Use of RPA Images in the Mapping of the Chlorophyll Index of Coffee Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Field Data Collection
2.2. RPA Data Collection
2.3. Obtaining the Morphological and Physiological Parameters
2.4. Meteorological Data
2.5. Statistical Analysis
3. Results
3.1. Wet Season
3.2. Dry Season
4. Discussion
4.1. Wet Season
4.2. Dry Season
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Department of Agriculture (USDA). Available online: http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1801 (accessed on 1 July 2022).
- De Souza, A.J.J.; Guimarães, R.J.; Colombo, A.; Sant’ana JA, D.V.; Castanheira, D.T. Quantitative analysis of growth in coffee plants cultivated with a water-retaining polymer in an irrigated system1. Rev. Ciência Agronômica 2016, 47, 162–171. [Google Scholar]
- Pozza, E.A.; Carvalho, V.L.; Chalfoun, S.M. Sintomas de injurias causadas por doenças do cafeeiro. In Semiologia do Cafeeiro: Sintomas de Desordens Nutricionais, Fitossanitárias e Fisiológicas; Guimarães, R.J., Mendes, A.N.G., Baliza, D.P., Eds.; UFLA: Lavras, Brazil, 2010. [Google Scholar]
- Marin, D.B.; De Alves, M.C.; Pozza, E.A.; Belan, L.L.; De Freitas, M.L.O. Multispectral radiometric monitoring of bacterial blight of coffee. Precis. Agric. 2019, 20, 959–982. [Google Scholar] [CrossRef]
- Chemura, A.; Mutanga, O.; Odindi, J. Empirical modeling of leaf chlorophyll content in coffee (coffea arabica) plantations with sentinel-2 msi data: Effects of spectral settings, spatial resolution, and crop canopy cover. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5541–5550. [Google Scholar] [CrossRef]
- Santos, L.M.; De Barbosa, B.D.S.; Diotto, A.V.; Maciel, D.T.; Xavier, L.A.G. Biophysical parameters of coffee crop estimated by UAV RGB images. Precis. Agric. 2020, 21, 1227–1241. [Google Scholar] [CrossRef]
- Santos, L.M.; De Barbosa, B.D.S.; Diotto, A.V.; Andrade, M.T.; Conti, L.; Rossi, G. Determining the Leaf Area Index and Percentage of Area Covered by Coffee Crops Using UAV RGB Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6401–6409. [Google Scholar] [CrossRef]
- Putra, B.T.W.; Soni, P. Enhanced broadband greenness in assessing Chlorophyll a and b, Carotenoid, and Nitrogen in Robusta coffee plantations using a digital camera. Precis. Agric. 2018, 19, 238–256. [Google Scholar] [CrossRef]
- Moreira, M.A. Fundamentos do Sensoriamento Remoto e Metodologias de Aplicação; UFV: Viçosa, Brazil, 2012. [Google Scholar]
- Milas, A.S.; Romanko, M.; Reil, P.; Abeysinghe, T.; Marambe, A. The importance of leaf area index in mapping chlorophyll content of corn under different agricultural treatments using UAV images. Int. J. Remote Sens. 2018, 39, 5415–5431. [Google Scholar] [CrossRef]
- Santos, P.L.F.; Castilho, R.M.M.; Gazola, R.P.D. Pigmentos fotossintéticos e sua correlação com nitrogênio e magnésio foliar em grama bermuda cultivada em substratos. Acta Iguazu 2019, 8, 92–101. [Google Scholar]
- Han, L.; Yang, G.; Dai, H.; Xu, B.; Yang, H.; Feng, H.; Li, Z.; Yang, X. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods 2019, 15, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Formaggio, A.R.; Sanches, I.D. Sensoriamento Remoto em Agricultura; Oficina de Textos: São Paulo, Brazil, 2017; 288p. [Google Scholar]
- Streit, N.M.; Canterle, L.P.; Canto MW, D.; Hecktheuer LH, H. As clorofilas. Ciência Rural 2005, 35, 748–755. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, J.; Luo, Y.; Tang, N.; Li, X.; Zhu, Z.; Guo, J. Comparative effects of polystyrene nanoplastics with different surface charge on seedling establishment of Chinese cabbage (Brassica rapa L.). Chemosphere 2022, 292, 133403. [Google Scholar] [CrossRef] [PubMed]
- Salami, E.; Barrado, C.; Pastor, E. UAV Flight Experiments Applied to the Remote Sensing of Vegetated Areas. Remote Sens. 2014, 6, 11051–11081. [Google Scholar] [CrossRef]
- Santos, L.M.; Ferraz, G.A.S.; Barbosa, B.D.S.; Andrade, A.D. Use of remotely piloted aircraft in precision agriculture: A review. Dyna 2019, 86, 284–291. [Google Scholar]
