Vertical Greening Systems: Technological Benefits, Progresses and Prospects
Abstract
:1. Introduction
2. Vertical Greening System
2.1. Vertical Greening Technology
2.2. Components of Vertical Greening
2.2.1. Plants
- (1)
- Climbing plants
- (2)
- Shrubs and succulents plants
- (3)
- Hydroponic plants
2.2.2. Irrigation
2.2.3. Substrate
2.2.4. Structure
3. Bibliometric Analysis of Vertical Greening System Research
3.1. Methods and Tools
3.2. Research Status
4. Functions of Vertical Greening System
4.1. Environmental Functions
4.1.1. Regulating Climate
4.1.2. Improvement of Air Quality
- (1)
- Outdoor air quality
- (2)
- Indoor air quality
4.1.3. Sewage Treatment
4.2. Economical Function
4.3. Social Functions
4.3.1. Cultivate Interest
4.3.2. Beautifying the City
5. Knowledge Graph for Vertical Greening System
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, L.; Shi, J. Urbanization and its environmental effects in Shanghai, China. Urban Clim. 2012, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Antrop, M. Landscape change and the urbanization process in Europe. Landsc. Urban Plan. 2004, 67, 9–26. [Google Scholar] [CrossRef]
- Shwartz, A.; Turbé, A.; Simon, L.; Julliard, R. Enhancing urban biodiversity and its influence on city–dwellers: An experiment. Biol. Conserv. 2014, 171, 82–90. [Google Scholar] [CrossRef]
- Łopucki, R.; Kiersztyn, A. Urban green space conservation and management based on biodiversity of terrestrial fauna—A decision support tool. Urban For. Urban Green. 2015, 14, 508–518. [Google Scholar] [CrossRef]
- Berndtsson, J.C. Green roof performance to wards management of runoff water quantity and quality: A review. Ecol. Eng. 2010, 36, 351–360. [Google Scholar] [CrossRef]
- Abdo, P.; Huynh, B.P. An experimental investigation of green wall bio-filter towards air temperature and humidity variation. J. Build. Eng. 2021, 39, 102244. [Google Scholar] [CrossRef]
- Abdo, P.; Huynh, B.P.; Braytee, A.; Taghipour, R. An experimental investigation of the thermal effect due to discharging of phase change material in a room fitted with a wind catcher. Sustain. Cities Soc. 2020, 61, 102277. [Google Scholar] [CrossRef]
- Wang, Y.; Berardi, U.; Akbari, H. Comparing the effects of urban heat is land mitigati on strategies for Toronto, Canada. Energy Build. 2016, 114, 2–19. [Google Scholar] [CrossRef]
- Santamouris, M. Analyzing the heat is land magnitude and characteristics in one hundred Asian and Australian cities and regions. Sci. Total Environ. 2015, 512–513, 582–598. [Google Scholar] [CrossRef]
- Berardi, U. Sustainability assessment in the construction sector: Rating systems and rated buildings. Sustain. Dev. 2011, 20, 411–424. [Google Scholar] [CrossRef]
- Dutil, Y.; Rousse, D.; Quesada, G. Sustainable buildings: An ever evolving target. Sustainability 2011, 3, 443–464. [Google Scholar] [CrossRef] [Green Version]
- Quagliarini, E.; Gianangeli, A.; D’Orazio, M.; Gregorini, B.; Osimani, A.; Aquilanti, L.; Clementi, F. Effect of temperature and relative humidity on algae biofouling on different fired brick surfaces. Constr. Build. Mater. 2019, 199, 396–405. [Google Scholar] [CrossRef]
- Di Giuseppe, E.; D’Orazio, M. Assessment of the effectiveness of cool and green roofs for the mitigation of the Heat Island effect and for the improvement of thermal comfort in Nearly Zero Energy Building. Archit. Sci. Rev. 2015, 58, 134–143. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Sanudo-Fontaneda, L.; Andr’es Valeri, V. Green infrastructure: Cost-effective nature-based solutions for safeguarding the environment and protecting human health and well-being. In Handbook of Environmental Materials Management; Springer: Cham, Switzerland, 2019; pp. 4–5. [Google Scholar]
- Zhao, X.; Zuo, J.; Wu, G.; Huang, C. A bibliometric review of green building research 2000–2016. Archit. Sci. Rev. 2019, 62, 74–88. [Google Scholar] [CrossRef]
- Boano, F.; Costamagna, E.; Caruso, A.; Fiore, S.; Chiappero, M.; Galvão, A.; Pisoeiro, J.; Rizzo, A.; Masi, F. Evaluation of the influence of filter medium composition on treatment performances in an open-air green wall fed with greywater. J. Environ. Manag. 2021, 300, 113646. [Google Scholar] [CrossRef]
