Species-Abundance Distribution Patterns of Plant Communities in the Gurbantünggüt Desert, China
Abstract
:1. Introduction
2. Study Areas
3. Research Methods
3.1. Sampling Setting and Sampling Method
3.2. Soil Collection and Analysis
3.3. Important Value
3.4. Species Diversity Indices
3.5. Abundance-Fitting Model Selection
3.5.1. Statistical Model
- Log-normal distribution model
3.5.2. Niche Model
- Niche preemption model
- Broken stick model
- Zipf model
- Zipf–Mandelbrot model
3.5.3. Volkov Neutral Model
3.6. Model Fit Test
3.6.1. Statistical Tests
3.6.2. AIC
3.7. 95% Confidence Interval Test
3.8. Data Processing
4. Results
4.1. Soil Salinity and Water Content in Different Dune Habitats
4.2. Species-Abundance Distribution by Habitat
4.3. Species-Abundance Distribution at Different Scales
4.4. Species-Abundance Distribution Pattern Curve Fitting in Different Habitats
4.5. Fitting Species-Abundance Distribution Curves at Different Scales
4.6. Neutral Theory Test
5. Discussion
5.1. Species-Abundance Distribution Patterns
5.2. Ecological Processes in Dune Habitats at Different Scales
5.3. Ecological Processes in Different Dune Habitats
5.4. The Embodiment of the Community Niche-Neutral Continuum
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models: With Applications in R; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Ren, P.; Wang, X.A.; Guo, H. Species abundance distribution pattern of forest communities on Loess Plateau. Chin. J. Ecol. 2009, 29, 1449–1455. [Google Scholar]
- Shi, J.M.; Fan, C.F.; Liu, Y.; Yang, Q.P.; Fang, K.; Fan, F.L.; Yang, G.Y. Species-abundance distribution patterns along succession series of Phyllostachys glauca forest in a limestone mountain. J. Appl. Ecol. 2015, 26, 3595–3601. [Google Scholar]
- McGill, B.J.; Rampal, S.; Etienne, R.S.; Gray, J.S.; Alonso, D.; Anderson, M.J.; Benecha, H.K.; Dornelas, M.; Enquist, B.J.; Green, J.L.; et al. Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 2007, 10, 995–1015. [Google Scholar] [CrossRef] [PubMed]
- Borda-de-Água, L.; Borges, P.A.V.; Hubbell, S.P.; Pereira, H.M. Spatial scaling of species abundance distributions. Ecography 2012, 35, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Baldridge, E.; Harris, D.J.; Xiao, X.; White, E.P. An extensive comparison of species-abundance distribution models. Peer J. 2016, 4, e2823. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.X.; Li, Q.D.; Jang, X.X.; Xia, S.J.; Nan, X.N.; Zhang, Y.Y.; Li, B.W. Contribution of rare species to species diversity and species abundance distribution pattern in the Gannan subalpine meadow. Biodivers. Sci. 2020, 28, 107. [Google Scholar]
- Leibovich, N.; Rothschild, J.; Goyal, S.; Zilman, A. Phenomenology and dynamics of competitive ecosystems beyond the niche-neutral regimes. arXiv 2022, arXiv:2205.02650v1. [Google Scholar]
- Hou, Z.; Lv, G.; Jiang, L. Functional diversity can predict ecosystem functions better than dominant species: The case of desert plants in the Ebinur Lake Basin. Sustainability 2021, 13, 2858. [Google Scholar] [CrossRef]
- Ulrich, W.; Soliveres, S.; Thomas, A.D.; Dougill, A.J.; Maestre, F.T. Environmental correlates of species rank—Abundance distributions in global drylands. Perspect. Plant Ecol. Evol. Syst. 2016, 20, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.N.; Yang, X.D.; Lü, G.H. Diversity patterns and response mechanisms of desert plants to the soil environment along soil water and salinity gradients. Acta Ecol. Sin. 2016, 36, 3206–3215. [Google Scholar]
- Mitchell, E.G.; Harris, S.; Kenchington, C.G.; Vixseboxse, P.; Roberts, L.; Clark, C.; Dennis, A.; Liu, A.G.; Wilby, P.R. The importance of neutral over niche processes in structuring Ediacaran early animal communities. Ecol. Lett. 2019, 22, 2028–2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergnon, R.; van Nes, E.H.; Scheffer, M. Interpretation and predictions of the Emergent neutrality model: A reply to Barabás et al. Oikos 2013, 122, 1573–1575. [Google Scholar] [CrossRef]
