Environmental Protection, Industrial Structure and Urbanization: Spatiotemporal Evidence from Beijing–Tianjin–Hebei, China
Abstract
:1. Introduction
2. Research Area and Evaluation Index System
2.1. BTH
2.2. The Evaluation Index System
3. Methodology and Data Sources
3.1. Methodology
3.1.1. CDM
3.1.2. CCDM
3.1.3. Moran’s I Index
3.2. Data Sources
4. Results
4.1. Coupling Degree of the “Environmental Protection–Industrial Structure–Urbanization” System in BTH
4.1.1. Beijing (BJ)
4.1.2. Tianjin (TJ)
4.1.3. Shijiazhuang (SJZ)
4.1.4. Zhangjiakou (ZJK)
4.1.5. Xingtai (XT)
4.2. Coupling Coordination Degree of the “Environmental Protection–Industrial Structure–Urbanization” System in BTH
4.3. Spatial Correlation Analysis in BTH
5. Discussion
5.1. Beijing–Tianjin–Hebei Coordinated Development Strategy
5.2. The Reasons for the Differences
5.2.1. Core City Function Weakens the Development of Small and Medium Cities
5.2.2. The Development Logic of Urbanization’s Economic Benefits Being Superior to Environmental Protection Leads to Regional Competition
5.2.3. Similarities in Regional Industries Lead to Lower-Quality Urbanization Development
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Ma, S.; Wang, R.; Wang, Y.; Zheng, Y. Citizen Participation in the Co-Production of Urban Natural Resource Assets: Analysis Based on Social Media Big Data. J. Glob. Inf. Manag. 2021, 30, 1–21. [Google Scholar] [CrossRef]
- Li, L.; Zheng, Y.; Zheng, S.; Ke, H. The new smart city programme: Evaluating the effect of the Internet of Energy on air quality in China. Sci. Total Environ. 2020, 714, 136380. [Google Scholar] [CrossRef]
- Koop, S.H.A.; Leeuwen, C.J.V. The challenges of water, waste and climate change in cities. Environ. Dev. Sustain. 2016, 2, 385–418. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Hao, T.; Chi, T. Evaluation on China’s forestry resources efficiency based on big data. J. Clean. Prod. 2017, 142, 513–523. [Google Scholar] [CrossRef]
- Chen, W.; Lei, Y. The impacts of renewable energy and technological innovation on environment-energy-growth nexus: New evidence from a panel quantile regression. Renew. Energy 2018, 123, 1–14. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, M.; Feng, C. Inequalities of China’s regional low-carbon development. J. Environ. Manag. 2020, 274, 111042. [Google Scholar] [CrossRef]
- Bertinelli, L.; Strobl, E.; Zou, B. Sustainable economic development and the environment: Theory and evidence. Energy Econ. 2012, 4, 1105–1114. [Google Scholar] [CrossRef]
- Tan, F.; Lu, Z. Study on the interaction and relation of society, economy and environment based on PCA–VAR model: As a case study of the Bohai Rim region, China. Ecol. Indic. 2015, 48, 31–40. [Google Scholar] [CrossRef]
- Han, S.; Sun, B.; Zhang, T. Mono-and polycentric urban spatial structure and PM2.5 concentrations: Regarding the dependence on population density. Habitat Int. 2020, 104, 102257. [Google Scholar] [CrossRef]
- Sha, W.; Chen, Y.; Wu, J.; Wang, Z. Will polycentric cities cause more CO2 emissions? A case study of 232 Chinese cities. J. Environ. Sci. 2020, 96, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Han, S.; Li, W. Effects of the polycentric spatial structures of Chinese city regions on CO2 concentrations. Transp. Res. D Transp. Environ. 2020, 82, 102333. [Google Scholar] [CrossRef]
- Jalil, A.; Feridun, M. Long-run relationship between income inequality and financial development in China. J. Asia Pac. Econ. 2011, 2, 202–214. [Google Scholar] [CrossRef]
- Jia, X.; Foo, D.C.; Tan, R.R.; Li, Z. Sustainable development paths for resource-constrained process industries. Resour. Conserv. Recycl. 2017, 119, 1–3. [Google Scholar] [CrossRef]
- Zhu, B.; Shan, H. Impacts of industrial structures reconstructing on carbon emission and energy consumption: A case of Beijing. J. Clean. Prod. 2020, 245, 118916. [Google Scholar] [CrossRef]