- Lundholm, J. Green roofs and facades: A habitat template approach. Urban Habitats 2006, 4, 87–101. [Google Scholar]
- Sheweka, S.; Magdy, N. The living walls as an approach for a healthy urban environment. Energy Procedia 2011, 6, 592–599. [Google Scholar] [CrossRef] [Green Version]
- GhaffarianHoseini, A.; Dahlan, N.D.; Berardi, U.; GhaffarianHoseini, A.; Makaremi, N.; GhaffarianHoseini, M. Sustainable energy performances of green buildings: A review of current theories, implementations and challenges. Renew. Sustain. Energy Rev. 2013, 25, 1–17. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, L.; Tam, V.W.Y.; Lee, W.W.Y. Barriers to implement extensive green roof systems: A Hong Kong study. Renew. Sustain. Energy Rev. 2012, 16, 314–319. [Google Scholar] [CrossRef]
- Saadatian, O.; Sopian, K.; Salleh, E.; Lim, C.; Riffat, S.; Saadatian, E.; Toudeshki, A.; Sulaiman, M. A review of energy aspects of green roofs. Renew. Sustain. Energy Rev. 2013, 23, 155–168. [Google Scholar] [CrossRef]
- Mazzali, U.; Peron, F.; Romagnoni, P.; Pulselli, R.; Bastianoni, S. Experimental investigation on the energy performance of living walls in a temperate climate. Build. Environ. 2013, 64, 57–66. [Google Scholar] [CrossRef]
- Theodoridou, I.; Karteris, M.; Mallinis, G.; Papadopoulos, A.M.; Hegger, M. Assessment of retrofitting measures and solar systems’ potential in urban areas using Geographical Information Systems: Application to a Mediterranean city. Renew. Sustain. Energy Rev. 2012, 16, 6239–6261. [Google Scholar] [CrossRef]
- Virtudes, A.; Manso, M. Green façades: As a feature in urban design. ICEUBI 2011. In International Conference on Engineering; University of Beira Interior: Covilha, Portugal, 2011. [Google Scholar]
- Daemei, A.B.; Shafiee, E.; Chitgar, A.A.; Asadi, S. Investigating the thermal performance of green wall: Experimental analysis, deep learning model, and simulation studies in a humid climate. Build. Environ. 2021, 205, 108201. [Google Scholar] [CrossRef]
- Francis, R.; Lorimer, J. Urban reconciliation ecology: The potential of living roofs and walls. J. Environ. Manag. 2011, 92, 1429–1437. [Google Scholar] [CrossRef]
- Schmidt, M. Energy saving strategies through the greening of buildings the example of the Institute of Physics of the Humboldt-University in Berlin-Adlershof, Germany. Forest 2003, 29, 4. [Google Scholar]
- Bruse, M.; Thönnessen, M.; Radtke, U. Practical and theoretical investigation of the influence of facade greening on the distribution of heavy metals in urban streets. In Proceedings of the 5th International Conference on Urban Climate and International Congress of Biometeorology, Sydney, WMO/TD–1026, Online, 1 January 1999; pp. 15–20. [Google Scholar]
- Pugh, T.; MacKenzie, A.; Whyatt, J.; Hewitt, C. Effectiveness of Green infrastructures for improvement of air quality in urban street canyons. Environ. Sci. Technol. 2012, 46, 7692–7699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, A.; Yeok, F.; Amir, A. The building thermal performance and carbon sequestration evaluation for Psophocarpus tetrogonobulus on biofaçade wall in the tropical environment. World Acad. Sci. Eng. Technol. 2011, 76, 86–94. [Google Scholar]
- Ysebaert, T.; Koch, K.; Samson, R.; Denys, S. Green walls for mitigating urban particulate matter pollution—A review. Urban For. Urban Green. 2021, 59, 127014. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Alexandri, E.; Jones, P. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build. Environ. 2008, 43, 480–493. [Google Scholar] [CrossRef]
- Gago, E.J.; Roldan, J.; Pacheco-Torres, R.; Ordóñez, J. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- Addo-Bankas, O.; Zhao, Y.; Vymazal, J.; Yuan, Y.; Fu, J.; Wei, T. Green walls: A form of constructed wetland in green buildings. Ecol. Eng. 2021, 169, 106321. [Google Scholar] [CrossRef]