- Matthews, T.J.; Whittaker, R.J. Neutral theory and the species abundance distribution: Recent developments and prospects for unifying niche and neutral perspectives. Ecol. Evol. 2014, 4, 2263–2277. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.P. Study on the Spatial Pattern Dynamics and Construction Assembly of Populus Euphratica Communities in the Upper Reaches of Tarim River; Tarim University: Alar, China, 2021. [Google Scholar]
- Matthews, T.J.; Whittaker, R.J. On the species abundance distribution in applied ecology and biodiversity management. J. Appl. Ecol. 2015, 52, 443–454. [Google Scholar] [CrossRef]
- Kunduz, S.; Lü, G.H.; Jiang, L.M.; Wang, H.F.; Wang, J.L. Responses of species abundance distribution to varying sampling scales in a desert plant community in the Ebinur Lake Basin. Arid. Zone Res. 2020, 37, 1273–1283. [Google Scholar]
- Fisher, R.A.; Corbet, A.S.; Williams, C.B. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 1943, 12, 42–58. [Google Scholar] [CrossRef]
- Preston, F.W. The commonness, and rarity, of species. Ecology 1948, 29, 254–283. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Zhang, D.Y. Neutral theory in community ecology. J. Plant Ecol. 2006, 30, 868–877. [Google Scholar] [CrossRef]
- Takolander, A.; Hickler, T.; Meller, L.; Caneza, M. Comparing future shifts in tree species distributions across Europe projected by statistical and dynamic process-based models. Reg. Environ. Chang. 2019, 19, 251–266. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, W.; Matthews, T.J.; Biurrun, I.; Campos, J.A.; Czortek, P.; Dembicz, I.; Essl, F.; Filibeck, G.; Galdo, G.-P.G.D.; Güler, B.; et al. Environmental drivers and spatial scaling of species abundance distributions in Palaearctic grassland vegetation. Ecology 2022, 103, 3725. [Google Scholar] [CrossRef]
- Duan, Y.Z.; Wang, C.; Wang, H.T.; Du, Z.Y.; He, Y.M.; Chai, G.Q. Predicting the potential distribution of Ammopiptanthus species in China under different climates using ecological niche models. Acta Ecol. Sin. 2020, 40, 7668–7680. [Google Scholar]
- Motomura, I. On the statistical treatment of communities. Zool Mag. 1932, 44, 379–383. [Google Scholar]
- MacArthur, R.H. On the relative abundance of bird species. Proc. Natl. Acad. Sci. USA 1957, 43, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubbell, S.P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32); Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Zhang, S. Study on the Maintenance Mechanisms of Species Diversity in the Natural Old Growth Tropical Forests on Hainan Island, China; Chinese Academy of Forestry Sciences: Beijing, China, 2017. [Google Scholar]
- Yang, X.; Lin, W.; Wu, J. The species-abundance distribution pattern of broad-leaved Korean pine forest in the Lesser Khingan mountains. J. Cent. South Univ. For. Technol. 2020, 40, 104–113. [Google Scholar]
- Carmel, Y.; Suprunenko, Y.F.; Kunin, W.E.; Kent, R.; Belmaker, J.; Bar-Massada, A.; Cornell, S.J. Using exclusion rate to unify niche and neutral perspectives on coexistence. Oikos 2017, 126, 1451–1458. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.D.; Li, X.J.; Xu, T.J.; Xie, W. Advances in the biogeography of arbuscular mycorrhizal fungi. Acta Ecol. Sin. 2018, 38, 1167–1175. [Google Scholar]
- Güler, B.; Jentsch, A.; Apostolova, I. How plot shape and spatial arrangement affect plant species richness counts: Implications for sampling design and rarefaction analyses. J. Veg. Sci. 2016, 27, 692–703. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Mi, X.; Nadrowski, K.; Ren, H.B.; Zhang, J.T.; Ma, K.P. Separating the effect of mechanisms shaping species-abundance distributions at multiple scales in a subtropical forest. Oikos 2012, 121, 236–244. [Google Scholar] [CrossRef]
- Tan, L.; Zhang, P.; Zhao, X.; Fan, C.; Zhang, C.; Yan, Y.; Von, G.K. Analysing species abundance distribution patterns across sampling scales in three natural forests in Northeastern China. iForest 2020, 13, 482–489. [Google Scholar] [CrossRef]