- Emilien, A.V.; Thomas, C.; Thomas, H. UAV & satellite synergies for optical remote sensing applications: A literature review. Sci. Remote Sens. 2021, 3, 100019. [Google Scholar]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Gioli, B. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef] [Green Version]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+ SAIL models: A review of use for vegetation characterisation. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Upreti, D.; Huang, W.; Kong, W.; Pascucci, S.; Pignatti, S.; Zhou, X.; Ye, H.; Casa, R. A Comparison of Hybrid Machine Learning Algorithms for the Retrieval of Wheat Biophysical Variables from Sentinel-2. Remote Sens. 2019, 11, 481. [Google Scholar] [CrossRef] [Green Version]
- Meroni, M.; Colombo, R.; Panigada, C. Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sens. Environ. 2004, 92, 195–206. [Google Scholar] [CrossRef]
- Richter, K.; Atzberger, C.; Vuolo, F.; Weihs, P.; D’urso, G. Experimental assessment of the Sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maise. Can. J. Remote Sens. 2014, 35, 230–247. [Google Scholar] [CrossRef]
- Palacharla, P.K.; Durbha, S.S.; King, R.L.; Gokaraju, B.; Lawrence, G.W. A hyperspectral reflectance data based model inversion methodology to detect reniform nematodes in cotton. In Proceedings of the 6th International Workshop on the Analysis of Multi-Temporal Remote Sensing Images (Multi-Temp), Trento, Italy, 12 July 2011. [Google Scholar]
- Le Maire, G.; Marsden, C.; Verhoef, W.; Ponzoni, F.J.; Seen, D.L.; Bégué, A.; Stape, J.-L.; Nouvellon, Y. Leaf area index estimation with MODIS reflectance time series and model inversion during full rotations of Eucalyptus plantations. Remote Sens. Environ. 2011, 115, 586–599. [Google Scholar] [CrossRef]
- Si, Y.; Schlerf, M.; Zurita-Milla, R.; Skidmore, A.; Wang, T. Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL model. Remote Sens. Environ. 2012, 121, 415–425. [Google Scholar] [CrossRef]
- Wang, Z.; Skidmore, A.K.; Darvishzadeh, R.; Wang, T. Mapping Forest canopy nitrogen content by inversion of coupled leaf-canopy radiative transfer models from airborne hyperspectral imagery. Agric. For. Meteorol. 2018, 253, 247–260. [Google Scholar] [CrossRef]
- Liang, L.; Qin, Z.; Zhao, S.; Di, L.; Zhang, C.; Deng, M.; Lin, H.; Zhang, L.; Wang, L.; Liu, Z. Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method. Int. J. Remote Sens. 2016, 37, 2923–2949. [Google Scholar] [CrossRef]
- Favarin, J.L.; Neto, D.D.; García, Y.; García, A.; Nova, N.A.V.; Favarin, M.D.G.G.V. Equações para a estimativa do índice de área foliar do cafeeiro. Pesqui. Agropecuária Bras. 2002, 37, 769–773. [Google Scholar] [CrossRef]
- Ahmad, A.; Ordoñez, J.; Cartujo, P.; Martos, V. Remotely Piloted Aircraft (RPA) in Agriculture: A Pursuit of Sustainability. Agronomy 2021, 11, 7. [Google Scholar] [CrossRef]
- Castanheira, D.T.; Barcelos, T.R.; Guimarães, R.J.; Carvalho, M.A.D.F.; Rezende, T.T.; Bastos, I.D.S.; Cruvinel, A.H. Agronomic techniques for mitigating the effects of water restriction on coffee crops. Coffee Sci. 2019, 14, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Alecrim, A.O.; Castanheira, D.T.; Voltolini, G.B.; Netto, P.M.; Guimarães, R.J.; Gonçalves, A.H. Phytosociology of weeds in coffee plants with different soil management techniques. Scientia Agrar. Parana. 2020, 19, 270–279. [Google Scholar] [CrossRef]
- Eitel, J.U.H.; Keefe, R.F.; Long, D.S.; Davis, A.S.; Vierling, L.A. Active ground optical remote sensing for improved monitoring of seedling stress in nurseries. Sensors 2010, 10, 2843–2850. [Google Scholar] [CrossRef] [Green Version]
- Rundquist, D.C.; Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maise canopies. Geophys. Res. Lett. 2003, 30, 52-1–52-4. [Google Scholar]
- Putra, B.T.W.; Soni, P. Evaluating NIR-Red and NIR-Red edge external filters with digital cameras for assessing vegetation indices under different illumination. Infrared Phys. Technol. 2017, 81, 148–156. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Zhang, G.; Wang, J. Estimating nitrogen status of rice using the image segmentation of G-R thresholding method. Field Crops Res. 2013, 149, 33–39. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