- Boc, V. Current approaches in metropolitan green infrastructure strategies. Sci. Pap. Ser. B Hortic. 2015, 59, 307–310. [Google Scholar]
- Gattringer, H.; Claret, A.; Radtke, M.; Kisser, J.; Zraunig, A.; Rodriguez-Roda, I.; Buttiglieri, G. Novel vertical ecosystem for sustainable water treatment and reuse in tourist resorts. Int. J. Sustain. Dev. Plan. 2016, 11, 263–274. [Google Scholar] [CrossRef]
- Yan, F.; Shen, J.; Zhang, W.; Ye, L.; Lin, X. A review of the application of green walls in the acoustic field. Build. Acoust. 2022, 1351010X221096789. [Google Scholar] [CrossRef]
- Oquendo-Di Cosola, V.; Olivieri, F.; Ruiz-García, L. A systematic review of the impact of green walls on urban comfort: Temperature reduction and noise attenuation. Renew. Sustain. Energy Rev. 2022, 162, 112463. [Google Scholar] [CrossRef]
- Ichihara, K.; Cohen, J. New York city property values: What is the impact of green roofs on rental pricing. Lett. Spat. Resour. Sci. 2011, 4, 21–30. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, Y.; Wang, F.; Wang, P.; Shen, C.; Liu, J. (Eds.) Proceedings of the 11th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC 2019): Volume I: Indoor and Outdoor Environment; Springer Nature: Berlin, Germany, 2020. [Google Scholar]
- Sadineni, S.; Madala, S.; Boehm, R.F. Passive building energy savings: A review of building envelope components. Renew. Sustain. Energy Rev. 2011, 15, 3617–3631. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, A.Y.K.; Tan, P.Y.; Chiang, K.; Wong, N.C. Acoustic evaluation of vertical greenery systems for building walls. Build. Environ. 2010, 45, 411–420. [Google Scholar] [CrossRef]
- Al-Kayiem, H.H.; Koh, K.; Riyadi, T.W.; Effendy, M. A comparative review on greenery ecosystems and their impacts on sustainability of building environment. Sustainability 2020, 12, 8529. [Google Scholar] [CrossRef]
- Maier, D. Perspective of using green walls to achieve better energy efficiency levels. A bibliometric review of the literature. Energy Build. 2022, 112070. [Google Scholar] [CrossRef]
- Renterghem, T.; Hornikx, M.; Forssen, J.; Botteldooren, D. The potential of building envelope greening to achieve quietness. Build. Environ. 2013, 61, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Susca, T.; Zanghirella, F.; Colasuonno, L.; Del Fatto, V. Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review. Renew. Sustain. Energy Rev. 2022, 159, 112100. [Google Scholar] [CrossRef]
- Newton, J.; Gedge, D.; Early, P.; Wilson, S. Building Greener: Guidance on the Use of Green Roofs, Green Walls and Complementary Features on Buildings; CIRIA: London, UK, 2007. [Google Scholar]
- Köhler, M. Green facades—A view back and some visions. Urban Ecosyst. 2008, 11, 423–436. [Google Scholar] [CrossRef]
- Dunnett, N.; Kingsbury, N. Planting Green Roofs and Living Walls; Timber Press: Portland, OR, USA; London, UK, 2008. [Google Scholar]
- Pérez, G.; Coma, J.; Martorell, I.; Cabeza, L.F. Vertical Greenery Systems (VGS) for energy saving in buildings: A review. Renew. Sustain. Energy Rev. 2014, 39, 139–165. [Google Scholar] [CrossRef] [Green Version]
- Manso, M.; Castro-Gomes, J. Green wall systems: A review of their characteristics. Renew. Sustain. Energy Rev. 2015, 41, 863–871. [Google Scholar] [CrossRef]
- Seyam, S. The impact of greenery systems on building energy: Systematic review. J. Build. Eng. 2019, 26, 100887. [Google Scholar] [CrossRef]
- Ascione, F.; De Masi, R.F.; Mastellone, M.; Ruggiero, S.; Vanoli, G.P. Green Walls, a critical review: Knowledge gaps, design parameters, thermal performances and multi-criteria design approaches. Energies 2020, 13, 2296. [Google Scholar] [CrossRef]
- Sharp, R.; Sable, J.; Bertram, F.; Mohan, E.; Peck, S. Introduction to Green Walls: Technology, benefits & design. Green Roofs Healthy Cities 2008, 37. [Google Scholar]
- Pérez, G.; Rincón, L.; Vila, A.; González, J.; Cabeza, L. Behaviour of green facades in Mediterranean Continental climate. Energy Convers. Manag. 2011, 52, 1861–1867. [Google Scholar] [CrossRef]
- Fukuzumi, Y. Plant Growing Method for Greening Wall Surfaces. U.S. Patent 5,579,603, 3 December 1996. [Google Scholar]