- Wu, A.; Deng, X.; He, H.; Ren, X.L.; Jing, Y.R.; Xiang, W.H.; Ouyang, S.; Yan, W.D.; Fang, X. Responses of species abundance distribution patterns to spatial scaling in subtropical secondary forests. Ecol. Evol. 2019, 9, 5338–5347. [Google Scholar] [CrossRef]
- Zhu, Q.; Ai, X.; Yao, L.; Zhu, J.; Peng, Z. Species abundance distribution pattern of evergreen and deciduons broad -leaved mixed forest in the Subtropical Mountains of southwestern Hubei. Acta Bot. Boreali-Occident. Sin. 2020, 40, 1061–1069. [Google Scholar]
- Spake, R.; Mori, A.S.; Beckmann, M.; Martin, P.A.; Christie, A.P.; Duguid, M.C.; Doncaster, C.P. Implications of scale dependence for cross-study syntheses of biodiversity differences. Ecol. Lett. 2021, 24, 374–390. [Google Scholar] [CrossRef] [PubMed]
- Gabrielsen, C.G.; Murphy, M.A.; Jeffrey, S.E. Testing the effect of wetland spatiotemporal variability on amphibian occurrence across scales. Landsc. Ecol. 2022, 37, 477–492. [Google Scholar] [CrossRef]
- Baldeck, C.A.; Harms, K.E.; Yavitt, J.B.; John, R.; Turner, B.L.; Valencia, R.; Navarrete, H.; Davies, S.J.; Chuyong, G.B.; Kenfack, D.; et al. Soil resources and topography shape local tree community structure in tropical forests. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122532. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Khan, S.M.; Abd_Allah, E.F.; Alqarawi, A.A.; Hashem, A. Weed species composition and distribution pattern in the maize crop under the influence of edaphic factors and farming practices: A case study from Mardan, Pakistan. Saudi J. Biol. Sci. 2016, 23, 741–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bano, S.; Khan, S.M.; Alam, J.; Alqarawi, A.A.; Abd_Allah, E.F.; Ahmad, Z.; Hashem, A. Eco-floristic studies of native plants of the beer hills along the indus river in the districts Haripur and Abbottabad, Pakistan. Saudi J. Biol. Sci. 2018, 25, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Metzen, D.; Sheridan, G.J.; Benyon, R.G.; Bolstad, P.V.; Griebel, A.; Lane, P.N. Spatio-temporal transpiration patterns reflect vegetation structure in complex aupland terrain. Sci. Total Environ. 2019, 694, 133551. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Zhang, Z.; Zhang, J.; Huang, X. Stoichiometric characteristics of nutrients in a soil-vegetation system of the rare plant Davidia involucrata Baill. Glob. Ecol. Conserv. 2020, 24, e01266. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, J.; DeLuca, T.H.; Wang, G.; Sun, S.; Sun, X.; Zhang, W. Biogeochemical stoichiometry of soil and plant functional groups along a primary successional gradient following glacial retreat on the eastern Tibetan plateau. Glob. Ecol. Conserv. 2021, 26, e01491. [Google Scholar] [CrossRef]
- Bohlman, S.A.; Laurance, W.F.; Laurance, S.G.; Nascimento, H.E.M.; Fearnside, P.M.; Andrade, A. Importance of soils, topography and geographic distance in structuring central Amazonian tree communities. J. Veg. Sci. 2008, 19, 863–874. [Google Scholar]
- Hu, D.; Lu, G.; Wang, H.; Yang, Q.; Cai, Y. Response of desert plant diversity and stability to soil factors based on water gradient. Acta Ecol. Sin. 2021, 41, 6738–6748. [Google Scholar]
- Rahman, A.U.; Khan, S.M.; Ahmad, Z.; Alamri, S.; Hashem, M.; Ilyas, M.; Aksoy, A.; Dülgeroğlu, C.; Khan, G.; Ali, S. -Impact of multiple environmental factors on species abundance in various forest layers using an integrative modeling approach. Glob. Ecol. Conserv. 2021, 29, e01712. [Google Scholar] [CrossRef]
- Djordjević, V.; Spyros, T. The role of ecological factors in distribution and abundance of terrestrial orchids. In Orchids Phytochemistry, Biology and Horticulture; Mérillon, J.-M., Kodja, H., Eds.; Springer: Cham, Switzerland, 2022; pp. 3–72. [Google Scholar]
- Ma, X.; Wu, L.; Liu, D.; Ma, M. Impacts of habitat fragmentation on biological characteristics of Alhagi sparsifolia populations at the southern margin of the Gurbantünggüt Desert. Acta Ecol. Sin. 2021, 41, 4935–4941. [Google Scholar]
