Food Sustainability Study in Ecuador: Using PCA Biplot and GGE Biplot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Elaboration of Mixtures
- -
- Mixture 1 (M1): 85% cocoa bean shell (flour) harvested from a farm, mixed with 15% soy flour;
- -
- Mixture 2 (M2): 75% cocoa bean shell (flour) harvested from a farm, mixed with 25% soy flour.
2.3. Nutritional Composition of Mixtures
2.4. Antioxidant Activity
2.5. Antimicrobial Activity
2.6. Multivariate Statistical Analysis
- PCA Biplot
- GGE Biplot
- Yijk refers to the observation obtained in the i-th genotype, evaluated at the j-th repetition, at the k-th location [27];
- μ is the mean general;
- ti refers to the fixed effect of the i-th genotype used in the trials, with i = 1, 2, …, twenty;
- lk is the random effect of the k-th locality, with k = 1, 2, …, 7;
- (k) is the effect random of the j-th repetition within the k-th locality, with j = 1, 2, 3;
- tlik is the random effect of the interaction between the i-th genotype with the k-th locality;
- ϵijk is the error associated with the observation Yijk.
3. Results and Discussion
- 1–50: Flour samples corresponding to Mixture 1 (85% cocoa bean shell harvested from a farm, mixed with 15% soy flour);
- 51–100: Flour samples corresponding to Mixture 2 (75% cocoa bean shell harvested from a farm, mixed with 25% soy flour).
3.1. Multivariate Statistical Techniques for Nutritional Composition of Mixtures
3.2. Multivariate Statistical Techniques for Commercial Properties of Mixtures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirschenmann, F. Alternative agriculture in an energy- and resourcedepleting future. Renew. Agric. Food Syst. 2010, 25, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Smyth, A.; Dumanski, J. An International Framework for Evaluating Sustainable Land Management; World Soil Resources Report; FAO: Rome, Italy, 1993. [Google Scholar]
- Caiado, R.G.G.; Filho, W.L.; Quelhas, O.L.G.; de Mattos Nascimento, D.L.; Ávila, L.V. A literature-based review on potentials and constraints in the implementation of the sustainable development goals. J. Clean. Prod. 2018, 198, 1276–1288. [Google Scholar] [CrossRef]
- Sarwar, M. The killer chemicals as controller of agriculture insect pests: The conventional insecticides. Int. J. Chem Biomol. Sci. 2015, 1, 141–147. [Google Scholar]
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges. J. Clean. Prod. 2017, 140, 399–409. [Google Scholar] [CrossRef]
- Guillermo, J.C.; García-Cedeño, A.; Rivas-Lalaleo, D.; Huerta, M.; Clotet, R. IoT Architecture based on Wireless Sensor Network Applied to Agricultural Monitoring: A Case of Study of Cacao Crops in Ecuador. In Proceedings of the International Conference of Information and Communication Technologies for Adapting Agriculture to Climate Change II, Cali, Colombia, 21–23 November 2018. [Google Scholar]
- Jensch, C.; Schmidt, A.; Strube, J. Versatile Green Processing for Recovery of Phenolic Compounds from Natural Product Extracts towards Bioeconomy and Cascade Utilization for Waste Valorization on the Example of Cocoa Bean Shell (CBS). Sustainability 2022, 14, 3126. [Google Scholar] [CrossRef]
- Evans, S.J. Chocolate Unwrapped: Taste & Ebjoy the World’s Finest Chocolate, 1st ed.; Pavillion: Shoreham, UK, 2010; p. 240. [Google Scholar]
- Kongor, J.E.; Hinneh, M.; de Walle, D.V.; Afoakwa, E.O.; Boeckx, P.; Dewettinck, K. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile: A review. Food Res. Int. 2016, 82, 44–52. [Google Scholar] [CrossRef]
