Soil and Water Conservation in Africa: State of Play and Potential Role in Tackling Soil Degradation and Building Soil Health in Agricultural Lands
Abstract
:1. Introduction
2. Literature Review Methodology
3. Common Practices of Soil and Water Conservation in Africa at the Field Level
- Trash lines, which range from simple bands of cereal and legume stover, as used in Uganda and Kenya, to the more sophisticated pegged brush lines of Sierra Leone [39]. Trashlines are semi-permeable barriers (as stone bunds) that allow the passage of excess runoff and trapping of sediments, and can serve as an effective and affordable framework for the construction of terrace banks [39];
- Grassed waterway, retention ditches, riparian vegetative buffer strip, etc., [38].
4. Conservation Agriculture in Africa
4.1. State of the Art of CA in Africa
4.2. Potential of CA to Tackle Soil Degradation, Build Healthy Soils and Conserve Water
4.3. Addressing Constraints to the Successful Adoption of CA in Africa: The Role of Research and Beyond
4.3.1. Implementing No-Till
4.3.2. Implementing Sufficient Soil Cover by Crop Residues
4.3.3. Scaling the Use of Cover Crops
4.3.4. Implementing Sustainable Crop Rotations
- The improvement in soil structure through the development of different rooting systems, resulting in less soil compaction and degradation and contributing to soil organic carbon (SOC);
- The diversity of crop residues, improving the quality of SOM (C/N ratio) and soil quality, mainly when leguminous plants are used (N Fixation);
- The reduction in soil erosion compared to intensive monocropping.
4.3.5. Access to Inputs to Maximize Benefits of NT
4.3.6. Agricultural Extension to Promote CA
5. Agroforestry in Africa
5.1. State of the Art of AF in Africa
5.2. Potential of AF to Combat Land Degradation, Favor Soil Health and Conserve Water
5.3. Examples of AF Practices with Promising Potentialities for Soil Health in Africa
5.3.1. Agroforestry Parks (Parklands)
5.3.2. The “Assisted Natural Regeneration”
5.3.3. “Fertilizer Trees”
- Alley cropping (growing of food crops in alleys formed by hedgerows of trees or shrubs that are periodically pruned during the crop growing season to minimize the adverse effects of shading and competition with the food crops [195]);
- Biomass transfer (use of green manures from fertilizing trees in the form of green leaves and twigs that are moved from one place to another, generally in wetlands [191]);
- Faidherbia albida systems, which are commonly found in the semi-arid zones of Africa’s drylands [19].
5.3.4. Alley Cropping with Fodder Shrubs in Drylands
5.4. Addressing Constraints to the Successful Adoption of AF in Africa
5.4.1. Reducing Pressure on Trees and Shrubs
5.4.2. Considering Agroecological and Socioeconomic Conditions in the Dissemination of AF
5.4.3. Wisely Choosing Trees/Shrubs to Be Integrated: Example of Improved Fallows
5.4.4. Other Challenges to Be Addressed by Research
6. Rainwater Harvesting to Improve Land Productivity in Africa
7. Soil Nutrient Management in Africa: The Relevance of the Integrated Soil Fertility Management Approach
8. Conclusions and Perspectives
- A more extensive exploration of the complementarity and synergies between SWC and other practices to be integrated.