- Jia, F.Q.; Ren, J.J.; Zhang, Y.M. Effect of slope aspect and terrain of sand dune on herbaceous diversity in Gurbantünggüt desert. Chin. J. Ecol. 2018, 37, 26–34. [Google Scholar]
- Duan, C.; Wu, L.; Wang, S.; He, L. Analysis of Spatiotemporal patterns of ephemeral plants in the Gurbantünggüt Desert over the last 30 years. Acta Ecol. Sin. 2017, 37, 2642–2652. [Google Scholar]
- Li, G.L.; Zhang, D.H.; Zhang, Z.S.; Hu, Y.G.; Huang, L.; Lu, L.N. Population dynamics of main sand-fixing shrubs in the Gurbantünggüt Desert. J. Desert Res. 2021, 41, 129–137. [Google Scholar]
- Yuan, Z. The Study on Species Abundance Distribution and Main Species Spatial Point Patterns of Bothriochloa ischaemun Community in the Loess Hilly and Gully Region, China; Northwest A&F University: Xianyang, China, 2012. [Google Scholar]
- Dong, Z.W.; Li, S.Y.; Mao, D.L.; Lei, S. Distribution pattern of soil grain size in Tamarix Sand Dune in the southwest of Gurbantünggüt Desert. J. Soil Water Conserv. 2021, 35, 64–72. [Google Scholar]
- Gou, B.W.; Wei, B.; Ma, S.M.; Nie, Y.L. Distribution characteristics of soil nutrients in roots of Haloxylon ammodendron in southern margin of Gurbantünggüt Desert. Southwest China J. Agric. Sci. 2020, 33, 1229–1234. [Google Scholar]
- Guo, T.; Yu, H. Summary of soil moisture content. Inn. Mong. Sci. Technol. Econ. 2018, 2018, 66–67. [Google Scholar]
- Bao, S. Soil Agrochemical Analysis; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Fang, J.Y.; Wang, X.P.; Shen, Z.H.; Tang, Z.Y.; He, J.S.; Yu, D.; Jiang, Y.; Wang, Z.H.; Zheng, C.Y.; Zhu, J.L.; et al. Methods and protocols for plant community inventory. Biodivers. Sci. 2009, 17, 533. [Google Scholar]
- Chen, S.; Zhang, X.; She, D.; Zhang, Z.; Zhou, Z.; Wang, H.; Wang, W. Effects of plant species diversity, dominant species importance, and soil properties on glomalin-related soil protein. Biodivers. Sci. 2022, 30, 51–63. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.G.; Zhang, J.T. A comparison of fifteen species diversity indices. Henan Sci. 1999, 17, 55–57, 71. [Google Scholar]
- May, R.M. Patterns of species abundance and diversity. Ecol. Evol. Communities 1975, 40, 81–120. [Google Scholar]
- Peng, S.; Yin, Z.; Ren, H.; Guo, Q.F. Advances in research on the species-abundance relationship models in multi-species collection. Acta Ecol. Sin. 2003, 23, 1590–1605. [Google Scholar]
- Su, Q. Analyzing fractal property of species abundance distribution in a community. Adv. Earth Sci. 2015, 30, 1144. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Walker, S.C.; Cyr, H. Testing the standard neutral model of biodiversity in lake communities. Oikos 2007, 116, 143–155. [Google Scholar] [CrossRef]
- Kang, J.; Han, L.; Feng, C.; Wang, H. Species abundance distribution in two riparian forests under contrasting environmental regimes in the Tarim Desert. Biodivers. Sci. 2021, 29, 875. [Google Scholar] [CrossRef]
- Cao, Y.; Mao, D.; Xue, J.; Su, S.; Kaimerguli, A.; Cai, Y.Y. Dynamic changes and driving factors of vegetation cover in the oasis-desert ecotone: A case study of Cele, Xinjiang. Arid. Zone Res. 2022, 3902, 510–521. [Google Scholar]
- Han, L.; Wang, J.Q.; Wang, H.Z.; Niu, J.; Yu, J. Niche and spatial distribution pattern analysis of the main populations of the Tarim desert-oasis ecotone. Plant Sci. J. 2016, 34, 352–360. [Google Scholar]
- Chen, J.; Ai, X.; Yao, L.; Chen, S.Y. Responses of species-abundance distribution to varying sampling scales in a typical forest community in Mulinzi Nature Reserve. J. Hubei Univ. Natl. Nat. Sci. Ed. 2018, 36, 130–133. [Google Scholar]
- Zhang, J.; Cheng, K.; Zang, R. The spatial distribution patterns and associations of the principal trees and shrubs in a natural tropical coniferous forest on Hainan Island, China. Biodivers. Sci. 2014, 22, 129. [Google Scholar]
