Effect of Phosphogypsum on Soil Physical Properties in Moroccan Salt-Affected Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Trials Setup
2.3. Soil and Amendment Characterization
2.4. Soil Physical Evaluation
2.5. Statistical Analysis
3. Results
3.1. Water Aggregate Stability
3.2. Water Retention Characteristics
3.3. Porosity and Bulk Density
4. Discussion
4.1. Effect of Amendment by Phosphogypsum/Gypsum on Soil-Aggregate Stability
4.2. Effect of Amendment by Phosphogypsum/Gypsum on Soil Hydraulic Properties
4.3. Effect of Amendment by Phosphogypsum/Gypsum on Total Porosity and Bulk Density
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; ITPS. Status of the World’s Soil Resources (SWSR)—Main Report; FAO: Rome, Italy, 2015; ISBN 978-92-5-109004-6. [Google Scholar]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture: Managing Systems at Risk; FAO: Rome, Italy, 2013; ISBN 9780203142837. [Google Scholar]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, J.; Tan, M.; Gong, Z. Soil degradation: A global problem endangering sustainable development. J. Geogr. Sci. 2002, 12, 243–252. [Google Scholar] [CrossRef]
- Trabelsi, L.; Gargouri, K.; Ben Hassena, A.; Mbadra, C.; Ghrab, M.; Ncube, B.; Van Staden, J.; Gargouri, R. Impact of drought and salinity on olive water status and physiological performance in an arid climate. Agric. Water Manag. 2019, 213, 749–759. [Google Scholar] [CrossRef]
- Anaya-Romero, M.; Abd-Elmabod, S.K.; Muñoz-Rojas, M.; Castellano, G.; Ceacero, C.J.; Alvarez, S.; Méndez, M.; De la Rosa, D. Evaluating Soil Threats Under Climate Change Scenarios in the Andalusia Region, Southern Spain. Land Degrad. Dev. 2015, 26, 441–449. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Sarkar, B.; Jat, H.S.; Sharma, P.C.; Bolan, N.S. Soil salinity under climate change: Challenges for sustainable agriculture and food security. J. Environ. Manag. 2021, 280, 111736. [Google Scholar] [CrossRef]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Kempen, B.; de Sousa, L. Global mapping of soil salinity change. Remote Sens. Environ. 2019, 231, 111260. [Google Scholar] [CrossRef]
- Wicke, B.; Smeets, E.; Dornburg, V.; Vashev, B.; Gaiser, T.; Turkenburg, W.; Faaij, A. The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ. Sci. 2011, 4, 2669–2681. [Google Scholar] [CrossRef] [Green Version]
- Tanji, K.K.; Wallender, W.W. Nature and extent of agricultural salinity and sodicity. In Agricultural Salinity Assessment and Management, 2nd ed.; American Society of Civil Engineers: Reston, VA, USA, 2011; pp. 1–26. [Google Scholar] [CrossRef]
- Rahneshan, Z.; Nasibi, F.; Moghadam, A.A. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J. Plant Interact. 2018, 13, 73–82. [Google Scholar] [CrossRef]
- Lamsal, K.; Paudyal, G.N.; Saeed, M. Model for assessing impact of salinity on soil water availability and crop yield. Agric. Water Manag. 1999, 41, 57–70. [Google Scholar] [CrossRef]
- Hasana, R.; Miyake, H. Salinity Stress Alters Nutrient Uptake and Causes the Damage of Root and Leaf Anatomy in Maize. KnE Life Sci. 2017, 3, 219. [Google Scholar] [CrossRef] [Green Version]