- Moreno-Miranda, C.; Jordán, J.; Moreno-Miranda, R.; Moreno, P.; Solis, J. Protected designation of origin and sustainability characterization: The case of PDO cocoa Arriba. Agriculture 2019, 9, 229. [Google Scholar] [CrossRef] [Green Version]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Zeppa, G.; Stevigny, C. Cocoa Bean Shell-A By-Product with Nutritional Properties and Biofunctional Potential. Nutrients 2020, 12, 1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younes, A.; Li, M.; Karboune, S. Cocoa bean shells: A review into the chemical profile, the bioactivity and the biotransformation to enhance their potential applications in foods. Crit. Rev. Food Sci. Nutr. 2022. [Google Scholar] [CrossRef]
- Reinoso, L. Incidencia de la Agricultura en el Crecimiento y Desarrollo Económico del Ecuador del 2006 al 2012. Master’s Thesis, Universidad San Francisco de Quito, Quito, Ecuador, 2013. [Google Scholar]
- Majumdar, J.; Naraseeyappa, S.; Ankalaki, S. Analysis of agriculture data using data mining techniques: Application of big data. J. Big Data 2017, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.P.F.; Pérez, A.G. Aplicación de la minería de datos en la bioinformática. ACIMED 2002, 10, 69–76. [Google Scholar]
- Suárez, Y.R.; Amador, A.D. Herramientas de minería de datos. Rev. Cuba. Cienc. Inform. 2011, 3, 3–4. [Google Scholar]
- Guler, C.; Thyne, G.D.; McCray, J.E.; Turner, A.K. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol. J. 2002, 10, 455–474. [Google Scholar] [CrossRef]
- Flury, B. A First Course in Multivariate Statistics; Springer: New York, NY, USA, 1997. [Google Scholar]
- Botella-Martínez, C.; Lucas-Gonzalez, R.; Ballester-Costa, C.; Pérez-Alvarez, J.A.; Fernández-López, J.; Delgado-Ospina, J.; Chaves-López, C.; Viuda-Martos, M. Ghanaian Cocoa (Theobroma cacao L.) Bean Shells Coproducts: Effect of Particle Size on Chemical Composition, Bioactive Compound Content and Antioxidant Activity. Agronomy 2021, 11, 401. [Google Scholar] [CrossRef]
- Handojo, L.; Indarto, A. Cocoa bean skin waste as potential raw material for liquid smoke production. Environ. Technol. 2020, 41, 1044–1053. [Google Scholar] [CrossRef]
- Guevara-Viejó, F.; Valenzuela-Cobos, J.D.; Vicente-Galindo, P.; Galindo-Villardón, P. Application of K-Means Clustering Algorithm to Commercial Parameters of Pleurotus spp. Cultivated on Representative Agricultural Wastes from Province of Guayas. J. Fungi 2021, 7, 537. [Google Scholar] [CrossRef]
- Kostic, M.; Smiljkovic, M.; Petrovic, J.; Glamocilija, J.; Barros, L.; Ferreira, I.C.F.R.; Ciric, A.; Sokovic, M. Chemical, nutritive composition and wide-broad bioactive properties of honey mushroom Armillaria mellea (Vahl: Fr.) Kummer. Food Funct. 2017, 8, 3239–3249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukatani, T.; Suenaga, H.; Shiga, M.; Noguchi, K.; Ishiyama, M.; Ezoe, T.; Matsumoto, K. Comparison of the WST-8 colorimetric method and the CLSI broth microdilution method for susceptibility testing against drug-resistant bacteria. J. Microbiol. Methods 2012, 90, 160–166. [Google Scholar] [CrossRef]
- Gabriel, K.R. The biplot-graphical display of matrices with applications to principal component analysis. Biometrica 1971, 58, 453–467. [Google Scholar] [CrossRef]
- Galindo, M.P. Una alternativa de representación simultánea: HJ-Biplot. Qüestiió 1986, 10, 13–23. [Google Scholar]
- Gower, J.C.; Lubbe, S.; Le Roux, N.J. Understanding Biplots; John Wiley & Sons: Chichester, UK, 2011. [Google Scholar]
- Yan, W.; Hunt, L.A.; Sheng, Q.; Szlavnics, Z. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Morphet, C.S. A statistical method for the identification of spatial clusters. Environ. Plan A 1997, 29, 1039–1055. [Google Scholar] [CrossRef]