- Shen, Z.H.; Fang, J.Y.; Liu, Z.L.; Wu, J. Patterns of biodiversity along the vertical vegetation spectrum of the east aspect of Gongga Mountain. Chin. J. Plant Ecol. 2001, 25, 721. [Google Scholar]
- Feng, L. Spatial Characteristics of Soil Chemical and Physical Property Influenced Distribution of Plant Diversity in Gurbantünggüt Desert; Shihezi University: Shihezi, China, 2015. [Google Scholar]
- Qian, Y.B.; Wu, Z.N.; Zhang, L.Y.; Shi, Q.D.; Jiang, J.; Tang, L.S. Impact of eco environment on vegetation community pattern in Gurbantünggüt Desert. Acta Geogr. Sin. 2004, 59, 895–902. [Google Scholar]
- Antunes, A.C.; Gauzens, B.; Brose, U.; Potapov, A.M.; Jochum, M.; Santini, L.; Eisenhauer, N.; Ferlian, O.; Cesarz, S.; Scheu, S.; et al. Global environmental drivers of local abundance-mass scaling in soil animal communities. bioRxiv 2022. [Google Scholar] [CrossRef]
- Huang, Y.R.; Ma, Y.B.; Li, Y.H.; Duan, R.B.; Liu, Y.; Dong, X.; Han, C.X.; Hao, X.T. Relationships between soil factors and sap flow of Tamarix chinensis Lour. at Different Time Scales. Xinjiang Agric. Sci. 2022, 59, 1697–1707. [Google Scholar]
- Qian, Y.B.; Wu, Z.N.; Zhang, L.Y.; Zhao, R.F.; Wang, X.Y.; Li, Y.M. Vegetation-environment relationships in Gurbantünggüt Desert. Acta Ecol. Sin. 2007, 27, 2802–2811. [Google Scholar]
- Ma, X.F.; Chu, X.Z.; Ma, Q.; Jin, W.G. Study on the Differences of Soil Characteristics in Root Zone of Haloxylon ammodendron in Various Dunes. Chin. J. Soil Sci. 2016, 47, 156–163. [Google Scholar]
- Han, L.; Wang, H.; Peng, J.; Mo, Z. Spatial distribution patterns and dynamics of major population in Populus euphratica forest in upper reaches of Tarim River. Acta Bot. Boreali-Occident. Sin. 2007, 27, 1668. [Google Scholar]
- Jia, M.Y.; Li, X.H.; Oh, C.H.; Park, H.C.; Miao, C.P.; Han, X. Spatial distribution pattern and allometric growth of three common species on moving sand dunes in Horqin Sandy Land, China. J. Appl. Ecol. 2015, 26, 2953–2960. [Google Scholar]
- Duffy, J.E. Why biodiversity is important to the functioning of real-world ecosystems. Front. Ecol. Environ. 2009, 7, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.L.; Kang, S.; Zhang, Q.; Chang, C.; Ma, W.; Niu, J. Relationship between species diversity, productivity, climatic factors and soil nutrients in the desert steppe. Acta Prataculturae Sin. 2015, 24, 10–19. [Google Scholar]
- Wu, Y.N.; Zheng, Y.M.; Wang, Y.; Wei, B.L.; Wu, C.P.; Shen, A.H.; Lu, X.K.; Zheng, F.D.; Yu, Z.C.; Ni, J.; et al. Relationship between the number of Cunninghamia lanceolata and community species diversity in abandoned Chinese fir forests. Acta Ecol. Sin. 2022, 42, 884–894. [Google Scholar]
- Yu, W.; Song, W.C.; Guo, Y.C.; Zhang, H.F.; Yan, Y.; Zhang, S.X. Species-abundance distribution patterns of Quercus aliena var. Acutiserrata forest in Taibai Mountain, China. Chin. J. Appl. Ecol. 2021, 32, 1717–1725. [Google Scholar]
- Liu, Z.Q. Maintenance Mechanisms of Species Diversity at Different Spatial Scales in Gaole Mountain National Nature Reserve; Henan Agricultural University: Zhengzhou, China, 2021. [Google Scholar]
- Stokes, C.J.; Archer, S.R. Niche differentiation and neutral theory: An integrated perspective on shrub assemblages in a parkland savanna. Ecology 2010, 91, 1152–1162. [Google Scholar] [CrossRef] [Green Version]
- Chisholm, R.A.; Pacala, S.W. Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proc. Natl. Acad. Sci. USA 2010, 107, 15821–15825. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.M.; Chen, B.; Li, Z.Y. Analysis of the species diversity and community stability in local-community using the Neutral Theory. Acta Ecol. Sin. 2010, 30, 1556–1563. [Google Scholar]
- Laurance, W.F.; Ferreira, L.V.; Rankin-de, M.J.M.; Laurance, S.G. Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology 1998, 79, 2032–2040. [Google Scholar] [CrossRef]
- Shi, Y.F.; Zhang, Z.S.; Huang, L.; Hu, Y.G.; Li, J.; Yang, Y.G. Species composition and population structure of plant communities on semi-fixed dunes of the Gurbantünggüt Desert, China. J. Appl. Ecol. 2016, 27, 1024–1030. [Google Scholar]