- Cai, J.; Yin, H.; Varis, O. Impacts of urbanization on water use and energy-related CO2 emissions of residential consumption in China: A spatio-temporal analysis during 2003–2012. J. Clean. Prod. 2018, 194, 23–33. [Google Scholar] [CrossRef]
- Hoyer, K.G.; Holden, E. Housing as basis for sustainable consumption. Int. J. Sustain. Dev. 2010, 1, 48–58. [Google Scholar] [CrossRef]
- Niva, V.; Cai, J.; Taka, M.; Kummu, M.; Varis, O. China’s sustainable water-energy-food nexus by 2030: Impacts of urbanization on sectoral water demand. J. Clean. Prod. 2020, 251, 119755. [Google Scholar] [CrossRef]
- Jiang, X.; Hong, C.; Zheng, Y.; Zheng, B.; Guan, D.; Gouldson, A.; He, K. To what extent can China’s near-term air pollution control policy protect air quality and human health? A case study of the Pearl River Delta region. Environ. Res. Let. 2015, 10, 104006. [Google Scholar] [CrossRef]
- Kumar, A.; Yang, T.; Sharma, M.P. Long-term prediction of greenhouse gas risk to the Chinese hydropower reservoirs. Sci. Total Environ. 2019, 646, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liang, L.; Sun, Z.; Wang, X. Spatiotemporal differentiation and the factors influencing urbanization and ecological environment synergistic effects within the Beijing-Tianjin-Hebei urban agglomeration. J. Environ. Manag. 2019, 243, 227–239. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, R.; Du, Q. How does industrial restructuring influence carbon emissions: City-level evidence from China. J. Environ. Manag. 2020, 276, 111093. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Zhu, J.; Li, S.; Yang, S.; Chen, M. Assessment and analysis of regional economic collaborative development within an urban agglomeration: Yangtze River Delta as a case study. Habitat Int. 2019, 83, 20–29. [Google Scholar] [CrossRef]
- Zhao, Z.; Bai, Y.; Wang, G.; Chen, J.; Yu, J.; Liu, W. Land eco-efficiency for new-type urbanization in the Beijing-Tianjin-Hebei Region. Technol. Forecast. Soc. Change 2018, 137, 19–26. [Google Scholar] [CrossRef]
- Feiock, R.C. Metropolitan Governance and Institutional Collective Action. Urban Aff. Rev. 2008, 3, 356–377. [Google Scholar] [CrossRef]
- Yi, H.; Suo, L.; Shen, R.; Zhang, J.; Ramaswami, A.; Feiock, R.C. Regional Governance and Institutional Collective Action for Environmental Sustainability. Public Adm. Rev. 2017, 4, 556–566. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, W. How do CO2 emissions and efficiencies vary in Chinese cities? Spatial variation and driving factors in 2007. Sci. Total Environ. 2019, 675, 439–452. [Google Scholar] [CrossRef]
- Zhao, M.; Tan, L.; Zhang, W.; Ji, M.; Liu, Y.; Yu, L. Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method. Energy 2010, 35, 2505–2510. [Google Scholar] [CrossRef]
- Yan, D.; Lei, Y.; Shi, Y.; Zhu, Q.; Li, L.; Zhang, Z. Evolution of the spatiotemporal pattern of PM2. 5 concentrations in China—A case study from the Beijing-Tianjin-Hebei region. Atmos Environ. 2018, 183, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.S. Introduction to land use and rural sustainability in China. Land Use Policy. 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Burgalassi, D.; Luzzati, T. Urban spatial structure and environmental emissions: A survey of the literature and some empirical evidence for Italian NUTS-3 regions. Cities 2015, 49, 134–148. [Google Scholar] [CrossRef]
- Yu, L. Low carbon eco-city: New approach for Chinese urbanisation. Habitat Int. 2014, 44, 102–110. [Google Scholar] [CrossRef]
- Li, L.; Ma, S.; Zheng, Y.; Xiao, X. Integrated regional development: Comparison of urban agglomeration policies in China. Land Use Policy 2022, 114, 105939. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Niu, X.; Liu, Z. Effects of PM2. 5 on health and economic loss: Evidence from Beijing-Tianjin-Hebei region of China. J. Clean. Prod. 2020, 257, 120605. [Google Scholar] [CrossRef]