- Rengasamy, P. Soil chemistry factors confounding crop salinity tolerance-a review. Agronomy 2016, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Saidi, D.; Bissonnais, Y.L.; Duval, O.; Halitim, Y.D.A. Effet du sodium échangeable et de la concentration saline sur les propriétés physiques des sols de la plaine du Cheliff (Algérie). Gestion 2004, 11, 81–92. [Google Scholar]
- Shainberg, I.; Letey, J. Response of soils to sodic and saline conditions. Hilgardia 1984, 52, 1–57. [Google Scholar] [CrossRef] [Green Version]
- van de Craats, D.; van der Zee, S.E.A.T.M.; Sui, C.; van Asten, P.J.A.; Cornelissen, P.; Leijnse, A. Soil sodicity originating from marginal groundwater. Vadose Zo. J. 2020, 19, e20010. [Google Scholar] [CrossRef]
- Zhang, W.W.; Wang, C.; Xue, R.; Wang, L.-J. Effects of salinity on the soil microbial community and soil fertility. J. Integr. Agric. 2019, 18, 1360–1368. [Google Scholar] [CrossRef]
- Niñerola, V.B.; Navarro-Pedreño, J.; Lucas, I.G.; Pastor, I.M.; Vidal, M.M.J. Geostatistical assessment of soil salinity and cropping systems used as soil phytoremediation strategy. J. Geochem. Explor. 2017, 174, 53–58. [Google Scholar] [CrossRef]
- Devi, S.; Nandwal, A.S.; Angrish, R.; Arya, S.S.; Kumar, N.; Sharma, S.K. Phytoremediation potential of some halophytic species for soil salinity. Int. J. Phytoremedia. 2016, 18, 693–696. [Google Scholar] [CrossRef]
- Shankar, V.; Evelin, H. Strategies for Reclamation of Saline Soils; Springer: Cham, Switzerland, 2019; pp. 439–449. [Google Scholar] [CrossRef]
- Chi, C.M.; Zhao, C.W.; Sun, X.J.; Wang, Z.C. Reclamation of saline-sodic soil properties and improvement of rice (Oriza sativa L.) growth and yield using desulfurized gypsum in the west of Songnen Plain, northeast China. Geoderma 2012, 187–188, 24–30. [Google Scholar] [CrossRef]
- El Hasini, S.; Iben Halima, O.; El Azzouzi, M.; Douaik, A.; Azim, K.; Zouahri, A. Organic and inorganic remediation of soils affected by salinity in the Sebkha of Sed El Mesjoune—Marrakech (Morocco). Soil Tillage Res. 2019, 193, 153–160. [Google Scholar] [CrossRef]
- Outbakat, M.B.; El Gharous, M.; El Omari, K.; El Mejahed, K. Effect of Phosphogypsum on Faba Bean Yield and Heavy Metals Content under Saline Conditions. Environ. Sci. Proc. 2022, 16, 16. [Google Scholar] [CrossRef]
- Mesic, M.; Brezinscak, L.; Zgorelec, Z.; Perčin, A.; Šestak, I.; Bilandžija, D.; Trdenić, M.; Lisac, H. The Application of Phosphogypsum in Agriculture. Agric. Conspec. Sci. 2016, 81, 7–13. [Google Scholar]
- Hermann, L.; Kraus, F.; Hermann, R. Phosphorus processing-potentials for higher efficiency. Sustainability 2018, 10, 1482. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.F.O.; Oliveira, M.L.S.; Crissien, T.J.; Santosh, M.; Bolivar, J.; Shao, L.; Dotto, G.L.; Gasparotto, J.; Schindler, M. Chemosphere A review on the environmental impact of phosphogypsum and potential health impacts through the release of nanoparticles. Chemosphere 2022, 286, 131513. [Google Scholar] [CrossRef]
- Cui, Y.; Chang, I.S.; Yang, S.; Yu, X.; Cao, Y.; Wu, J. A novel dynamic business model to quantify the effects of policy intervention on solid waste recycling industry: A case study on phosphogypsum recycling in Yichang, China. J. Clean. Prod. 2022, 355, 131779. [Google Scholar] [CrossRef]
