Greenhouse Gas Emissions-Based Development and Characterization of Optimal Scenarios for Municipal Solid and Sewage Sludge Waste Management in Astana City
Abstract
:1. Introduction
2. Methods and Design of Scenario
3. Results and Discussion
3.1. Greenhouse Gas Emissions
3.2. Cost Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
GHG | Greenhouse Gases |
SWM | Solid Waste Management |
MSW | Municipal Solid Waste |
SS | Sewage Sludge |
WtE | Waste to Energy |
EU | European Union |
IFEU | Institute for Energy and Environmental Research |
IPCC | Intergovernmental Panel on Climate Change |
WWTPs | Wastewater Treatment Plants |
CHP | Combined Heat and Power |
BS | Biological Stabilization |
MRF | Material Recovery Facility |
References
- Todorov, V.; Dimov, I. Innovative Digital Stochastic Methods for Multidimensional Sensitivity Analysis in Air Pollution Modelling. Mathematics 2022, 10, 2146. [Google Scholar] [CrossRef]
- Skryhan, H.; Shilova, I.; Khandogina, O.; Abashyna, K.; Chernikova, O. Waste management in post-soviet countries: How far from the EU? Detritus 2018, 1, 193–203. [Google Scholar] [CrossRef]
- Levaggi, L.; Levaggi, R.; Marchiori, C.; Trecroci, C. Waste-to-Energy in the EU: The Effects of Plant Ownership, Waste Mobility, and Decentralization on Environmental Outcomes and Welfare. Sustainability 2020, 12, 5743. [Google Scholar] [CrossRef]
- Vitenko, T.; Marynenko, N.; Kramar, I. European Experience in Waste Management. Environ. Sci. Proc. 2021, 9, 17. [Google Scholar] [CrossRef]
- González-Sánchez, M.; Martín-Ortega, J.L. Greenhouse Gas Emissions Growth in Europe: A Comparative Analysis of Determinants. Sustainability 2020, 12, 1012. [Google Scholar] [CrossRef] [Green Version]
- Palm, R.; Bolsen, T. The Science of Climate Change and Sea-Level Rise. Coast. Res. Libr. 2020, 34, 5–13. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Summary for Policymakers, Technical Summary and Frequently Asked Questions. 2013. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf (accessed on 30 August 2022).
- Maria, C.; Góis, J.; Leitão, A. Challenges and perspectives of greenhouse gases emissions from municipal solid waste management in Angola. Energy Rep. 2020, 6, 364–369. [Google Scholar] [CrossRef]
- Qazi, W.A.; Abushammala, M.F.M. The analysis of electricity production and greenhouse-gas emission reduction from municipal solid waste sector in Oman. Int. J. Environ. Sci. Technol. 2021, 18, 1395–1406. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, T.; Feng, H.; Chen, S. Greenhouse Gas Emissions from Landfills: A Review and Bibliometric Analysis. Sustainability 2019, 11, 2282. [Google Scholar] [CrossRef] [Green Version]
- Nabavi-Pelesaraei, A.; Bayat, R.; Hosseinzadeh-Bandbafha, H.; Afrasyabi, H.; Chau, K.W. Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management—A case study in Tehran Metropolis of Iran. J. Clean. Prod. 2017, 148, 427–440. [Google Scholar] [CrossRef]
- Friedrich, E.; Trois, C. Current and future greenhouse gas (GHG) emissions from the management of municipal solid waste in the eThekwini Municipality—South Africa. J. Clean. Prod. 2016, 112, 4071–4083. [Google Scholar] [CrossRef]
- Devadoss, M.P.S.; Agamuthu, P.; Mehran, S.B.; Santha, C.; Fauziah, S.H. Implications of municipal solid waste management on greenhouse gas emissions in Malaysia and the way forward. Waste Manag. 2021, 119, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Devadoss, M.P.S.; Agamuthu, P.; Mehran, S.B.; Santha, C.; Fauziah, S.H. Strategies for reducing greenhouse gas emissions from municipal solid waste management in Pakistan. Waste Manag. Res. 2021, 39, 914–927. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Energy of the Republic of Kazakhstan. The Second Biennial Report of the Republic of Kazakhstan. 2015. Available online: https://unfccc.int/sites/default/files/resource/Kazakhstanbr-text_eng_kz.pdf (accessed on 12 September 2022).
