Radiological and Structural Characterization of Raw and Alkali-Activated Wood Ash and Metakaolin Blends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Alkali-Activated Materials
2.2. Experimental Techniques
2.2.1. Gamma Spectrometry
2.2.2. Assessment of Dosimetric Quantities
2.2.3. Physico-Chemical Characterization
3. Results and Discussion
3.1. Radiological Analysis
3.2. Structural Analysis
3.2.1. FTIR Analysis
3.2.2. XRD Analysis
3.2.3. SEM/EDS Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ReferencesKhale, D.; Chaudhary, R. Mechanism of geopolymerization and factors influencing its development: A review. J. Mater. Sci. 2007, 42, 729–746. [Google Scholar]
- Abdulkareem, O.A.; Ramli, M.; Matthews, J.C. Production of geopolymer mortar system containing high calcium biomass wood ash as a partial substitution to fly ash: An early age evaluation. Compos. B Eng. 2019, 174, 106941. [Google Scholar] [CrossRef]
- Rocha, T.S.; Dias, D.P.; França, F.C.C.; Guerra, R.R.S.; Marques, L.R.C.O. Metakaolin-based geopolymer mortars with different alkaline activators (Na+ and K+). Constr. Build. Mater. 2018, 178, 453–461. [Google Scholar] [CrossRef]
- Leong, H.Y.; Ong, D.E.L.; Sanjayan, J.G.; Nazari, A. Strength Development of Soil-Fly Ash Geopolymer: Assessment of Soil, Fly Ash, Alkali Activators, and Water. J. Mater. Civ. Eng. 2018, 30, 04018171. [Google Scholar] [CrossRef] [Green Version]
- Buchwald, A.; Schulz, M. Alkali-activated binders by use of industrial by-products. Cem. Concr. Res. 2005, 35, 968–973. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Constr. Build. Mater. 2008, 22, 1315–1322. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-S.; Alrefaei, Y.; Dai, J.-G. Silico-Aluminophosphate and Alkali-Aluminosilicate Geopolymers: A Comparative Review. Front. Mater. 2019, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Nenadović, S.S.; Kljajević, L.M.; Nešić, M.A.; Petković, M.Ž.; Trivunac, K.V.; Pavlović, V.B. Structure analysis of geopolymers synthesized from clay originated from Serbia. Environ. Earth Sci. 2017, 76, 79. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Geopolymer foam concrete: An emerging material for sustainable construction. Constr. Build. Mater. 2014, 56, 113–127. [Google Scholar] [CrossRef]
- Ameri, F.; Shoaei, P.; Zareei, S.A.; Behforouz, B. Geopolymers vs. alkali-activated materials (AAMs): A comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars. Constr. Build. Mater. 2019, 222, 49–63. [Google Scholar] [CrossRef]
- Mladenović, N.; Kljajević, L.J.; Nenadović, S.; Ivanović, M.; Čalija, B.; Gulicovski, J.; Trivunac, K. The applications of new inorganic polymer for adsorption cadmium from waste water. J. Inorg. Organomet. Polym. Mater. 2020, 30, 554–563. [Google Scholar] [CrossRef]
- Rakhimov, N.R.; Rakhimo, R.Z. Reaction products, structure and properties of alkali-activated metakaolin cements incorporated with supplementary materials-a review. J. Mater. Res. Technol. 2019, 8, 1522–1531. [Google Scholar] [CrossRef]
- Glavonjić, B. Consumption of Wood Fuels in Households in Serbia-Present State and Possible Contribution to the Climate Change Mitigation. Therm. Sci. 2011, 15, 571–585. [Google Scholar] [CrossRef]
- Elinwa, A.U.; Mahmood, Y.A. Ash from timber waste as cement replacement material. Cem. Concr. Compos. 2002, 24, 219–222. [Google Scholar] [CrossRef]
- Wang, S.; Miller, A.; Llamazos, E.; Fonseca, F.; Baxter, L. Biomass fly ash in concrete: Mixture proportioning and mechanical properties. Fuel 2008, 87, 365–371. [Google Scholar] [CrossRef]
- Da Luz Garcia, M.; Sousa-Coutinho, J. Strength and durability of cement with forest waste bottom ash. Constr. Build. Mater. 2013, 41, 897–910. [Google Scholar] [CrossRef]