- Calderón-Morales, B.R.S.; García-Martínez, A.; Pineda, P.; García-Tenório, R. Valorization of phosphogypsum in cement-based materials: Limits and potential in eco-efficient construction. J. Build. Eng. 2021, 44, 102506. [Google Scholar] [CrossRef]
- International Fertilizer Industry Association. Phosphogypsum: Sustainable Management and Use; International Fertilizer Industry Association: Paris, France, 2016. [Google Scholar]
- Rusch, K.A.; Seals, R.K. Preparation of an Application for Approval to Use Stabilized Phosphogypsum as a Fill Material for Coastal Protection Devices Final Report; Florida Institute of Phosphate Research: Bartow, FL, USA, 2001. [Google Scholar]
- Diouri, C.; Echehbani, I.; Lahlou, K.; Omari, K.E.L.; Alaoui, A. Valorization of Moroccan phosphogypsum in road engineering: Parametric study. Mater. Today Proc. 2022, 58, 1054–1058. [Google Scholar] [CrossRef]
- Saadaoui, E.; Ghazel, N.; Ben Romdhane, C.; Massoudi, N. Phosphogypsum: Potential uses and problems—A review. Int. J. Environ. Stud. 2017, 74, 558–567. [Google Scholar] [CrossRef]
- Bello, S.K.; Alayafi, A.H.; Al-Solaimani, S.G.; Abo-Elyousr, K.A.M. Mitigating Soil Salinity Stress with Gypsum and Bio-Organic Amendments: A Review. Agronomy 2021, 11, 1735. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.; EL-Naka, E.-S. Empirical Approach of Leaching Curves for Determining the Efficiency of Reclaiming Saline-Sodic Soils in Sahl El-Tina, Sinai, Egypt. Int. J. Plant Soil Sci. 2015, 8, 1–9. [Google Scholar] [CrossRef]
- Nayak, A.K.; Mishra, V.K.; Sharma, D.K.; Jha, S.K.; Singh, C.S.; Shahabuddin, M.; Shahid, M. Efficiency of Phosphogypsum and Mined Gypsum in Reclamation and Productivity of Rice-Wheat Cropping System in Sodic Soil. Commun. Soil Sci. Plant Anal. 2013, 44, 909–921. [Google Scholar] [CrossRef]
- Miller, W.P. Physical Properties and Water Relations in Southeastern Soils; Florida Institute of Phosphate Research: Bartow, FL, USA, 1989. [Google Scholar]
- Kazman, Z.; Shainberg, I.; Gal, M. Effect of low levels of exchangeable sodium and applied phosphogypsum on the infiltration rate of various soils. Soil Sci. 1982, 135, 184–192. [Google Scholar] [CrossRef]
- James, J.; Pandian, P.K. Effect of phosphogypsum on strength of lime stabilized expansive soil. Gradjevinar 2014, 66, 1109–1116. [Google Scholar] [CrossRef]
- Tian, T.; Zhang, C.L.; Zhu, F.; Yuan, S.; Guo, Y.; Xue, S.-G. Effect of phosphogypsum on saline-alkalinity and aggregate stability of bauxite residue. Trans. Nonferrous Met. Soc. China 2021, 31, 1484–1495. [Google Scholar] [CrossRef]
- FAO: Salt-Affected Soils and Their Management Soils Bulletin 39. 1988. Available online: http://www.fao.org/3/x5871e/x5871e00.htm (accessed on 28 October 2021).
- Prapagar, K.; Indraratne, S.P.; Premanandharajah, P. Effect of Soil Amendments on Reclamation of Saline-Sodic Soil. Trop. Agric. Res. 2015, 24, 168. [Google Scholar] [CrossRef]
