low | High |
Charging circuit complexity | High | Low |
Price vs. capacity | Low | High |
Label | Module/Port | Description |
---|---|---|
U1, U2 | Voltage signal | Gain at 5 |
ADC 1, ADC 2 | Operational amplifier/Comparator | AD627 |
R3, R4 | Resistor | 1.5 KΩ |
R5, R6 | Resistor | 100 Ω |
R7 | Resistor | 1 KΩ |
R13 | Resistor | 100 Ω |
R14 | Resistor | 10 KΩ |
DPDT | Double pole double throw relay | 5 V |
Q1, Q2 | MOSFET | IRF7319 |
Q3 | MOSFET | IRLZ44N |
Q4 | Transistor | BC548 |
D3 | Diode | 1N4148 |
D2 | Diode | 1N5817 |
L1 | Inductor | 100 µH |
C1 | Capacitor | 47 µF |
C1U | Capacitor | 47 µF |
C2U, C4U | Capacitor | 470 pF |
C3U, C5U | Capacitor | 10 nF |
C6U | Capacitor | 1 µF |
C7U | Capacitor | 470 µF |
TR1, TR2 | Step-up transformer | 25 µH |
3109 | Controller | LTC 3109 |
PWM Pulse | Gate controller | AT328 microcontroller with MPPT |
INA 219 | Voltage and current sensor | Serial connection to Vin+ and Vout+ |
Ref | [72] | [73] | [74] | [75] | [76] | This work |
---|---|---|---|---|---|---|
ΔT, °C | NA | 9.5 | 4 and 12 | 5 | 6 | 6 |
Input | +1.0 and −1.0 V | 0.7 V | −1.73 and −0.238 V | +1.5 and −1.5 V | 0.4 V | 1 V < Vin > 1 V (dual-level voltage) |
Output | 2.4 V | 2.4 V | 1.2 V | 2.4 V | 6.3 and 27.2 mW | 4 V 1.45 to 66.1 mW |
DC converter | Boost | Boost | Buck-boost | Boost | Boost | Boost |
MPPT | Yes | Yes | Yes | Yes | Yes | Yes |
Unipolar /Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Unipolar | Bipolar |
Additional component | NA | NA | NA | NA | Radiator, thermal harvester | NA |
Application | Exp. | Exp. | Exp. | Exp. | Real-time | Real-time |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rejab, M.N.; Marwah, O.M.F.; Johar, M.A.; Ribuan, M.N. Dual-Level Voltage Bipolar Thermal Energy Harvesting System from Solar Radiation in Malaysia. Sustainability 2022, 14, 12521. https://doi.org/10.3390/su141912521
Rejab MN, Marwah OMF, Johar MA, Ribuan MN. Dual-Level Voltage Bipolar Thermal Energy Harvesting System from Solar Radiation in Malaysia. Sustainability. 2022; 14(19):12521. https://doi.org/10.3390/su141912521
Chicago/Turabian StyleRejab, Muhammad Nazri, Omar Mohd Faizan Marwah, Muhammad Akmal Johar, and Mohamed Najib Ribuan. 2022. "Dual-Level Voltage Bipolar Thermal Energy Harvesting System from Solar Radiation in Malaysia" Sustainability 14, no. 19: 12521. https://doi.org/10.3390/su141912521
APA StyleRejab, M. N., Marwah, O. M. F., Johar, M. A., & Ribuan, M. N. (2022). Dual-Level Voltage Bipolar Thermal Energy Harvesting System from Solar Radiation in Malaysia. Sustainability, 14(19), 12521. https://doi.org/10.3390/su141912521