- Wang, J.; Wang, W.; Li, J.; Feng, Y.; Wu, B.; Lu, Q. Biogeographic patterns and environmental interpretation of plant species richness in desert regions of Northwest China. Biodivers. Sci. 2017, 25, 1192–1201. [Google Scholar] [CrossRef]
- Kraft, N.J.B.; Ackerly, D.D. Assembly of plant communities. Ecol. Environ. 2014, 8, 67–88. [Google Scholar]
- Yang, J.; Liu, Q.R.; Wang, X.T. Plant community and soil nutrient of alpine meadow in different degradation stages on the Tibetan Plateau, China. J. Appl. Ecol. 2020, 31, 4067–4072. [Google Scholar]
- Matali, S.; Metali, F. Selected soil physico-chemical properties in the Acacia mangium plantation and the adjacent heath forest at Andulau Forest Reserve. Malays. J. Soil Sci. 2015, 19, 45–48. [Google Scholar]
- Gravel, D.; Canham, C.D.; Beaudet, M.; Messier, C. Reconciling niche and neutrality: The continuum hypothesis. Ecol. Lett. 2006, 9, 399–409. [Google Scholar] [CrossRef] [Green Version]
- May, F.; Huth, A.; Wiegand, T. Moving beyond abundance distributions: Neutral theory and spatial patterns in a tropical forest. Proc. R. Soc. B Biol. Sciences 2015, 282, 20141657. [Google Scholar] [CrossRef]
- Chu, C.J.; Wang, Y.S.; Du, G.Z.; Maestre, F.T.; Luo, Y.J.; Wang, G. On the balance between niche and neutral processes as drivers of community structure along a successional gradient: Insights from alpine and sub-alpine meadow communities. Ann. Bot. 2007, 100, 807–812. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. Effects of Large-Scale Species Abundance Distribution Pattern and Environmental Heterogeneity on Local Community Structure under Different Assembly Mechanisms; Lanzhou University: Lanzhou, China, 2019. [Google Scholar]
- Kim, H.; Jeon, J.; Lee, K.K.; Lee, Y.H. Longitudinal transmission of bacterial and fungal communities from seed to seed in rice. Commun. Biol. 2022, 5, 772. [Google Scholar] [CrossRef]
- Adler, P.B.; Hille, R.L.J.; Levine, J.M. A niche for neutrality. Ecol. Lett. 2007, 10, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 2000, 31, 343–366. [Google Scholar] [CrossRef] [Green Version]
- Kechang, N.; Yining, L.; Zehao, S.; Fangliang, H.; Jingyun, F. Community assembly: The relative importance of neutral theory and niche theory. Biodivers. Sci. 2009, 17, 579–593. [Google Scholar] [CrossRef]
- Fisher, C.K.; Mehta, P. The transition between the niche and neutral regimes in ecology. Proc. Natl. Acad. Sci. USA 2014, 111, 13111–13116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letcher, S.G.; Chazdon, R.L.; Andrade, A.C.S.; Bongers, F.; Breugel, M.V.; Finegan, B.; Laurance, S.G.; Mesquita, R.C.G.; Martínez-Ramos, M.; Williamson, G. Phylogenetic community structure during succession: Evidence from three Neotropical forest sites. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 79–87. [Google Scholar] [CrossRef]
- Cai, J.D.; Liu, Y.; Xu, C.Y.; Ma, C.; Zhuang, Z.D. The study on community structure of nekton based on abundance patterns model: A case study on the Minnan sea area. Haiyang Xuebao 2022, 44, 63–78. [Google Scholar]
- Villa, P.M.; Martins, S.V.; Rodrigues, A.C.; Safar, N.V.H.; Bonilla, M.A.C.; Ali, A. Testing species abundance distribution models in tropical forest successions: Implications for fine-scale passive restoration. Ecol. Eng. 2019, 135, 28–35. [Google Scholar] [CrossRef]
Fixed Dune | Semifixed Dune | Mobile Dune | p | |
---|---|---|---|---|
Soil water content (%) | 1.403 ± 0.623 a | 0.988 ± 0.318 a | 0.463 ± 0.134 b | <0.01 |
Electrical conductivity (ms/cm) | 1.049 ± 0.730 a | 0.499 ± 0.385 a | 0.155 ± 0.033 a | 0.04 |
Soil pH | 8.573 ± 0.190 a | 8.492 ± 0.1824 a | 8.450 ± 0.190 a | 0.80 |
Soil organic carbon (g/kg) | 1.439 ± 0.735 a | 1.117 ± 0.364 ab | 0.640 ± 0.279 b | 0.01 |
CO32− (g/kg) | 0.017 ± 0.007 a | 0.009 ± 0.003 b | 0.008 ± 0.002 b | <0.01 |
HCO3−(g/kg) | 0.115 ± 0.111 a | 0.087 ± 0.070 a | 0.063 ± 0.033 a | 0.25 |