- Askarova, A.; Zamorano, M.; Martín-Pascual, J.; Nugymanova, A.; Bolegenova, S. Review of the Energy Potential of Residual Biomass for Coincineration in Kazakhstan. Energies 2022, 15, 6482. [Google Scholar] [CrossRef]
- Abylkhani, B.; Aiymbetov, B.; Yagofarova, A.; Tokmurzin, D.; Venetis, C.; Poulopoulos, S.; Sarbassov, Y.; Inglezakis, V.J. Seasonal characterisation of municipal solid waste from Astana city, Kazakhstan: Composition and thermal properties of combustible fraction. Waste Manag. Res. 2019, 37, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Inglezakis, V.J.; Moustakas, K.; Khamitova, G.; Tokmurzin, D.; Sarbassov, Y.; Rakhmatulina, R.; Serik, B.; Abikak, Y.; Poulopoulos, S.G. Current municipal solid waste management in the cities of Astana and Almaty of Kazakhstan and evaluation of alternative management scenarios. Clean Technol. Environ. Policy 2018, 20, 503–516. [Google Scholar] [CrossRef]
- Werther, J.; Ogada, T. Sewage sludge combustion. Prog. Energy Combust. Sci. 1999, 25, 55–116. [Google Scholar] [CrossRef]
- Chen, Y.C.; Kuo, J. Potential of greenhouse gas emissions from sewage sludge management: A case study of Taiwan. J. Clean. Prod. 2016, 129, 196–201. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.; Zhang, X.; Xing, H.; Hu, H.; Yao, H. Novel utilization of conditioner CaO for gas pollutants control during co-combustion of sludge and coal. Fuel 2017, 206, 541–545. [Google Scholar] [CrossRef]
- Institut für Energie- und Umweltforschung Heidelberg GmbH. Tool for Calculating Greenhouse Gases (GHG) in Solid Waste Management (SWM). Available online: https://www.ifeu.de/en/project/tool-for-calculating-greenhouse-gases-ghg-in-solid-waste-management-swm/ (accessed on 15 September 2022).
- Sarbassov, Y.; Sagalova, T.; Tursunov, O.; Venetis, C.; Xenarios, S.; Inglezakis, V. Survey on household solid waste sorting at source in developing economies: A case study of Nur-Sultan city in Kazakhstan. Sustainability 2019, 11, 6496. [Google Scholar] [CrossRef]
- Temireyeva, A.; Zhunussova, K.; Aidabulov, M.; Shah, D.; Sarbassov, Y. Exploring the mitigation of greenhouse gas emissions from the current municipal solid waste system of Kazakhstan: Case study of Nur-Sultan city. IOP Conf. Ser. Earth Environ. Sci. 2022, 1074, 012031. [Google Scholar] [CrossRef]
- Inglezakis, V.; Rojas-Solorzano, L.; Kim, J.; Moustakas, K.; Aitbekova, A.; Ismailova, A.; Shorakyzy, G.; Kystauova, A.; Abirov, A.A.; Serikbayev, N.S. Analysis of Current Situation in Municipal Waste Management and Implementation of Decision Support Software in Astana, Kazakhstan. 2014. Available online: https://doi.org/10.13140/RG.2.1.3214.5444 (accessed on 10 September 2022).
- Yay, A.S.E. Application of life cycle assessment (LCA) for municipal solid waste management: A case study of Sakarya. J. Clean. Prod. 2015, 94, 284–293. [Google Scholar] [CrossRef]
- Worrell, W.A.; Vesilind, P.A.; Gupta, T. Solid Waste Engineering; Cenage Learning: Stamford, USA, 2011; Volume 3. [Google Scholar]
- European Commission. Assessment of the Options to Improve the Management of Bio-Waste in the European Union. 2010. Available online: https://ec.europa.eu/environment/pdf/waste/compost/ia_biowaste%20-%20final%20report.pdf (accessed on 21 September 2022).
- Đurđević, D.; Paolo, B.; Željko, J. Energy Recovery from Sewage Sludge: The Case Study of Croatia. Energies 2019, 12, 1927. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Liu, W.; Xu, J.; Huang, X.; Lin, X.; Huang, J.; Li, G. Greenhouse Gas Emission Mitigation of Large-Scale Wastewater Treatment Plants (WWTPs): Optimization of Sludge Treatment and Disposal. Pol. J. Environ. Stud. 2021, 30, 955–964. [Google Scholar] [CrossRef]
- How Much Carbon Dioxide Is Produced Per Kilowatthour of U.S. Electricity Generation? 2021. Available online: https://www.eia.gov/tools/faqs/faq.php?id=74&t=11#:~:text=In%202020%2C%20total%20U.S.%20electricity,CO2%20emissions%20per%20kWh (accessed on 2 September 2022).