- Li, L.; Ma, S.; Han, X.; Zheng, C.; Wang, D. Data-driven online service supply chain: A demand-side and supply-side perspective. J. Enterp. Inf. Manag. 2020. [Google Scholar] [CrossRef]
- Weng, H.; Kou, J.; Shao, Q. Evaluation of urban comprehensive carrying capacity in the Guangdong–Hong Kong–Macao Greater Bay Area based on regional collaboration. Environ. Sci. Pollut. Res. 2020, 27, 20025–20036. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Cui, X.; Li, G.; Bao, C.; Wang, Z.; Ma, H.; Ren, Y. Modeling regional sustainable development scenarios using the Urbanization and Eco-environment Coupler: Case study of Beijing-Tianjin-Hebei urban agglomeration, China. Sci. Total Environ. 2019, 689, 820–830. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, C.; Wang, G.; Bao, S. An integrated sustainable development approach to modeling the eco-environmental effects from urbanization. Ecol. Indic. 2011, 11, 1599–1608. [Google Scholar] [CrossRef]
- Shao, Q.; Liu, X.; Zhao, W. An alternative method for analyzing dimensional interactions of urban carrying capacity: Case study of Guangdong-Hong Kong-Macao Greater Bay Area. J. Environ. Manag. 2020, 273, 111064. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yuan, X.; Cheng, X.; Mu, R.; Zuo, J. Coordinated development of energy, economy and environment subsystems—A case study. Ecol. Indic. 2014, 46, 514–523. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, E.; Zhang, H.; Shang, E. Spatio-Temporal Coordination and Conflict of Production-Living-Ecology Land Functions in the Beijing-Tianjin-Hebei Region, China. Land 2020, 9, 170. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Z. Functional Coupling Degree and Human Activity Intensity of Production–Living–Ecological Space in Underdeveloped Regions in China: Case Study of Guizhou Province. Land 2021, 10, 56. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, M.; Li, Y.; Pang, R.; Xiang, N. Correlating PM2.5 concentrations with air pollutant emissions: A longitudinal study of the Beijing-Tianjin-Hebei region. J. Clean. Prod. 2018, 179, 103–113. [Google Scholar] [CrossRef]
- Feng, T.; Du, H.; Lin, Z.; Zuo, J. Spatial spillover effects of environmental regulations on air pollution: Evidence from urban agglomerations in China. J. Environ. Manag. 2020, 272, 110998. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, J.; Wang, T.; Zhang, T. Urbanization, economic growth, and environmental pollution: Partial differential analysis based on the spatial Durbin model. Manag. Environ. Qual. 2019, 2, 483–494. [Google Scholar] [CrossRef]
- Lu, H.; De, J.M. Evolution in city branding practices in China’s Pearl River Delta since the year 2000. Cities 2019, 89, 154–166. [Google Scholar] [CrossRef]
- Zhong, W.; Song, J.; Ren, J.; Yang, W.; Wang, S. Revealing the nexus among energy-economy system with Haken model: Evidence from China’s Beijing-Tianjin-Hebei region. J. Clean. Prod. 2019, 228, 319–330. [Google Scholar] [CrossRef]
- Schoon, S. Chinese strategies of experimental governance. The underlying forces influencing urban restructuring in the Pearl River Delta. Cities 2014, 41, 194–199. [Google Scholar] [CrossRef]
- Zhao, L.; Li, J.; Shao, Q. Evaluation of urban comprehensive carrying capacity: Case study of the Beijing–Tianjin–Hebei urban agglomeration, China. Environ. Sci. Pollut. Res. 2020, 27, 19774–19782. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, W.; Zhou, Z. Construction resource allocation for industrial solid waste treatment centers in cities of Anhui Province, China. Manag. Environ. Qual. 2019, 5, 1190–1202. [Google Scholar] [CrossRef]
- Chen, T.; Hui, E.; Wei, L.; Tao, L. People, recreational facility and physical activity: New-type urbanization planning for the healthy communities in china. Habitat Int. 2016, 58, 12–22. [Google Scholar] [CrossRef]