Cl− (g/kg) | 0.070 ± 0.039 a | 0.061 ± 0.029 a | 0.058 ± 0.031 a | 0.53 |
SO42− (g/kg) | 0.022 ± 0.006 a | 0.020 ± 0.003 a | 0.022 ± 0.013 a | 0.96 |
Ca2+ (g/kg) | 0.034 ± 0.021 a | 0.026 ± 0.022 a | 0.047 ± 0.048 a | 0.51 |
Mg2+ (g/kg) | 0.032 ± 0.023 a | 0.030 ± 0.017 a | 0.038 ± 0.019 a | 0.60 |
K+ (g/kg) | 0.004 ± 0.002 a | 0.003 ± 0.001 a | 0.003 ± 0.002 a | 0.10 |
Na+ (g/kg) | 0.002 ± 0.002 a | 0.002 ± 0.001 a | 0.001 ± 0.001 a | 0.24 |
Total salt (g/kg) | 0.296 ± 0.129 a | 0.238 ± 0.097 a | 0.221 ± 0.063 a | 0.20 |
Family | Genus | Species | RF (%) | IV (%) |
---|---|---|---|---|
Chenopodiaceae | Haloxylon | Haloxylon ammodendron | 33.00 | 48.81 |
Haloxylon persicum | 30.00 | 28.07 | ||
Salsola | Salsola praecox | 13.33 | 10.42 | |
Salsola nitraria | 3.67 | 0.32 | ||
Horaninovia | Horaninowia ulicina | 25.33 | 15.05 | |
Ceratocarpus | Ceratocarpus arenarius | 25.33 | 27.45 | |
Agriophyllum | Agriophyllum squarrosum | 13.33 | 15.23 | |
Corispermum | Corispermum lehmannianum | 16.00 | 18.69 | |
Calligonum | Calligonum leucocladum | 26.33 | 7.3 | |
Suaeda | Suaeda glauca | 13.33 | 14.12 | |
Grubovia | Bassia dasyphylla | 14.00 | 12.17 | |
Atriplex | Atriplex dimorphostegia | 8.33 | 1.23 | |
Chenopodium | Chenopodium glaucum | 2.33 | 0.46 | |
Kochia | Kochia iranica | 0.33 | 0.26 | |
Peganum | Peganum harmala | 2.33 | 0.23 | |
Gramineae | Stipagrostis | Stipagrostis pennata | 3.33 | 0.49 |
Eremopyrum | Eremopyrum orientale | 17.33 | 12.23 | |
Brassicaceae | Alyssum | Alyssum desertorum | 5.67 | 3.5 |
Isatis | Isatis violascens | 12.67 | 2.2 | |
Tetracme | Tetracme quadricornis | 13.33 | 7.2 | |
Malcolmia | Malcolmia africana | 3.33 | 0.42 | |
Compositae | Echinops | Echinops sphaerocephalus | 5.67 | 6.53 |
Cancrinia | Cancrinia discoidea | 1.67 | 0.14 | |
Seriphidium | Seriphidium terraealbae | 25.33 | 37.19 | |
Hyalea | Hyalea pulchella | 11.33 | 1.1 | |
Amberboa | Amberboa turanica | 1.00 | 0.58 | |
Chondrilla | Chondrilla ambigua | 19.00 | 1.37 | |
Boraginaceae | Lappula | Lappula semiglabra | 13.67 | 1.73 |
Arnebia | Arnebia decumbens | 0.67 | 4.11 | |
Asphodelaceae | Eremurus | Eremurus inderiensis | 5.67 | 4.74 |
Liliaceae | Gagea | Gagea nakaiana | 9.67 | 1.67 |
Fabaceae | Alhagi | Alhagi sparsifolia | 13.67 | 9.74 |
Eremosparton | Eremosparton songoricum | 4.00 | 0.64 | |
Umbelliferae | Soranthus | Soranthus meyeri | 13.67 | 2.91 |
Plumbaginaceae | Limonium | Limonium sinense | 1.00 | 0.28 |
Lamiaceae | Nepeta | Nepeta micrantha | 1.00 | 0.12 |
Tamaricaceae | Tamarix | Tamarix chinensis | 5.33 | 1.32 |
Salicaceae | Populus | Populus euphratica | 5.67 | 2.59 |
Habitat | Test Way | Model | ||||
---|---|---|---|---|---|---|
Broken-Stick Model | Preemption Model | Log-Normal Model | Zipf Model | Zipf–Mandelbrot Model | ||
Fixed dune | AIC | 533.14 | 228.44 | 322.16 | 670.19 | 232.37 |
D | 0.86 | 0.49 | 0.49 | 1.48 * | 0.49 | |
x2 | 321.56 ** | 55.87 | 514.75 ** | 411.09 ** | 52.01 | |
Semifixed dune | AIC | 497.12 | 195.46 | 271.07 | 573.17 | 199.39 |
D | 0.82 | 0.41 | 0.86 | 1.87 * | 1.29 | |
x2 | 317.7 ** | 47.41 | 367.71 ** | 349.33 ** | 43.53 | |
Mobile dune | AIC | 115.93 | 85.36 | 100.34 | 155.93 | 89.27 |
D | 0.53 | 0.35 | 0.35 | 1.06 | 0.35 | |
x2 | 29.29 | 8.66 | 49.12 * | 66.79 ** | 8.95 |
Habitat | Scale(m) | Test Way | Model | ||||
---|---|---|---|---|---|---|---|
Broken STICK Model | Preemptio Model | Log-Normal Model | Zipf Model | Zipf–Mandelbrot Model | |||
Fixed dune | 10 × 10 | AIC | 21.92 | 22.45 | 24.52 | 25.79 | 26.42 |
D | 0.58 | 0.29 | 0.29 | 0.58 | 0.29 | ||
x2 | 1.91 | 0.69 | 1.90 | 1.88 | 0.67 | ||
20 × 20 | AIC | 39.21 | 41.52 | 44.88 | 52.81 | 45.15 | |
D | 0.24 | 0.24 | 0.47 | 0.71 | 0.24 | ||
x2 | 2.00 | 1.95 | 4.12 | 10.59 | 2.81 | ||
40 × 40 | AIC | 86.56 | 80.25 | 82.40 | 108.34 | 82.23 | |
D | 0.35 | 0.18 | 0.35 | 0.88 | 0.35 | ||
x2 | 14.40 | 4.57 | 6.41 | 29.87 | 2.98 | ||
60 × 60 | AIC | 190.66 | 137.90 | 160.09 | 268.43 | 141.80 | |