- Blanc, P.; Lalot, V. The Vertical Garden: From Nature to the City; W.W. Norton: New York, NY, USA, 2012. [Google Scholar]
- Hindle, R.L. A vertical garden: Origins of the Vegetation-Bearing Architectonic Structure and System (1938). Stud. Hist. Gard. Des. Landsc. 2012, 32, 99–110. [Google Scholar] [CrossRef]
- Koumoudis, S. Green Wall Planting Module, Support Structure and Irrigation Control System. U.S. Patent 2011/0088319A1, 2011. [Google Scholar]
- Urriola, H. Vertical Wall Garden. U.S. Patent 2011/0094153A1, 2011. [Google Scholar]
- Laurence, M.; Sabin, R. Plant Wall and Modules for Growing Plants. U.S. Patent 2011/0107667A1, 2011. [Google Scholar]
- Yap, T.; Wong, L.; Tan, H.; Lim, H.; Palanisamy, T.; Tan, P.; Poh, C.; Chan, Y. A Plant Housing Device. W.O. Patent 2011/014124A1, 3 February 2011. [Google Scholar]
- Sichello, C. Plant Propagation and Display Panel and Assembly. W.O. Patent 2010/031181A1, 25 March 2010. [Google Scholar]
- Bindschedler, P.; Lassalle, F. Modular Greening Device for Facades, Walls or the Like. U.S. Patent 7757436B2, 20 July 2010. [Google Scholar]
- Corradi, L. Hydroponic Growing System. U.S. Patent 2009/007486A1, 8 January 2009. [Google Scholar]
- Bribach, C. Vertical Garden Panel. U.S. Patent 2011/0059518A1, 10 March 2011. [Google Scholar]
- Taber, S. Modular Wall Planters. U.S. Patent 2011/0016784A1, 27 January 2011. [Google Scholar]
- Huet, P.; Heine, L. Modular Wall Element for Growing Plants and Modular Structure Formed by a Plurality of Modular Elements of the Aforementioned Type. U.S. Patent 2010/0095584A1, 22 April 2010. [Google Scholar]
- Yang, Y.; Zhao, Y.; Liu, R.; Morgan, D. Global development of various emerged substrates utilized in constructed wetlands. Bioresour. Technol. 2018, 261, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Dunst, G.; Glaser, B. Positive effects of composted biochar on plant growth and soil fertility. Agron. Sustain. Dev. 2013, 33, 817–827. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Babatunde, A.; Zhao, X.; Li, W. Development of alum sludge-based constructed wetland: An innovative and cost effective system for wastewater treatment. J. Environ. Sci. Health A 2009, 44, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.; Sian, G.; Greaves, H. Green Wall System. W.O. Patent 2010/009505A1, 28 January 2010. [Google Scholar]
- Prodanovic, V.; Zhang, K.; Hatt, B.; McCarthy, D.; Deletic, A. Optimisation of lightweight green wall media for greywater treatment and reuse. Build. Environ. 2018, 131, 99–107. [Google Scholar] [CrossRef]
- Yap, T.; Wong, L.; Yoong, Y.; Tan, H.; Lim, H. Supporting Structure for Green Building Facade. W.O. Patent 2011/016777A1, 10 February 2011. [Google Scholar]
- Zuo, Z.; Cheng, J.; Guo, H.; Li, Y. Knowledge mapping of research on strategic mineral resource security: A visual analysis using CiteSpace. Resour. Policy 2021, 74, 102372. [Google Scholar] [CrossRef]
- Zhao, R.Y.; Xu, L.M. The Knowledge Map of the Evolution and Research Frontiers of the Bibliometrics. J. Libr. Sci. China 2010, 36, 60–68. [Google Scholar]
- Chen, C.M.; Hu, Z.G.; Liu, S.B.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef]
- Li, X.; Wu, P.; Shen, G.Q.P.; Wang, X.Y.; Teng, Y. Mapping the knowledge domains of building information modeling (BIM): A bibliometric approach. Autom. Constr. 2017, 84, 195–206. [Google Scholar] [CrossRef]
- Kubota, T.; Rijal, H.B.; Takaguchi, H. Sustainable Houses and Living in the Hot-Humid Climates of Asia; Springer: Singapore, 2018. [Google Scholar]
- Pérez, G.; Rincón, L.; Vila, A.; González, J.M.; Cabez, L.F. Green vertical systems for buildings as passive systems for energy savings. Appl. Energy 2011, 88, 4854–4859. [Google Scholar] [CrossRef]