- Cánovas, C.R.; Macías, F.; Pérez-López, R.; Basallote, M.D.; Millán-Becerro, R. Valorization of wastes from the fertilizer industry: Current status and future trends. J. Clean. Prod. 2018, 174, 678–690. [Google Scholar] [CrossRef]
- Zouahri, A.; Hasini, S.E.L.; Dakak, H.; Halima, O.I.; Iaaich, H.; Ghanimi, A.; Dahchour, A.; Hajjaji, S.E. qualitative assessment of irrigation water in the central bahira plains—El kalâa—Morocco. In Solutions to Water Challenges in MENA Region: Proceedings of the Regional Workshop, 25–30 April 2017, Cairo, Egypt; Cuvillier Verlag: Göttingen, Germany, 2018. [Google Scholar]
- Fathallah, F.E.; Algouti, A. Normalized difference vegetation index (NDVI) of the Chichaoua watershed-Morocco: Comparison and evolution. J. Anal. 2021, 3, 65–73. [Google Scholar] [CrossRef]
- Choukrani, G.; Hamimsa, A.; Saidi, M.E.; Babqiqi, A. Diagnostic Et Projection Future Du Changement Climatique En Zone Aride. Cas De La Region Marrakech-Safi (Maroc) Diagnosis and Future Projection of Climate Change in Arid Zone. Case of Marrakech-Safi Region (Morocco). Larhyss J. 2018, 36, 49–63. [Google Scholar]
- Taaime, N.; El Mejahed, K.; Moussafir, M.; Bouabid, R.; Oukarroum, A.; Choukr-Allah, R.; El Gharous, M. Early Sowing of Quinoa Cultivars, Benefits from Rainy Season and Enhances Quinoa Development, Growth, and Yield under Arid Condition in Morocco. Sustainability 2022, 14, 4010. [Google Scholar] [CrossRef]
- IUSS Working Group, W.R.B. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Soil classification system for naming soils and creating legends for, soil; Maps, I., Ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; ISBN 9798986245119. [Google Scholar]
- Tajeddine, L. Etude de la Phototransformation de L’orthophenylphenol et du Monuron Adsorbés sur des Argiles Extraites des Sols de la Chaouia; Universite Hassan 1ER: Settat, Morocco, 2008. [Google Scholar]
- Boukhari, H.E.; El Ouariti, S.; Mouflih, M.; Nguidi, M.A.; Kocsis, L.; Benbouziane, A. The Upper Cretaceous-Paleogene of Phosphate Clays of the Ouled Bou Sbaa Deposit: Mineralogy, Geochemistry, and Beneficiation (Meskala, Morocco). Open J. Geol. 2022, 12, 156–178. [Google Scholar] [CrossRef]
- Richards Diagnosis and Improvement of Saline and Alkaline Soils. Soil Sci. Soc. Am. J. 1954, 18, 348. [CrossRef]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Allison, L.E. Wet-Combustion Apparatus and Procedure for Organic and Inorganic Carbon in Soil. Soil Sci. Soc. Am. J. 1960, 24, 36–40. [Google Scholar] [CrossRef]
- Olsen, S.R. 1916- Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils1. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Weaver, R.W.; Angle, S.; Bottomley, P.J.; Smith, S.; Tabatabai, A.; Wollum, A.; Hart, S.C. Methods of Soil Analysis Part 2 Microbiological and Biochemical Properties Soil Science Society of America Book Series; Soil Science Society of America, Inc.: Madison, WI, USA, 1994; ISBN 089118810X. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling; American Society of Agronomy, Inc.: Madison, WI, USA, 2018; Volume 9, pp. 363–375. ISBN 9780891182030. [Google Scholar]
- Vomocil, J.A. Porosity. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; Klute, A., Ed.; American Society of Agronomy: New York, NY, USA, 1986; pp. 299–314. [Google Scholar]