- Vaičiukynienė, D.; Michalik, B.; Bonczyk, M.; Vaičiukynas, V.; Kantautas, A.; Krulikauskaitė, J. Zeolitized bottom ashes from biomass combustion as cement replacing components. Constr. Build. Mater. 2018, 168, 988–994. [Google Scholar] [CrossRef]
- Teixeira, E.R.; Camões, A.; Branco, F.G. Valorisation of wood fly ash on concrete. Resour. Conserv. Recycl. 2019, 145, 292–310. [Google Scholar] [CrossRef]
- Pokorný, J.; Zemanová, L.; Pavlíková, M.; Pavlík, Z. Properties of Alkali-Activated Composites Containing Biomass Ash. AIP Conf. Proc. 2019, 2170, 020016. [Google Scholar]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Ban, C.C.; Ramli, M. The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concrete and mortar: An overview. Resour. Conserv. Recycl. 2011, 55, 669–685. [Google Scholar]
- Ban, C.C.; Ramli, M. Properties of high calcium wood ash and densified silica fume blended cement. Int. J. Phys. Sci. 2011, 6, 6596–6606. [Google Scholar]
- Ban, C.C.; Ramli, M. Characterisation of High Calcium Wood Ash for Use as a Constituent in Wood Ash-Silica Fume Ternary Blended Cement. Adv. Mat. Res. 2012, 346, 3–11. [Google Scholar] [CrossRef]
- Temuujin, J.; Minjigmaa, A.; Davaabal, B.; Bayarzul, U.; Ankhtuya, A.; Jadambaa Ts MacKenzie, K.J.D. Utilization of radioactive high-calcium Mongolian fly ash for the preparation of alkali-activated geopolymers for safe use as construction materials. Ceram. Int. 2014, 40, 16475–16483. [Google Scholar] [CrossRef]
- Janković, B.Ž.; Janković, M.M.; Marinović-Cincović, M.M.; Todorović, D.J.; Sarap, N.B. Thermal analysis testing and natural radioactivity characterization of kaolin as building material. J. Therm. Anal. Calorim. 2018, 133, 481–487. [Google Scholar] [CrossRef]
- Ivanović, M.; Kljajević, L.J.; Nenadović, M.; Bundaleski, N.; Vukanac, I.; Todorović, B.; Nenadović, S. Physicochemical and radiological characterization of kaolin and its polymerization products. Mater. Construccion 2018, 68, e155. [Google Scholar] [CrossRef]
- Kljajević, L.M.; Melichova, Z.; Stojmenović, M.D.; Todorović, B.Ž.; Pavlović, V.B.; Čitaković, N.M.; Nenadović, S.S. Structural and electrical properties of geopolymer materials based on different precursors (kaolin, bentonite and diatomite). Maced. J. Chem. Chem. Eng. 2019, 38, 283–292. [Google Scholar] [CrossRef] [Green Version]
- International Atomic Energy Agency. Measurement of Radionuclides in Food and the Environment, A Guide Book; Technical Reports Series No. 295; IAEA: Vienna, Austria, 1989. [Google Scholar]
- MBSS 2, Cert. No. 9031-OL-032/05; Radioactive Standard. CMI (Czech Metrological Institute): Prague, Czech Republic, 2005.
- Beretka, J.; Mathew, P.J. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 1985, 48, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Janković Mandić, L.J.; Dragović, S. Assessment of terrestrial gamma exposure to the population of Belgrade (Serbia). Radiat. Prot. Dosim. 2010, 140, 369–377. [Google Scholar] [CrossRef] [PubMed]
- UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation. Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly with Annex A: Exposures from Natural Sources of Radiation; United Nations: New York, NY, USA, 1993. [Google Scholar]
- Madruga, M.J.; Miró, C.; Reis, M.; Silva, L. Radiation exposure from natural radionuclides in building materials. Radiat. Prot. Dosim. 2019, 185, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Rigaku. PDXL Integrated X-Ray Powder Diffraction Softvare; Version 2.8.4.0; Rigaku: Tokyo, Japan, 2011. [Google Scholar]
- International Crystallographical Data Base (ICDD). Available online: https://www.icdd.com/ (accessed on 17 August 2022).