- Bendig, J.; Kang, Y.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-Based Plant Height from Crop Surface Models, Visible, and near Infrared Vegetation Indices for Biomass Monitoring in Barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, MN, USA, 19 July 2000. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. Goddard Spec. Flight Cent. NASA 1976, 24, 309–317. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Birth, G.S.; Mcvey, G.R. Measuring the color of growing turf with a reflectance spectrophotometer. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Li, Y.; Chen, D.; Walker, C.N.; Angus, J.F. Estimating the nitrogen status of crops using a digital camera. Field Crops Res. 2010, 118, 221–227. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2000, 76, 156–172. [Google Scholar] [CrossRef]
- Bento, N.L.; Ferraz, G.A.E.S.; Barata, R.A.P.; Soares, D.V.; Santos, L.M.D.; Santana, L.S.; Palchetti, E. Characterization of Recently Planted Coffee Cultivars from Vegetation Indices Obtained by a Remotely Piloted Aircraft System. Sustainability 2022, 14, 1446. [Google Scholar] [CrossRef]
- Pereira, T.B.; Baliza, D.P.; Cunha, R.L.; Guimarães, R.J.; Gomes, R.A.; Pereira, V.A. Teores de clorofila em cafeeiros submetidos a diferentes ambientes avaliados por dois métodos de determinação. In Proceedings of the Simpósio de Pesquisa dos Cafés do Brasil, Araxá, MG, Brazil, 22 August 2011. [Google Scholar]
- Yin, C.Y.; Pang, X.Y.; Peuke, A.D.; Wang, X.; Chen, K.; Gong, R.G. Growth and photosynthetic responses in Jatropha curcas L. seedlings of different provenances to watering regimes. Photosynthetica 2016, 54, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Alonso Zuñiga, E.; Ruiz Machuca, L.M.; Dos Santos, O.F.; De Souza, C.M.L.; De Oliveira, F.D.P.; Broetto, F. Comportamento fisiológico de mudas de cafeeiro arábica (cv. Obatã e catucaí) submetidas à deficiência hídrica. Irriga 2019, 24, 890–899. [Google Scholar] [CrossRef]
Camera | Parrot Sequoia™ |
Weight | 107 g |
Dimensions | 5.9 × 4.1 × 2.9 cm |
Spectral range | Green (0.53–0.57 µm), red (0.64–0.68 µm), red edge (0.73–0.74 µm), and near infrared (NIR) (0.77–0.81 µm) |
Vegetation Index | Equation | Source |
---|---|---|
Canopy Chlorophyll Content Index (CCCI) | [33] | |
CIgreen | [34] | |
CIred edge | [34] | |
Enhanced Vegetation Index 2-Green (EVI2green) | [35] | |
First Modified Chlorophyll Absorption Ratio Index (MCARI1) | [36] | |
Second Modified Chlorophyll Absorption Ratio Index (MCARI2) | [36] | |
Green Minus Red (GMR) | [37] | |
Green Normalized Difference Vegetation Index (GNDVI) | [38] | |
Modified Triangular Vegetation Index 1 (MTVI1) | [36] | |
Modified Triangular Vegetation Index 2 (MTVI2) | [36] | |
Modified Normalized Green–Red Difference Index (MNGRDI) | [39] | |
Modified Soil-Adjusted Vegetation Index (MSAVI) | [40] | |
Modified Simple Ratio (MSR) | [41] | |
Normalised Difference Red Edge (NDRE) | [42] | |
Normalised Difference Vegetation Index (NDVI) | [43] | |
Normalized Green–Red Difference Index (NGRDI) | [44] | |
Optimised Soil Adjusted Vegetation Index-Green (OSAVIgreen) | [35] | |
Renormalised Difference Vegetation Index (RDVI) | [45] | |
Simple Ratio (SR) | [46] | |
Soil Adjusted Vegetation Index-Green (SAVIgreen) | [47] | |
Triangular Vegetation Index (TVI) | [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, L.M.d.; Ferraz, G.A.e.S.; Carvalho, M.A.d.F.; Teodoro, S.A.; Campos, A.A.V.; Menicucci Neto, P. Use of RPA Images in the Mapping of the Chlorophyll Index of Coffee Plants. Sustainability 2022, 14, 13118. https://doi.org/10.3390/su142013118
Santos LMd, Ferraz GAeS, Carvalho MAdF, Teodoro SA, Campos AAV, Menicucci Neto P. Use of RPA Images in the Mapping of the Chlorophyll Index of Coffee Plants. Sustainability. 2022; 14(20):13118. https://doi.org/10.3390/su142013118
Chicago/Turabian StyleSantos, Luana Mendes dos, Gabriel Araújo e Silva Ferraz, Milene Alves de Figueiredo Carvalho, Sabrina Aparecida Teodoro, Alisson André Vicente Campos, and Pedro Menicucci Neto. 2022. "Use of RPA Images in the Mapping of the Chlorophyll Index of Coffee Plants" Sustainability 14, no. 20: 13118. https://doi.org/10.3390/su142013118
APA StyleSantos, L. M. d., Ferraz, G. A. e. S., Carvalho, M. A. d. F., Teodoro, S. A., Campos, A. A. V., & Menicucci Neto, P. (2022). Use of RPA Images in the Mapping of the Chlorophyll Index of Coffee Plants. Sustainability, 14(20), 13118. https://doi.org/10.3390/su142013118