- Redgwell, R.; Trovato, V.; Merinat, S.; Curti, D.; Hediger, S.; Manez, A. Dietary fibre in cocoa shell: Characterisation of component polysaccharides. Food Chem. 2003, 81, 103–112. [Google Scholar] [CrossRef]
- Whitney, E.; Rolfes, S. Nutrição—Volume I: Entendendo os Nutrientes, 1st ed.; Cengage Learning: Boston, MA, USA, 2008. [Google Scholar]
- Eswaran, S.; Muir, J.; Chey, W.D. Fiber and functional gastrointestinal disorders. Am. J. Gastroenterol. 2013, 108, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Arana, G.; Merino-Zegarra, C.; Tang, M.; Pertino, M.W.; Simirgiotis, M.J. UHPLC–MS Characterization, and Antioxidant and Nutritional Analysis of Cocoa Waste Flours from the Peruvian Amazon. Antioxidants 2022, 11, 595. [Google Scholar] [CrossRef]
- De Barros, H.E.A.; Natarelli, C.V.L.; Tavares, I.M.D.C.; De Oliveira, A.L.M.; Araújo, A.B.S.; Pereira, J.; Carvalho, E.E.N.; de Barros Vilas Boas, E.V.; Franco, M. Nutritional Clustering of Cookies Developed with Cocoa Shell, Soy, and Green Banana Flours Using Exploratory Methods. Food Bioprocess Technol. 2020, 13, 1566–1578. [Google Scholar] [CrossRef]
- Mihai, R.A.; Abarca, P.A.L.; Romero, B.A.T.; Florescu, L.I.; Catanặ, R.; Kosakyan, A. Abiotic Factors from Different Ecuadorian Regions and Their Contribution to Antioxidant, Metabolomic and Organoleptic Quality of Theobroma cacao L. Beans, Variety “Arriba Nacional”. Plants 2022, 11, 976. [Google Scholar] [CrossRef]
- Barišić, V.; Stokanović, M.C.; Flanjak, I.; Doko, K.; Jozinović, A.; Babić, J.; Šubarić, D.; Miličević, B.; Cindrić, I.; Ačkar, Đ. Cocoa Shell as a Step Forward to Functional Chocolates—Bioactive Components in Chocolates with Different Composition. Molecules 2020, 25, 5470. [Google Scholar] [CrossRef]
- Marc, R.A.; Niculae, M.; Páll, E.; Muresan, V.; Muresan, A.; Tanislav, A.; Puscas, A.; Muresan, C.C.; Cerbu, C. Red Oak (Quercus rubra L.) Fruits as Potential Alternative for Cocoa Powder: Optimization of Roasting Conditions, Antioxidant, and Biological Properties. Forests 2021, 12, 1088. [Google Scholar] [CrossRef]
- Perez, M.; Lopez-Yerena, A.; Vallverdú-Queralt, A. Traceability, authenticity and sustainability of cocoa and chocolate products: A challenge for the chocolate industry. Crit. Rev. Food Sci. Nutr. 2021, 62, 475–489. [Google Scholar] [CrossRef]
- Torres-Salinas, D.; Robinson-García, N.; Jiménez-Contreras, E.; Herrera, F.; López-Cózar, E.D. On the use of biplot analysis for multivariate bibliometric and scientific indicators. J. Am. Soc. Inf. Sci. Technol. 2013, 64, 1468–1479. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzuela-Cobos, J.D.; Guevara-Viejó, F.; Vicente-Galindo, P.; Galindo-Villardón, P. Food Sustainability Study in Ecuador: Using PCA Biplot and GGE Biplot. Sustainability 2022, 14, 13033. https://doi.org/10.3390/su142013033
Valenzuela-Cobos JD, Guevara-Viejó F, Vicente-Galindo P, Galindo-Villardón P. Food Sustainability Study in Ecuador: Using PCA Biplot and GGE Biplot. Sustainability. 2022; 14(20):13033. https://doi.org/10.3390/su142013033
Chicago/Turabian StyleValenzuela-Cobos, Juan Diego, Fabricio Guevara-Viejó, Purificación Vicente-Galindo, and Purificación Galindo-Villardón. 2022. "Food Sustainability Study in Ecuador: Using PCA Biplot and GGE Biplot" Sustainability 14, no. 20: 13033. https://doi.org/10.3390/su142013033
APA StyleValenzuela-Cobos, J. D., Guevara-Viejó, F., Vicente-Galindo, P., & Galindo-Villardón, P. (2022). Food Sustainability Study in Ecuador: Using PCA Biplot and GGE Biplot. Sustainability, 14(20), 13033. https://doi.org/10.3390/su142013033