- Ilić, S.B.; Golubović, T.D.; Pajić, N.D.; Djurašević, M.M.; Kandić, A.B. Analysing radionuclide content in soil samples and radiological risks in the clayey material surrounding of the „Zbegovi” deposit, Donje Crniljevo, Serbia. Nucl. Technol. Radiat. Prot. 2020, 35, 154–164. [Google Scholar] [CrossRef]
- Šešlak, B.; Ujić, P.; Vukanac, I.; Kandić, A.; Đurašević, M.; Čeliković, I.; Milošević, Z. Content of 137Cs and 40K in wood ash. Ecologica 2015, 22, 605–608. [Google Scholar]
- Ladygienė, R.; Orentienė, A.; Pilkytė, L.; Skripkienė, A.; Žukauskaitė, V.; Kievinas, R. Radiological investigation of wood used for combustion. Ekologija 2010, 56, 87–93. [Google Scholar] [CrossRef]
- Hus, M.; Košutić, K.; Lulić, S. Radioaktivnost Drva i Okoliša. V. simpozij HDZZ, Stubičke Toplice. 2003, pp. 329–334. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/34/051/34051978.pdf (accessed on 2 August 2022).
- Marčiulionienė, D.; Lukšienė, B.; Kiponas, D.; Maksimov, G.; Darginavičien, J.; Gavelienė, V. Effects of 137Cs and 90Sr on the plant Lepidium sativum L. growth peculiarities. Ekologija 2007, 53, 65–70. [Google Scholar]
- Stoulos, S.; Ioannidou, A.; Vagena, E.; Koseoglou, P.; Manolopoulou, M. Post-Chernobyl 137Cs in the atmosphere of Thessaloniki: A consequence of the financial crisis in Greece. J. Environ. Radioact. 2014, 128, 68–74. [Google Scholar] [CrossRef]
- Janković, M.M.; Todorović, D.J.; Nikolić, J.D. Analysis of natural radionuclides in coal, slag and ash in coal-fired power plants in Serbia. J. Min. Metall. B Metall. 2011, 47, 149–155. [Google Scholar] [CrossRef]
- Li, F.; Wu, W.; Li, R.; Fu, X. Adsorption of phosphate by acid-modified fly ash and palygorskite in aqueous solution: Experimental and modeling. Appl. Clay Sci. 2016, 132–133, 343–352. [Google Scholar] [CrossRef]
- Lin, W.Y.; Prabhakar, A.K.; Mohan, B.C.; Wang, C.-H. A factorial experimental analysis of using wood fly ash as an alkaline activator along with coal fly ash for production of geopolymer cementitious hybrids. Sci. Total Environ. 2020, 718, 135289. [Google Scholar] [CrossRef]
- Ngueyep, M.; Fotseu, L.L.C.; Christian, M.; Elie, C.K. Valorization of Wood Ashes as Partial Replacement of Portland Cement: Mechanical Performance and Durability. Eur. J. Sci. Res. 2019, 151, 468–478. [Google Scholar]
- Poletto, M.; Zattera, A.J.; Santana, R.M.C. Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J. Appl. Polym. Sci. 2012, 126, E337–E344. [Google Scholar] [CrossRef]