- Kemper, W.D.; Rosenau, R.C. Aggregate Stability and Size Distribution. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5.1, 2nd ed.; SSSA Book Series; Crop Science Society of America and Soil Science Society of America: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2017; Volume 1, ISBN 3900051070. [Google Scholar]
- Adeyemo, T.; Kramer, I.; Levy, G.J.; Mau, Y. Salinity and sodicity can cause hysteresis in soil hydraulic conductivity. Geoderma 2022, 413, 115765. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Farahani, E.; Emami, H.; Keller, T.; Fotovat, A.; Khorassani, R. Impact of monovalent cations on soil structure. Part I. Results of an Iranian soil. Int. Agrophysics 2018, 32, 57–67. [Google Scholar] [CrossRef]
- Levy, G.J.; Torrento, J.R. Clay dispersion and macroaggregate stability as affected by exchangeable potassium and sodium. Soil Sci. 1995, 160, 352–358. [Google Scholar] [CrossRef]
- Armstrong, A.S.B.; Tanton, T.W. Gypsum applications to aggregated saline-sodic clay topsoils. J. Soil Sci. 1992, 43, 249–260. [Google Scholar] [CrossRef]
- Ennaciri, Y.; Zdah, I.; EL Alaoui-Belghiti, H.; Bettach, M. Characterization and purification of waste phosphogypsum to make it suitable for use in the plaster and the cement industry. Chem. Eng. Commun. 2020, 207, 382–392. [Google Scholar] [CrossRef]
- Kandil, A.T.; Gado, H.S.; Cheira, M.F.; Soliman, M.H.; Akl, H.M.H. Potentiality of Fluoride Determination from Egyptian Phosphogypsum Using an Ion Selective Electrode Potentiality of Fluoride Determination from Egyptian Phosphogypsum Using an Ion Selective Electrode. IOSR J. Appl. Chem. 2016, 9, 1–11. [Google Scholar] [CrossRef]
- Zmemla, R.; Sdiri, A.; Naifar, I.; Benjdidia, M.; Elleuch, B. Tunisian phosphogypsum tailings: Assessment of leaching behavior for an integrated management approach. Environ. Eng. Res. 2020, 25, 345–355. [Google Scholar] [CrossRef]
- Ennaciri, Y.; Bettach, M.; Cherrat, A.; Zdah, I.; El Alaoui-Belghiti, H. Synthèse bibliographique: Étude des propriétés physico-chimiques du phosphogypse Marocain. Matériaux Tech. 2020, 108, 207. [Google Scholar] [CrossRef]
- Zoca, S.M.; Penn, C. An Important Tool With No Instruction Manual: A Review of Gypsum Use in Agriculture. Adv. Agron. 2017, 144, 1–44. [Google Scholar] [CrossRef]
- Outbakat, M.B.; Choukr-allah, R.; Gharous, M.E.L.; Omari, K.E.L.; Soulaimani, A.; Mejahed, K.E.L. Does phosphogypsum application affect salts, nutrients, and trace elements displacement from saline soils ? Front. Environ. Sci. 2022, 10, 1–14. [Google Scholar] [CrossRef]
- He, Y.; DeSutter, T.M.; Clay, D.E. Dispersion of Pure Clay Minerals as Influenced by Calcium/Magnesium Ratios, Sodium Adsorption Ratio, and Electrical Conductivity. Soil Sci. Soc. Am. J. 2013, 77, 2014–2019. [Google Scholar] [CrossRef]
- Chawla, L.; Khosla, B.; Sharma, D.R. Irrigation clence Hydraulic Properties of a Sandy Loam Soil as Influenced by Salinisation and Desalinisation. Irrig. Sci. 1983, 4, 247–254. [Google Scholar] [CrossRef]