- Sternberg, T.; Viles, H.; Cathersides, A. Evaluating the role of ivy (Hedera helix) in moderating wall surface microclimates and contributing to the bioprotection of historic buildings. Build. Environ. 2011, 46, 293–297. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M.; Fraaij, A.; Haas, E.; Raiteri, R. Vertical greening systems and the effect on air flow and temperature on the building envelope. Build. Environ. 2011, 46, 2287–2294. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, A.Y.K.; Chen, Y.; Sekar, K.; Tan, P.Y.; Chan, D.; Chiang, K.; Wong, N.C. Thermal evaluation of vertical greenery systems for building walls. Build. Environ. 2010, 45, 663–672. [Google Scholar] [CrossRef]
- Yin, H.; Kong, F.; Middel, A.; Dronova, I.; Xu, H.; James, P. Cooling effect of direct green façades during hot summer days: An observational study in Nanjing, China using TIR and 3DPC data. Build. Environ. 2017, 116, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Cameron, R.W.F.; Taylor, J.E.; Emmett, M.R. What’s ‘cool’ in the world of green façades? How plant choice influences the cooling properties of green walls. Build. Environ. 2014, 73, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Bolton, C.; Rahman, M.; Armson, D.; Ennos, A. Effectiveness of an ivy covering at insulating a building against the cold in Manchester, U.K: A preliminary investigation. Build. Environ. 2014, 80, 32–35. [Google Scholar] [CrossRef]
- Susorova, I.; Azimi, P.; Stephens, B. The effects of climbing vegetation on the local microclimate, thermal performance, and air infiltration of four building facade orientations. Build. Environ. 2014, 76, 113–124. [Google Scholar] [CrossRef]
- Susorova, I.; Angulo, M.; Bahrami, P.; Stephens, B. A model of vegetated exterior facades for evaluation of wall thermal performance. Build. Environ. 2013, 67, 1–13. [Google Scholar] [CrossRef]
- Jim, C. Thermal performance of climber greenwalls: Effects of solar irradiance and orientation. Appl. Energy 2015, 154, 631–643. [Google Scholar] [CrossRef]
- Olivieri, F.; Olivieri, L.; Neila, J. Experimental study of the thermal-energy performance of an insulated vegetal façade under summer conditions in a continental Mediterranean climate. Build. Environ. 2014, 77, 61–76. [Google Scholar] [CrossRef]
- Koyama, T.; Yoshinaga, M.; Hayashi, H.; Maeda, K.-I.; Yamauchi, A. Identification of key plant traits contributing to the cooling effects of green façades using freestanding walls. Build. Environ. 2013, 66, 96–103. [Google Scholar] [CrossRef]
- Šuklje, T.; Medved, S.; Arkar, C. An experimental study on a microclimatic layer of a bionic façade inspired by vertical greenery. J. Bionic Eng. 2013, 10, 177–185. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J.; Sol, S.; Cabeza, L.F. Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect. Appl. Energy 2017, 187, 424–437. [Google Scholar] [CrossRef] [Green Version]
- Currie, B.A.; Bass, B. Estimates of air pollution mitigation with green plants and green roofs using the UFORE model. Urban Ecosyst. 2008, 11, 409–422. [Google Scholar] [CrossRef]
- Davies, C.; Lafortezza, R. Urban green infrastructure in Europe: Is greenspace planning and policy compliant? Land Use Policy 2017, 69, 93–101. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lam, Y.F. Simulation study of dispersion and removal of particulate matter from traffic by road-side vegetation barrier. Environ. Sci. Pollut. Res. 2016, 23, 6709–6722. [Google Scholar] [CrossRef]
- Deutsch-Aboulmahassine, E. Modular Wall-Mounted Plant Growing System. U.S. Patent 7627983B1, 8 December 2009. [Google Scholar]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Particulate matter pollution capture by leaves of seventeen living wall species with special reference to rail-traffic at a metropolitan station. Urban For. Urban Green. 2017, 27, 173–186. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Quantification of the traffic-generated particulate matter capture by plant species in a living wall and evaluation of the important leaf characteristics. Sci. Total Environ. 2018, 635, 1012–1024. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. The impact of rainfall in remobilising particulate matter accumulated on leaves of four evergreen species grown on a green screen and a living wall. Urban For. Urban Green. 2018, 35, 21–31. [Google Scholar] [CrossRef]