- Dils, E.; Greenhouse Gas Emissions and Natural Capital Implications of Plastics (Including Biobased Plastics). Eionet Report 2021. Available online: https://www.eionet.europa.eu/etcs/etc-wmge/products/etc-wmge-reports/greenhouse-gas-emissions-and-natural-capital-implications-of-plastics-including-biobased-plastics (accessed on 28 August 2022).
- Pradel, M.; Reverdy, A.L. Assessing GHG emissions from sludge treatment and disposal routes: The method behind GESTABoues tool. In Proceedings of the 8th International Conference ORBIT2012, Global Assessment for Organic Resources and Waste Management, Rennes, France, 12–14 June 2012; p. 9. Available online: https://hal.archives-ouvertes.fr/hal-00781673/document (accessed on 3 September 2022).
- Liu, H.; Hu, H.; Luo, G.; Li, A.; Xu, M.; Yao, H. Enhancement of hydrogen production in steam gasification of sewage sludge by reusing the calcium in lime-conditioned sludge. Int. J. Hydrogen Energy 2013, 38, 1332–1341. [Google Scholar] [CrossRef]
- Zhuang, H.; Guan, J.; Leu, S.Y.; Wang, Y.; Wang, H. Carbon footprint analysis of chemical enhanced primary treatment and sludge incineration for sewage treatment in Hong Kong. J. Clean. Prod. 2020, 272, 122630. [Google Scholar] [CrossRef]
- Zhuo, Z.; Liu, J.; Sun, S.; Sun, J.; Kuo, J.; Chang, K.; Fu, J.; Wang, Y. Thermogravimetric characteristics of textile dyeing sludge, coal and their blend in N2/O2 and CO2/O2 atmospheres. Appl. Therm. Eng. 2017, 111, 87–94. [Google Scholar] [CrossRef]
- Javadinejad, S.; Eslamian, S.; Ostad-Ali-Askari, K. Investigation of monthly and seasonal changes of methane gas with respect to climate change using satellite data. Appl. Water Sci. 2019, 9, 180. [Google Scholar] [CrossRef] [Green Version]
- Talaiekhozani, A.; Nematzadeh, S.; Eskandari, Z.; Dehkordi, A.A. Gaseous emissions of landfill and modeling of their dispersion in the atmosphere of Shahrekord, Iran. Urban Clim. 2018, 24, 852–862. [Google Scholar] [CrossRef]
- Singh, C.; Kumar, A.; Roy, S. Quantitative analysis of the methane gas emissions from municipal solid waste in India. Sci. Rep. 2018, 8, 2913. [Google Scholar] [CrossRef]
- Chakraborty, M.; Sharma, C.; Pandey, J.; Gupta, P.K. Assessment of energy generation potentials of MSW in Delhi under different technological options. Energy Convers. Manag. 2013, 75, 249–255. [Google Scholar] [CrossRef]
- Upton, B. Calculation Tools for Estimating Greenhouse Gas Emissions from Pulp and Paper Mills. ICFPA 2005, 1.1. Available online: https://ghgprotocol.org/sites/default/files/Pulp_and_Paper_Guidance.pdf (accessed on 20 September 2022).
- Lam, C.M.; Lee, P.H.; Hsu, S.C. Eco-efficiency analysis of sludge treatment scenarios in urban cities: The case of Hong Kong. J. Clean. Prod. 2016, 112, 3028–3039. [Google Scholar] [CrossRef]
- Oladejo, J.; Shi, k.; Luo, X.; Yang, G.; Wu, T. A Review of sludge-to-energy recovery methods. Energies 2019, 12, 60. [Google Scholar] [CrossRef] [Green Version]
- Dincer, I.; Rosen, M.A.; Khalid, F. Thermal Energy Production. In Comprehensive Energy Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 673–706. [Google Scholar] [CrossRef]
- Chen, Y.C. Potential for energy recovery and greenhouse gas mitigation from municipal solid waste using a waste-to-material approach. Waste Manag. 2016, 58, 408–414. [Google Scholar] [CrossRef]
- Zsigraiová, Z.; Tavares, G.; Semiao, V.; de Graça Carvalho, M. Integrated waste-to-energy conversion and waste transportation within island communities. Energy 2009, 34, 623–635. [Google Scholar] [CrossRef]
- Warringa, G.; Bollen, J.; Bergsma, G.; Waste Incineration under the EU ETS: An Assessment of Climate Benefits. Zero Waste Europe 2021, 33. Available online: https://zerowasteeurope.eu/wp-content/uploads/2021/10/ZWE_Delft_Oct21_Waste_Incineration_EUETS_Study.pdf (accessed on 3 September 2022).