- Kubovský, I.; Kačíková, D.; Kačík, F. Structural Changes of Oak Wood Main Components Caused by Thermal Modification. Polymers 2020, 12, 485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ylmén, R.; Jäglid, U. Carbonation of Portland Cement Studied by Diffuse Reflection Fourier Transform Infrared Spectroscopy. Int. J. Concr. Struct. Mater. 2013, 7, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Kalembkiewicz, J.; Galas, D.; Sitarz-Palczak, E. The Physicochemical Properties and Composition of Biomass Ash and Evaluating Directions of its Applications. Pol. J. Environ. Stud. 2018, 27, 2593–2603. [Google Scholar] [CrossRef]
- Tian, Q.; Sasaki, K. Application of fly ash-based geopolymer for removal of cesium, strontium and arsenate from aqueous solutions: Kinetic, equilibrium and mechanism analysis. Water Sci. Technol. 2019, 79, 2116–2125. [Google Scholar] [CrossRef]
- Siyal, A.A.; Shamsuddin, M.R.; Rabat, N.E.; Zulfiqar, M.; Man, Z.; Low, A. Fly ash based geopolymer for the adsorption of anionic surfactant from aqueous solution. J. Clean. Prod. 2019, 229, 232–243. [Google Scholar] [CrossRef]
- Nasab, G.M.; Golestanifard, F.; MacKenzie, K.J.D. The effect of the SiO2/Na2O ratio in the structural modification of metakaolin-based geopolymers studied by XRD, FTIR and MAS-NMR. J. Ceram. Sci. Technol. 2014, 5, 185–192. [Google Scholar]
Samples | WA (%) | MK (%) |
---|---|---|
WA | 100 | 0 |
WAMK10 | 90 | 10 |
WAMK20 | 80 | 20 |
WAMK30 | 70 | 30 |
MK | 100 | 0 |
Chemical | SiO2 | Al2O3 | Na2O | CaO | K2O | MgO | SO3 | CuO | ZnO2 | P2O5 | Mn2O3 | Fe2O3 | L.O.I.* |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WA (wt.%) | 3.40 | / | 2.35 | 66.2 | 13.4 | 2.28 | 0.95 | 3.60 | 4.31 | 1.10 | 1.82 | / | 0.59 |
MK (wt.%) | 55.03 | 35.44 | / | 1.38 | 2.07 | 1.25 | / | / | / | / | / | 4.39 | 0.44 |
Activity Concentration [Bq/kg] | |||||
---|---|---|---|---|---|
WA | WAMK10 | WAMK20 | WAMK30 | MK | |
137Cs | 61.6 ± 3.2 | 38.0 ± 2.0 | 30.0 ± 1.6 | 27.1 ± 1.5 | <0.1 |
210Pb | 53.5 ± 4.1 | 92.4 ± 5.5 | 117.2 ± 6.7 | 117.3 ± 7.0 | 119.7 ± 10.3 |
235U | 1.96 ± 0.40 | 3.06 ± 0.39 | 4.83 ± 0.88 | 4.62 ± 0.68 | 14.8 ± 1.3 |
226Ra | 35.3 ± 3.6 | 43.0 ± 4.4 | 69.4 ± 6.5 | 82.8 ± 6.5 | 209.6 ± 12.7 |
238U | 46.5 ± 6.0 | 55.0 ± 6.3/ | 77.5 ± 7.6 | 81.8 ± 8.5 | 244.5 ± 11.9 |
234Th (228Ac) | 34.0 ± 3.0 | 41.1 ± 3.0 | 47.7 ± 3.2 | 54.9 ± 3.7 | 105.4 ± 5.6 |
40K | 3840 ± 195 | 2840 ± 143 | 2475 ± 125 | 2268 ± 115 | 641 ± 33 |
Activity Concentration [Bq/kg] | |||||
---|---|---|---|---|---|
GWA | GWAMK10 | GWAMK20 | GWAMK30 | GMK | |
137Cs | 22.1 ±1.2 | 21.7 ± 1.1 | 18.2 ± 1.0 | 16.8 ± 0.9 | <0.1 |
210Pb | 43.9 ± 3.4 | 51.3 ± 3.2 | 51.2 ± 3.0 | 58.2 ± 3.3 | 115.5 ± 5.7 |
235U | 0.68 ± 0.16 | 1.14 ± 0.28 | 1.55 ± 0.26 | 2.81 ± 0.51 | 9.35 ± 0.97 |