- Ottel’e, M.; van Bohemen, H.D.; Fraaij, A.L.A. Quantifying the deposition of particulate matter on climber vegetation on living walls. Ecol. Eng. 2010, 36, 154–162. [Google Scholar] [CrossRef]
- Joshi, S.V.; Ghosh, S. On the air cleansing efficiency of an extended green wall: A CFD analysis of mechanistic details of transport processes. J. Theor. Biol. 2014, 361, 101–110. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lam, Y.F.; Hao, S. Evaluating the role of green infrastructures on near-road pollutant dispersion and removal: Modelling and measurement. J. Environ. Manage. 2016, 182, 595–605. [Google Scholar] [CrossRef]
- Kikegawa, Y.; Genchi, Y.; Kondo, H.; Hanaki, K. Impacts of city-block-scale counter measures against urban heat-island phenomena upon a building’s energy-consumption for air-conditioning. Appl. Energy 2006, 83, 649–668. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Giannitsaris, I.; Watkins, R. The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Sol. Energy 2006, 80, 383–392. [Google Scholar] [CrossRef]
- Rajagopalan, P. Urban heat island and its impact on building energy consumption. Adv. Build. Energy Res. 2009, 3, 261–270. [Google Scholar]
- Dwivedi, A.; Mohan, B.K. Impact of green roof on micro climate to reduce Urban Heat Island. Remote Sens. Appl. Soc. Environ. 2018, 10, 56–69. [Google Scholar] [CrossRef]
- Ramakreshnan, L.; Aghamohammadi, N.; Fong, C.S.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Wong, L.P.; Hassan, N.; Sulaiman, N.M. A critical review of urban heat island phenomenon in the context of greater Kuala Lumpur, Malaysia. Sustain. Cities Soc. 2018, 39, 99–113. [Google Scholar] [CrossRef]
- Pettit, T.; Irga, P.J.; Surawski, N.C.; Torpy, F.R. An assessment of the suitability of active green walls for NO2 reduction in green buildings using a closed-loop flow reactor. Atmosphere 2019, 10, 801. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.-M.; Lin, C.-H. Removal of Indoor Carbon Dioxide and Formaldehyde Using Green Walls by Bird Nest Fern. Hortic. J. 2015, 84, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Pettit, T.; Irga, P.J.; Abdo, P.; Torpy, F.R. Do the plants in functional green walls contribute to their ability to filter particulate matter? Build. Environ. 2017, 125, 299–307. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.S. Characterization and performance evaluation of a full-scale activated carbon-based dynamic botanical air filtration system for improving indoor air quality. Build. Environ. 2011, 46, 758–768. [Google Scholar] [CrossRef]
- Boano, F.; Caruso, A.; Costamagna, E.; Ridolfi, L.; Fiore, S.; Demichelis, F.; Galvao, A.; Pisoeiro, J.; Rizzo, A.; Masi, F. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Sci. Total Environ. 2020, 711, 134731. [Google Scholar] [CrossRef]
- Pradhan, S.; Al-Ghamdi, S.G.; Mackey, H.R. Greywater recycling in buildings using living walls and green roofs: A review of the applicability and challenges. Sci. Total Environ. 2019, 652, 330–344. [Google Scholar] [CrossRef]
- Fowdar, H.S.; Hatt, B.E.; Breen, P.; Cook, P.L.M.; Deletic, A. Designing living walls for greywater treatment. Water Res. 2017, 110, 218–232. [Google Scholar] [CrossRef]
- Kandya, A.; Mohan, M. Mitigating the Urban Heat Island effect through building envelope modifications. Energy Build. 2018, 164, 266–277. [Google Scholar] [CrossRef]
- Xing, Q.; Hao, X.; Lin, Y.; Tan, H.; Yang, K. Experimental investigation on the thermal performance of a vertical greening system with green roof in wet and cold climates during winter. Energy Build. 2019, 183, 105–117. [Google Scholar] [CrossRef]
- Aflaki, A.; Mirnezhad, M.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Omrany, H.; Wang, Z.-H.; Akbari, H. Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities 2017, 62, 131–145. [Google Scholar] [CrossRef]
- Cheng, C.; Cheung, K.K.; Chu, L. Thermal performance of a vegetated cladding system on facade walls. Build. Environ. 2010, 45, 1779–1787. [Google Scholar] [CrossRef]