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef]
- Gutjahr, M.; Müller-Schaper, J. Treatment of sewage sludge in Europe: Status quo and perspectives of energy and phosphorus recovery. Waste Manag. 2018, 8, 15. Available online: https://www.vivis.de/wp-content/uploads/WM8/2018_wm_369-384_gutjahr (accessed on 21 September 2022).
Parameters | Landfilling | Incineration | References |
---|---|---|---|
Required electricity for the process (kWh/ton) | 70 | 200 | |
Emission factor for a given electricity generation device (kg CO2-eq/kWh) | 0.8095 | 0.386 | [30,31] |
Amount of chemical i used (kg/ton) | 5.65 | 45.4 | [20] |
Emission factor of GHG emissions attributable to chemical i (kg CO2-eq/kg) | 2.51 | 1.17 | [32,33] |
Emission factor of GHGs (kg CO2-eq/ton) | - | 6.06 | [33] |
Scenario | Description | Share, % |
---|---|---|
MSW Management | ||
A | Current situation | 15%—recyclables 85%—disposal in landfill without gas collection |
B | Source separation and recycling of plastics, paper, metals, glass | 30%—recyclables 70%—sanitary landfill with gas collection |
C | Source separation and recycling of plastics, paper, metals, glass | 30%—recyclables 70%—BS and landfill |
D | Source separation and recycling of plastics, paper, metals, glass; waste to energy (WtE) of the residual waste; source separation and composting of the organic fraction. | 30%—recyclables 20%—composting 50% of waste to be sent to a WtE plant (incineration) |
SS management | ||
1 | Current situation | 100%—landfilling |
2 | Incineration of SS | 100%—incineration |
3 | Co-incineration of CaO-conditioned SS and coal. | 50%—incineration of CaO—conditioned SS 50%—incineration of coal |
MSW Management Scenarios | SS Management Scenarios | |||||
---|---|---|---|---|---|---|
A | B | C | D | 1 | 2 | 3 |
kt of CO2 eq/year | kt of CO2 eq/year | |||||
341.6 | 188.5 | 36.0 | −120.9 | 1.7 | −11.0 | 32.2 |
Scenario | Energy Recovery (106 kWh/y) | GHG Emissions, kg of CO2 eq/tons | Avoided CO2 Emissions as a Result of Energy Recovery, kg of CO2 eq/tons | Net GHG Emissions, kg of CO2 eq/tons |
---|---|---|---|---|
1 | - | 53.2 | - | 53.2 |
2 | 102.2 | 136.4 | 470.9 | −334.5 |
3 | 188.0 | 1530.5 | 866.1 | 664.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temireyeva, A.; Zhunussova, K.; Aidabulov, M.; Venetis, C.; Sarbassov, Y.; Shah, D. Greenhouse Gas Emissions-Based Development and Characterization of Optimal Scenarios for Municipal Solid and Sewage Sludge Waste Management in Astana City. Sustainability 2022, 14, 15850. https://doi.org/10.3390/su142315850
Temireyeva A, Zhunussova K, Aidabulov M, Venetis C, Sarbassov Y, Shah D. Greenhouse Gas Emissions-Based Development and Characterization of Optimal Scenarios for Municipal Solid and Sewage Sludge Waste Management in Astana City. Sustainability. 2022; 14(23):15850. https://doi.org/10.3390/su142315850
Chicago/Turabian StyleTemireyeva, Aknur, Khabiba Zhunussova, Madiyar Aidabulov, Christos Venetis, Yerbol Sarbassov, and Dhawal Shah. 2022. "Greenhouse Gas Emissions-Based Development and Characterization of Optimal Scenarios for Municipal Solid and Sewage Sludge Waste Management in Astana City" Sustainability 14, no. 23: 15850. https://doi.org/10.3390/su142315850
APA StyleTemireyeva, A., Zhunussova, K., Aidabulov, M., Venetis, C., Sarbassov, Y., & Shah, D. (2022). Greenhouse Gas Emissions-Based Development and Characterization of Optimal Scenarios for Municipal Solid and Sewage Sludge Waste Management in Astana City. Sustainability, 14(23), 15850. https://doi.org/10.3390/su142315850