226Ra | 23.5 ± 2.8 | 35.1 ± 3.7 | 45.7 ± 4.0 | 54.4 ± 4.6 | 149.3 ± 9.1 |
238U | 28.1 ± 4.0 | 32.6 ± 3.2 | 50.1 ± 5.0 | 62.4 ± 6.4 | 161.1 ± 14.3 |
234Th (228Ac) | 19.8 ± 1.5 | 27.6 ± 1.9 | 29.3 ± 2.0 | 34.3 ± 2.2 | 72.4 ± 3.9 |
40K | 1680 ± 80 | 1720 ± 90 | 1490 ± 70 | 1420 ± 70 | 455 ± 23 |
Samples | Raeq (Bq/kg) | Hex (Bq/kg) | Ḋ (nGy/h) | EDR (mSv/y) |
---|---|---|---|---|
WA | 379.6 | 1.025 | 197.0 | 0.966 |
WAMK10 | 320.5 | 0.865 | 163.1 | 0.800 |
WAMK20 | 328.2 | 0.886 | 164.1 | 0.805 |
WAMK30 | 335.9 | 0.907 | 166.0 | 0.814 |
MK | 409.7 | 1.107 | 187.2 | 0.918 |
Samples | Raeq (Bq/kg) | Hex (Bq/kg) | Ḋ (nGy/h) | EDR (mSv/y) |
---|---|---|---|---|
GWA | 181.2 | 0.489 | 92.9 | 0.456 |
GWAMK10 | 207.0 | 0.559 | 104.6 | 0.513 |
GWAMK20 | 202.3 | 0.546 | 100.9 | 0.495 |
GWAMK30 | 212.8 | 0.575 | 105.1 | 0.515 |
GMK | 287.9 | 0.778 | 131.7 | 0.646 |
Element | GWA | GWAMK10 | GWAMK20 | GWAMK30 |
---|---|---|---|---|
C | 18.0 | 26.3 | 15.1 | 30.2 |
O | 41.9 | 40.1 | 38.5 | 40.0 |
Na | 7.18 | 6.61 | 4.78 | 4.80 |
Mg | 0.55 | 0.82 | 0.47 | 0.45 |
Al | / | 0.89 | 1.74 | 1.43 |
Si | 5.12 | 6.70 | 7.06 | 6.91 |
K | 5.44 | 3.46 | 4.10 | 2.73 |
Ca | 17.5 | 12.3 | 24.4 | 13.5 |
Mn | 0.73 | 0.41 | 0.43 | / |
Cu | 1.80 | 1.32 | 1.73 | / |
Zn | 1.73 | 1.04 | 1.69 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mladenović Nikolić, N.N.; Kandić, A.B.; Trivunac, K.V.; Mirković, M.M.; Vukanac, I.S.; Nenadović, S.S.; Kljajević, L.M. Radiological and Structural Characterization of Raw and Alkali-Activated Wood Ash and Metakaolin Blends. Sustainability 2022, 14, 12960. https://doi.org/10.3390/su142012960
Mladenović Nikolić NN, Kandić AB, Trivunac KV, Mirković MM, Vukanac IS, Nenadović SS, Kljajević LM. Radiological and Structural Characterization of Raw and Alkali-Activated Wood Ash and Metakaolin Blends. Sustainability. 2022; 14(20):12960. https://doi.org/10.3390/su142012960
Chicago/Turabian StyleMladenović Nikolić, Nataša N., Aleksandar B. Kandić, Katarina V. Trivunac, Miljana M. Mirković, Ivana S. Vukanac, Snežana S. Nenadović, and Ljiljana M. Kljajević. 2022. "Radiological and Structural Characterization of Raw and Alkali-Activated Wood Ash and Metakaolin Blends" Sustainability 14, no. 20: 12960. https://doi.org/10.3390/su142012960
APA StyleMladenović Nikolić, N. N., Kandić, A. B., Trivunac, K. V., Mirković, M. M., Vukanac, I. S., Nenadović, S. S., & Kljajević, L. M. (2022). Radiological and Structural Characterization of Raw and Alkali-Activated Wood Ash and Metakaolin Blends. Sustainability, 14(20), 12960. https://doi.org/10.3390/su142012960