- Nayak, S.; Mishra, C.S.K.; Guru, B.C.; Rath, M. Effect of phosphogypsum amendment on soil physico-chemical properties, microbial load and enzyme activities. J. Environ. Biol. 2011, 32, 613–617. [Google Scholar]
- Melo, R.M.; Barros, M.D.F.C.; dos Santos, P.M.; Rolim, M.M. Correção de solos salino-sódicos pela aplicação de gesso mineral. Rev. Bras. Eng. Agrícola Ambient. 2008, 12, 376–380. [Google Scholar] [CrossRef]
- Kumar, S.; Prasad, K.S.H.; Bundela, D.S. Effect of Sodicity on Soil—Water Retention and Hydraulic Properties. J. Irrig. Drain. Eng. 2020, 146, 1–12. [Google Scholar] [CrossRef]
- Aǧar, A.I. Reclamation of saline and sodic soil by using divided doses of phosphogypsum in cultivated condition. African J. Agric. Res. 2011, 6, 4243–4252. [Google Scholar] [CrossRef]
- Uddin, F. Montmorillonite: An Introduction to Properties and Utilization. In Current Topics in the Utilization of Clay in Industrial and Medical Applications; InTech: Rijeka, Croatia, 2018; Volume 11, p. 13. ISBN 0000957720. [Google Scholar]
- Churchman, G.J.; Skjemstad, J.O.; Oades, J.M. Influence of clay minerals and organic matter on effects of sodicity on soils. Aust. J. Soil Res. 1993, 31, 779–800. [Google Scholar] [CrossRef]
- dos Santos, M.A.; Freire, M.B.G.d.S.; de Almeida, B.G.; Lins, C.M.T.; da Silva, E.M. Dynamics of ions in saline-sodic soil under phytoremediation with Atriplex nummularia and gypsum applications. Rev. Bras. Eng. Agric. Ambient. 2013, 17, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.M.L.; Tormena, C.A.; Genú, A.M.; Kramer, L.F.M.; Michalovicz, L.; Caires, E.F. Structural quality of a no-tillage red latosol 50 months after gypsum aplication. Rev. Bras. Ciência Solo 2012, 36, 1005–1014. [Google Scholar] [CrossRef]
- Bonini, C.S.B.; Alves, M.C. Qualidade física de um Latossolo Vermelho em recuperação há dezessete anos. Rev. Bras. Eng. Agrícola Ambient. 2012, 16, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Gharaibeh, M.A.; Rusan, M.J.; Eltaif, N.I.; Shunnar, O.F. Reclamation of highly calcareous saline-sodic soil using low quality water and phosphogypsum. Appl. Water Sci. 2014, 4, 223–230. [Google Scholar] [CrossRef]
Properties | Chichaoua | Ras El Ain | Sidi Zouine | Sed El Masjoune |
---|---|---|---|---|
ECe (mS/cm) | 11.7 | 26.47 | 94.6 | 140.6 |
pH | 8.1 | 8.3 | 8.1 | 8.1 |
OM (%) | 1.86 | 1.28 | 1.62 | 1.61 |
CaCO3 (%) | 8.4 | 2.0 | 9.8 | 7.5 |
P2O5 (mg/kg) | 67 | 40 | 43 | 43 |
Clay (%) | 20 | 34 | 22 | 26 |
Silt (%) | 28 | 42 | 34 | 28 |
Sand (%) | 52 | 24 | 44 | 46 |
Class texture | Loam | Clay Loam | Loam | Loam |
SO4 (mg/kg) | 3210 | 2145 | 2323 | 2728 |
Na2O (mg/kg) | 759 | 2873 | 11,027 | 26,628 |
K2O (mg/kg) | 308 | 351 | 817 | 697 |
CaO (mg/kg) | 7984 | 7973 | 10,754 | 10,923 |
MgO (mg/kg) | 1067 | 814 | 2157 | 2496 |
Total N (%) | 0.12 | 0.1 | 0.11 | 0.08 |
ESP (%) | 7% | 22% | 41% | 62% |
SAR(mEq/l) | 1.9 | 9.9 | 29.7 | 69.6 |
Properties | PG | G |
---|---|---|
pH | 5.8 | 8.1 |
EC (mS/cm) | 2.4 | 2.3 |
Solubility (g/L) | 2.5 | 2.03 |
Ca (%) | 22.8 | 17.0 |
S (%) | 23.7 | 13.1 |
K (mg/kg) | 869 | 969 |
Mg (mg/kg) | 259 | 7587 |
Al (mg/kg) | 719 | 1328 |
Soil Amendment Dose | Overall Efficiency (%) | |
---|---|---|
Chichaoua | 15 t G/ha | −38% |
15 t PG/ha | 24% | |