D | 0.57 | 0.42 | 0.28 | 1.27 | 0.42 | ||
x2 | 66.27 * | 16.31 | 80.67 ** | 124.52 ** | 15.88 | ||
80 × 80 | AIC | 350.31 | 228.44 | 241.69 | 455.36 | 189.49 | |
D | 0.76 | 0.64 | 0.38 | 1.27 | 0.64 | ||
x2 | 178.46 * | 55.87 | 249.36 ** | 246.78 ** | 29.67 | ||
Semifixed dune | 10 × 10 | AIC | 21.44 | 22.78 | 24.53 | 25.49 | 26.64 |
D | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | ||
x2 | 1.06 | 1.61 | 0.39 | 1.06 | 0.33 | ||
20 × 20 | AIC | 29.40 | 32.29 | 33.27 | 36.25 | 35.97 | |
D | 0.51 | 0.51 | 0.47 | 0.47 | 0.51 | ||
x2 | 0.50 | 1.04 | 0.96 | 2.87 | 1.02 | ||
40 × 40 | AIC | 79.71 | 73.59 | 82.30 | 114.54 | 77.48 | |
D | 0.37 | 0.37 | 0.37 | 0.91 | 0.37 | ||
x2 | 12.30 | 4.92 | 20.98 | 39.76 | 5.51 | ||
60 × 60 | AIC | 170.40 | 114.26 | 124.94 | 211.80 | 116.59 | |
D | 0.47 | 0.32 | 0.32 | 0.95 | 0.47 | ||
x2 | 67.19 ** | 13.27 | 41.19 | 94.37 ** | 11.12 | ||
80 × 80 | AIC | 284.64 | 165.51 | 193.7 | 373.34 | 168.52 | |
D | 0.69 | 0.42 | 0.28 | 1.25 | 0.56 | ||
x2 | 138.97 ** | 30.74 | 144.76 ** | 203.20 ** | 28.98 | ||
Mobile dune | 10 × 10 | AIC | 12.47 | 14.32 | 16.36 | 16.73 | 18.29 |
D | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | ||
x2 | 0.20 | 0.03 | 0.86 | 0.49 | 0.05 | ||
20 × 20 | AIC | 39.90 | 42.05 | 44.93 | 51.10 | 45.88 | |
D | 0.22 | 0.22 | 0.22 | 0.45 | 0.22 | ||
x2 | 1.71 | 1.68 | 3.13 | 8.08 | 1.74 | ||
40 × 40 | AIC | 59.64 | 54.21 | 63.27 | 77.76 | 58.11 | |
D | 0.41 | 0.20 | 0.41 | 0.82 | 0.20 | ||
x2 | 7.73 | 0.84 | 8.94 | 22.16 | 0.93 | ||
60 × 60 | AIC | 112.12 | 60.39 | 80.82 | 107.78 | 64.38 | |
D | 0.61 | 0.20 | 0.20 | 0.82 | 0.41 | ||
x2 | 56.89 ** | 7.38 | 32.07 | 51.37 ** | 7.66 | ||
80 × 80 | AIC | 117.09 | 74.15 | 98.02 | 137.16 | 78.12 | |
D | 0.82 | 0.41 | 0.41 | 1.02 | 0.41 | ||
x2 | 54.26 ** | 18.42 | 56.09 ** | 76.63 ** | 19.90 |
Habitat | Scale (m) | Species Number | Individual Number | Fundamental Diversity θ | Migration Rate m | x2 | D |
---|---|---|---|---|---|---|---|
Fixed dune | 10 × 10 | 6 | 41 | 9.88 | 0.07 | 1.47 | 0.29 |
20 × 20 | 9 | 127 | 5.14 | 0.07 | 13.44 | 0.47 | |
40 × 40 | 16 | 425 | 6.76 | 0.05 | 17.54 | 0.35 | |
60 × 60 | 25 | 1039 | 10.26 | 0.03 | 22.09 | 0.28 | |
80 × 80 | 31 | 1828 | 12.44 | 0.02 | 31.80 | 0.38 | |
100 × 100 | 33 | 2726 | 13.79 | 0.01 | 38.00 | 0.37 | |
Semifixed dune | 10 × 10 | 6 | 42 | 5.84 | 0.01 | 0.97 | 0.30 |
20 × 20 | 7 | 94 | 3.79 | 0.08 | 11.68 | 0.54 | |
40 × 40 | 15 | 378 | 7.59 | 0.04 | 15.37 | 0.37 | |
60 × 60 | 20 | 984 | 7.80 | 0.03 | 20.18 | 0.32 | |
80 × 80 | 26 | 1663 | 9.60 | 0.02 | 28.51 | 0.28 | |
100 × 100 | 27 | 1883 | 10.12 | 0.01 | 34.15 | 0.21 | |
Mobile dune | 10 × 10 | 4 | 18 | 6.69 | 0.13 | 0.75 | 0.35 |
20 × 20 | 10 | 108 | 6.31 | 0.09 | 8.35 | 0.45 | |
40 × 40 | 12 | 232 | 6.17 | 0.05 | 13.09 | 0.41 | |
60 × 60 | 12 | 337 | 11.27 | 0.02 | 13.64 | 0.20 | |
80 × 80 | 12 | 431 | 7.57 | 0.02 | 24.40 | 0.41 | |
100 × 100 | 16 | 639 | 6.55 | 0.03 | 28.15 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, Z.; Zeng, Y.; Wang, D.; Shi, F.; Dong, Y.; Liu, N.; Liang, Y. Species-Abundance Distribution Patterns of Plant Communities in the Gurbantünggüt Desert, China. Sustainability 2022, 14, 12957. https://doi.org/10.3390/su142012957
Zang Z, Zeng Y, Wang D, Shi F, Dong Y, Liu N, Liang Y. Species-Abundance Distribution Patterns of Plant Communities in the Gurbantünggüt Desert, China. Sustainability. 2022; 14(20):12957. https://doi.org/10.3390/su142012957
Chicago/Turabian StyleZang, Zexuan, Yong Zeng, Dandan Wang, Fengzhi Shi, Yiyang Dong, Na Liu, and Yuejia Liang. 2022. "Species-Abundance Distribution Patterns of Plant Communities in the Gurbantünggüt Desert, China" Sustainability 14, no. 20: 12957. https://doi.org/10.3390/su142012957
APA StyleZang, Z., Zeng, Y., Wang, D., Shi, F., Dong, Y., Liu, N., & Liang, Y. (2022). Species-Abundance Distribution Patterns of Plant Communities in the Gurbantünggüt Desert, China. Sustainability, 14(20), 12957. https://doi.org/10.3390/su142012957