- Chen, Q.; Li, B.; Liu, X. An experimental evaluation of the living wall system in hot and humid climate. Energy Build. 2013, 61, 298–307. [Google Scholar] [CrossRef]
- Perini, K.; Bazzocchi, F.; Croci, L.; Magliocco, A.; Cattaneo, E. The use of vertical greening systems to reduce the energy demand for air conditioning. Field monitoring in Mediterranean climate. Energy Build. 2017, 143, 35–42. [Google Scholar] [CrossRef]
- Coma, J.; Pérez, G.; De Gracia, A.; Burés, S.; Urrestarazu, M.; Cabeza, L.F. Vertical greenery systems for energy savings in buildings: A comparative study between green walls and green facades. Build. Environ. 2017, 111, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Medl, A.; Stangl, R.; Florineth, F. Vertical greening systems—A review on recent technologies and research advancement. Build. Environ. 2017, 125, 227–239. [Google Scholar] [CrossRef]
- Feitosa, R.C.; Wilkinson, S.J. Small-scale experiments of seasonal heat stress attenuation through a combination of green roof and green walls. J. Clean. Prod. 2020, 250, 119443. [Google Scholar] [CrossRef]
- Rosasco, P.; Perini, K. Evaluating the economic sustainability of a vertical greening system: A Cost-Benefit Analysis of a pilot project in mediterranean area. Build. Environ. 2018, 142, 524–533. [Google Scholar] [CrossRef]
- Ling, T.Y. Rethinking Greening the Building Façade Under Extreme Climate: Attributes Consideration for Typo-Morphological Green Envelope Retrofit. Clean. Circ. Bioecon. 2022, 3, 100024. [Google Scholar] [CrossRef]
- Srbinovska, M.; Andova, V.; Mateska, A.K.; Krstevska, M.C. The effect of small green walls on reduction of particulate matter concentration in open areas. J. Clean. Prod. 2021, 279, 123306. [Google Scholar] [CrossRef]
- Huang, Z.; Lu, Y.; Wong, N.H.; Poh, C.H. The true cost of “greening” a building: Life cycle cost analysis of vertical greenery systems (VGS) in tropical climate. J. Clean. Prod. 2019, 228, 437–454. [Google Scholar] [CrossRef]
Type | Climbing | Traction | Container | Basin | Cloth Bag | Plate Slot | Modular |
---|---|---|---|---|---|---|---|
Illustration | |||||||
Case | |||||||
Cost | Low | Medium | High | Medium | Low | Low | High |
Plant | Single | Multiple | Fit | Multiple | |||
Effect | Medium | Fine | Medium | Fine | |||
Maintain | Inconvenient | Convenient | Inconvenient | Convenient | |||
Weight (Kg/m2) | 2.5 | 30–60 | 50–100 | 25–50 | 60–120 | 25–50 | |
Tickness (mm) | 100–200 | 300–500 | 250–400 | 300–500 | 200–500 | ||
Substrate | Unlimited | Less limit | Limit | Less limit | |||
Time | Slow | Medium | Faster |
Type | Country | Period | Plant | Reduction Temperature | Method |
---|---|---|---|---|---|
Green Facades | Germany [49] | Winter | Vines Boston Ivy | 3° | Experiment |
England [82] | One Year | Hedera Helix | Summer 1.7°–9.5° | ||
Direct Facade | Deflt [83] | Autumn | Hedera Helix | 1.2° | |
Indirect Facade | Rotterdam [83] | H-helix, Vitis, Clematis, Jasmine and Pyracantha | 2.7° | ||
Living Wall System | Benthuizen [83] | No climbers | -- | ||
Living Wall System | Singapore [84] | Summer | -- | 6°–10° | |
Direct Facade | China [85] | Summer | Parthenocissus Tricuspidata | 2.57°–4.67° | |
Green Facades | UK [86] | Summer | Hedera Helix, Stachys Byzantina | 7° | |
Living Wall System | UK [87] | Winter | Hedera Helix | 0.5° | |
Green Facades | USA [88] | Summer | Ivy | 0.7°–12.6° | |
USA [89] | Summer | Parthenocissus Tricuspidata | 7.9° | Simulation | |
Double-skingreen Facade | Spain [81] | All Year | Wisteria Sinensis | 5.5°–17.62° | Experiment |
Greenwall | China [90] | Summer | Pumila, Venusta, Corymbosa | 2°–5° | |
Greenwall | Madrid [91] | Summer | -- | 4.5°–8.2° | Exp+Sim |
Vertical Greenery Systems | Singapore [43] | Climber Plants | 4.36° | Experiment | |
Green Facades | Japan [92] | Bitter Melon, Morning Glory, Sword Bean, Kudzu, Apios | 3.7°–11.3° | ||
Slovenia [93] | Phaseolus Vulgaris “Anellino Verde” | 4° | |||
Spain [94] | Parthenocissus Tricuspidata | 15–16.4 |
Region | Type | Plant | Conclusion | Method |
---|---|---|---|---|