30 t PG/ha | 15% | |
45t PG/ha | 53% | |
Ras El Ain | 15 t G/ha | 8% |
15 t PG/ha | −6% | |
30 t PG/ha | 12% | |
45t PG/ha | 95% | |
Sed El Masjoune | 15 t G/ha | −24% |
15 t PG/ha | −32% | |
30 t PG/ha | 64% | |
45t PG/ha | 36% | |
Sidi Zouine | 15 t G/ha | −6% |
15 t PG/ha | −28% | |
30 t PG/ha | −38% | |
45t PG/ha | −43% |
Region | Regression Model | R2 | RMSE | p Value |
---|---|---|---|---|
Chichaoua | WSA = 17.81 + 0.17 × PG | 0.95 | 0.64 | <0.05 |
Ras El Ain | WSA = 5.05 + 0.12 × PG | 0.69 | 1.44 | 0.17 |
Sad El Masjoune | WSA = 4.14 + 0.06 × PG | 0.40 | 1.35 | 0.36 |
Sidi Zouine | WSA = 8.95 − 0.09 × PG | 0.88 | 0.55 | 0.06 |
Soil | Amendment Rate | FC | PWP | AWC |
---|---|---|---|---|
g.g−1 (%) | ||||
Chichaoua | 0 t/ha 15 t G/ha | 26.95 aB ± 0.58 | 17.05 bC ± 1.38 | 9.91 aA ± 0.95 |
27.14 aB ± 1.63 | 23.59 aAB ± 2.35 | 3.54 bAB ± 1.57 | ||
15 t PG/ha | 27.30 aB ± 0.57 | 15.80 bC ± 0.98 | 11.50 aA ± 1.08 | |
30 t PG/ha | 27.54 aB ± 1.20 | 17.16 bC ± 3.57 | 10.38 aA ± 3.04 | |
45 t PG/ha | 29.42 aB ± 2.06 | 24.29 aA ± 2.19 | 6.17 bA ± 1.85 | |
Ras El Ain | 0 t/ha | 24.64 aB ± 0.68 | 22.84 aB ± 0.57 | 1.80 aC ± 0.12 |
15 t G/ha | 25.05 aB ± 0.49 | 22.82 aB ± 1.21 | 2.23 aB ± 0.94 | |
15 t PG/ha | 25.64 aB ± 1.77 | 22.89 aB ± 2.33 | 2.75 aC ± 1.19 | |
30 t PG/ha | 24.84 aC ± 0.51 | 23.12 aB ± 0.58 | 1.72 aB ± 0.43 | |
45 t PG/ha | 26.59 aB ± 1.80 | 24.76 aA ± 3.35 | 3.03 aA ± 0.80 | |
Sed El Masjoune | 0 t/ha | 20.25 aC ± 0.69 | 13.68 aD ± 0.23 | 6.57 aAB ± 0.71 |
15 t G/ha | 20.29 aC ± 1.79 | 15.99 abC ± 2.49 | 4.30 abAB ± 1.24 | |
15 t PG/ha | 22.59 aC ± 2.72 | 17.36 abC ± 1.98 | 5.23 abB ± 1.28 | |
30 t PG/ha | 23.60 aC ± 1.77 | 19.36 aC ± 2.20 | 4.24 abB ± 0.98 | |
45 t PG/ha | 22.87 aC ± 3.22 | 19.14 aB ± 3.33 | 3.73 bA ± 0.97 | |
Sidi Zouine | 0 t/ha | 32.35 abA ± 2.90 | 28.20 aA ± 0.08 | 4.15 aBC ±2.82 |
15 t G/ha | 31.21 bA ± 1.48 | 26.61 aA ± 2.16 | 4.60 aA ± 1.58 | |
15 t PG/ha | 33.36 abA ± 1.31 | 29.61 aA ± 2.53 | 3.74 aBC ± 1.44 | |
30 t PG/ha | 33.28 abA ± 0.91 | 29.35 aA ± 1.16 | 3.93 aB ± 1.01 | |
45 t PG/ha | 33.50 aA ± 0.83 | 28.07 aA ± 3.08 | 5.43 aA ± 2.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Outbakat, M.B.; El Mejahed, K.; El Gharous, M.; El Omari, K.; Beniaich, A. Effect of Phosphogypsum on Soil Physical Properties in Moroccan Salt-Affected Soils. Sustainability 2022, 14, 13087. https://doi.org/10.3390/su142013087
Outbakat MB, El Mejahed K, El Gharous M, El Omari K, Beniaich A. Effect of Phosphogypsum on Soil Physical Properties in Moroccan Salt-Affected Soils. Sustainability. 2022; 14(20):13087. https://doi.org/10.3390/su142013087
Chicago/Turabian StyleOutbakat, M Barka, Khalil El Mejahed, Mohamed El Gharous, Kamal El Omari, and Adnane Beniaich. 2022. "Effect of Phosphogypsum on Soil Physical Properties in Moroccan Salt-Affected Soils" Sustainability 14, no. 20: 13087. https://doi.org/10.3390/su142013087
APA StyleOutbakat, M. B., El Mejahed, K., El Gharous, M., El Omari, K., & Beniaich, A. (2022). Effect of Phosphogypsum on Soil Physical Properties in Moroccan Salt-Affected Soils. Sustainability, 14(20), 13087. https://doi.org/10.3390/su142013087