- He, S.W.; Yu, S.; Li, G.D.; Zhang, J.F. Exploring the influence of urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336 Chinese cities. Land Use Policy 2020, 95, 104576. [Google Scholar] [CrossRef]
- Popescu, C.R.G.; Popescu, G.N. An exploratory study based on a questionnaire concerning green and sustainable finance, corporate social responsibility, and performance: Evidence from the Romanian business environment. J. Risk Financ. Manag. 2019, 12, 162. [Google Scholar] [CrossRef] [Green Version]
System | Subsystem | Evaluation Indicators | Unit | Weight | Attribute |
---|---|---|---|---|---|
Environmental protection | Environmental pollution | Industrial wastewater discharge | 10,000 t | 0.1338 | − |
Industrial sulfur dioxide production | Tons | 0.0442 | − | ||
Industrial solid waste production | 10,000 t | 0.0398 | − | ||
Environmental governance | Per capita water resources | M3/person | 0.3874 | + | |
Green coverage rate of built-up area | % | 0.0308 | + | ||
Park area per capita in urban areas | M2/person | 0.1437 | + | ||
Comprehensive utilization rate of industrial solid waste | % | 0.1038 | + | ||
Sewage treatment rate | % | 0.0603 | + | ||
Harmless treatment rate of domestic garbage | % | 0.0564 | + | ||
Industrial structure | Structure of industrial output value | Proportion of primary industry output value in GDP | % | 0.1618 | − |
Proportion of secondary industry output value in GDP | % | 0.0563 | + | ||
Proportion of tertiary industry output value in GDP | % | 0.2149 | + | ||
Industrial employment structure | Proportion of employees in primary industry | % | 0.1767 | − | |
Proportion of employees in the secondary industry | % | 0.0658 | + | ||
Proportion of employees in tertiary industry | % | 0.3244 | + | ||
Urbanization | Population urbanization | Population density | Person/km2 | 0.0792 | + |
Population urbanization rate | % | 0.0572 | + | ||
Economic urbanization | Per capita GDP | Yuan | 0.11335 | + | |
Per capita retail sales of consumer goods | Yuan | 0.1227 | + | ||
Per capita social fixed asset investment | Yuan | 0.0814 | + | ||
Per capita disposable income of urban residents | Yuan | 0.1132 | + | ||
Social urbanization | Number of college students per 10,000 | Person | 0.1353 | + | |
Number of beds in medical and health institutions per 10,000 people | Bed | 0.0124 | + | ||
Number of buses per 10,000 people | Vehicle | 0.1864 | + | ||
Per capita urban road area | M2/person | 0.0787 | + |
Agglomeration Area | Typology | 2013 | 2017 |
---|---|---|---|
High–high | Diffusion effect area | BJ, TJ, TS, LF | TJ, TS, LF |
Low–high | Transitional area | CZ, BD, CD, ZJK | CZ, BD, CD, ZJK |
Low–low | Low-speed growth area | HD, HS, XT | QHD, HD, HS, XT |
High–low | Polarization effect area | SJZ, QHD | BJ, SJZ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Li, L.; Ke, H.; Zheng, Y. Environmental Protection, Industrial Structure and Urbanization: Spatiotemporal Evidence from Beijing–Tianjin–Hebei, China. Sustainability 2022, 14, 795. https://doi.org/10.3390/su14020795
Ma S, Li L, Ke H, Zheng Y. Environmental Protection, Industrial Structure and Urbanization: Spatiotemporal Evidence from Beijing–Tianjin–Hebei, China. Sustainability. 2022; 14(2):795. https://doi.org/10.3390/su14020795
Chicago/Turabian StyleMa, Shaojun, Lei Li, Huimin Ke, and Yilin Zheng. 2022. "Environmental Protection, Industrial Structure and Urbanization: Spatiotemporal Evidence from Beijing–Tianjin–Hebei, China" Sustainability 14, no. 2: 795. https://doi.org/10.3390/su14020795
APA StyleMa, S., Li, L., Ke, H., & Zheng, Y. (2022). Environmental Protection, Industrial Structure and Urbanization: Spatiotemporal Evidence from Beijing–Tianjin–Hebei, China. Sustainability, 14(2), 795. https://doi.org/10.3390/su14020795