Urban Toronto [95,96] | Green Roofs and Green Walls | Shrubs | The removal rate of PM10 is 1.37 mg/year. | Experiment |
Road [97,98] | Vegetation Barriers | -- | The reduction of pollutant concentration is due to the dispersion and deposition of green walls. | ENVI-met |
New Street Railway Station [99] | Living Wall | Buxus Sempervirens L., Hebe Albicans Cockayne, Thymus Vulgaris L. and Hebe X Youngii | Living wall plants have considerable potential in removing particulate pollutants from the atmosphere. | Experiment |
Road [100] | Living Wall | Twenty species of living wall plants | The average capture of PM1 particles by the living wall of 100 square centimeters is 122.08 ± 6.9 × 107, PM2.5 particles 8.24 ± 0.72 × 107, PM10 particles 4.45 ± 0.33 × 107. | |
Road [101] | Green Wall | Heuchera Villosa Michx, Helleborus × sternii Turrill, Bergenia cordifolia (Haw.) Sternb. and Hedera Helix L | The recovery of PM capture ability of four green wall species after rainfall was studied. Green wall has the potential to capture PM all year round. | |
Road and Woodland [102] | Living Walls | Hedera Helix L | The number of particles collected on the front of leaves was more than that on the back, and there was no significant difference in height and season. | |
Developing Countries [103] | Green Facades | Vernonia Elaeagnifolia | For (SO2), the removal rates in dry and wet weather are 1.11 × 10-6 s-1 and 1.05 × 10-6 s-1 respectively | CFD |
Road [104] | Green Wall | At pedestrian height (1.4 m), green walls are an effective barrier to reduce exposure to pollutants and air quality deteriorates from 4 m. | ENVI-Met + Experiment | |
Street Canyons [29] | By planting vegetation in street canyons to increase sediment, street concentrations in these canyons can be reduced by 40% for NO2 and 60% for PM. | CFD |
Inorganic Pollutant | Plant | Conclusion |
---|---|---|
NO2 [110] | Spathiphyllum Wallisii and Syngonium Podophyllum | Average NO2 clean air delivery rate of 661.32 and 550.8 m3·h−1·m−3 of biofifilter substrate for the respective plant species. |
CO2 [111] | -- | The indoor plant wall of 5.72 m2 can reduce the CO2 concentration of 38.88 m3 room from 2000 to 800 ppm in one hour. 1 m2 of active green wall can significantly reduce indoor carbon dioxide. |
PM [111,112] | Chlorophytum Comosum | The system recorded removal efficiencies were 53.35 ± 9.73% for total suspend particles, 53.51 ± 15.99% for PM10, and 48.21 ± 14.71 % for PM2.5. |
VOC [113] | Different plant species | The significant single removal rates (spres) of toluene and formaldehyde were 91.7% and 98.7% respectively. |
Type | Counry | Plant | Season | Reduction in Energy Consumption (%) | Method |
---|---|---|---|---|---|
Green Wall | Hong Kong [120] | Zoysia japonica | Summer | 30 W/m2 heat flux reduction. | Experiment |
Wuhan [121] | -- | 2.5 W/m2 heat flux reduction 12% cooling load reduction. | |||
Lonigo, Venice, & Pisa, Italy [22] | Shrubs, Herbaceous and Climber | 1.5 W/m2–70 W/m2 heat flux reduction at night. | |||
Genoa, Italy [122] | Cistus Jessamine beauty and Cistus crispus | 26.50% | |||
Puigverd de Lleida, Spain [123] | Rosmarinus officinalis and Helichrysum thianschanicum | Winter | 2.96–4.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Wong, Y.H.; Tan, C.Y.; Li, S.; Chong, W.T. Vertical Greening Systems: Technological Benefits, Progresses and Prospects. Sustainability 2022, 14, 12997. https://doi.org/10.3390/su142012997
Wang P, Wong YH, Tan CY, Li S, Chong WT. Vertical Greening Systems: Technological Benefits, Progresses and Prospects. Sustainability. 2022; 14(20):12997. https://doi.org/10.3390/su142012997
Chicago/Turabian StyleWang, Puyi, Yew Hoong Wong, Chou Yong Tan, Sheng Li, and Wen Tong Chong. 2022. "Vertical Greening Systems: Technological Benefits, Progresses and Prospects" Sustainability 14, no. 20: 12997. https://doi.org/10.3390/su142012997
APA StyleWang, P., Wong, Y. H., Tan, C. Y., Li, S., & Chong, W. T. (2022). Vertical Greening Systems: Technological Benefits, Progresses and Prospects. Sustainability, 14(20), 12997. https://doi.org/10.3390/su142012997