- Implementing long-term trials to evaluate the effects of CA and AF on soil quality and crops.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lal, R. Soil Degradation as a Reason for Inadequate Human Nutrition. Food Secur. 2009, 1, 45–57. [Google Scholar] [CrossRef]
- Thiombiano, L.; Tourino-Soto, I. Status and Trends in Land Degradation in Africa. In Climate and Land Degradation; Sivakumar, M.V.K., Ndiang’ui, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 39–53. ISBN 9783540724384. [Google Scholar]
- Nezomba, H.; Mtambanengwe, F.; Tittonell, P.; Mapfumo, P. Practical Assessment of Soil Degradation on Smallholder Farmers’ Fields in Zimbabwe: Integrating Local Knowledge and Scientific Diagnostic Indicators. Catena 2017, 156, 216–227. [Google Scholar] [CrossRef]
- Rowntree, K.; Duma, M.; Kakembo, V.; Thornes, J. Debunking the Myth of Overgrazing and Soil Erosion. L. Degrad. Dev. 2004, 15, 203–214. [Google Scholar] [CrossRef]
- Henao, J.; Baanante, C. Agricultural Production and Soil Nutrient Mining in Africa: Implications for Resource Conservation and Policy Development; IFDC: Muscle Shoals, AL, USA, 2006. [Google Scholar]
- Lal, R.; Stewart, B.A. Food Security and Soil Quality; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2010; ISBN 9781439800577. [Google Scholar]
- Tully, K.; Sullivan, C.; Weil, R.; Sanchez, P. The State of Soil Degradation in Sub-Saharan Africa: Baselines, Trajectories, and Solutions. Sustainability 2015, 7, 6523–6552. [Google Scholar] [CrossRef] [Green Version]
- Nefzaoui, A.; Inglese, P.; Belay, T. Improved Utilization of Cactus Pear for Food, Feed, Soil and Water Conservation and Other Products in Africa. In Proceedings of the International Workshop held in Mekelle, Mekelle, Ethiopia, 19–21 October 2009; p. 224. [Google Scholar]
- Jones, A.; Breuning-Madsen, H.; Brossard, M.; Chapelle, J.; Dampha, A.; Deckers, J.; Dewitte, O.; Dondeyne, S.; Gallali, T.; Hallett, S.; et al. Atlas Des Sols D’Afrique; Commission européenne, Bureau des publications de l’Union européenne: Luxembourg, 2015; ISBN 9789279465857. [Google Scholar]
- Boincean, B.; Dent, D. Farming the Black Earth Sustainable and Climate-Smart Management of Chernozem Soils; Spring Nature Switherland AG: Cham, Switzerland, 2019; ISBN 9783030225322. [Google Scholar]
- Dumanski, J.; Peiretti, R. Modern Concepts of Soil Conservation. Int. Soil Water Conserv. Res. 2013, 1, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Marenya, P.; Nkonya, E.; Xiong, W.; Deustua, J.; Kato, E. Which Policy Would Work Better for Improved Soil Fertility Management in Sub-Saharan Africa, Fertilizer Subsidies or Carbon Credits? Agric. Syst. 2012, 110, 162–172. [Google Scholar] [CrossRef]
- Nkonya, E.; Gerber, N.; Baumgartner, P.; von Braun, J.; De Pinto, A.; Graw, V.; Kato, E.; Kloos, J.; Walter, T. The Economics of Desertification, Land Degradation, and Drought Toward an Integrated Global Assessment ZEF-Discussion Papers on Development Policy No. 150; Center for Development Research (ZEF): Bonn, Germany, 2011. [Google Scholar]
- Sivakumar, M.; Wallace, J. Soil Water Balance in the Sudano-Sahelian Zone: Need, Relevance and Objectives of the Workshop; Soil wafer balance in the Sudano-Sahelian Zone; Sivakumar, M.V.K., Wallace, J.S., Renard, C., Giroux, C., Eds.; IAHS Press, Institue of Hydrology: Wallingford, UK, 1991; pp. 3–10. [Google Scholar]
- Fernández-Long, M.E.; Peretti, M.; Carnelos, D.; Della-Chiesa, T.; Spescha, L. Characterization of the Seasonal Variation of Soil Moisture in Argentina. Int. J. Climatol. 2021, 41, E537–E547. [Google Scholar] [CrossRef]
- Fatumah, N.; Tilahun, S.A.; Mohammed, S. Effect of Tillage Systems and Tillage Direction on Soil Hydrological Properties and Soil Suspended Particle Concentration in Arable Land in Uganda. Heliyon 2020, 6, e05616. [Google Scholar] [CrossRef]
- Salazar, O.; Casanova, M. Runoff Water Harvesting as a Strategy for Increasing Agricultural Production on Hillslope Areas in Arid and Semiarid Zones. In Carrey Daniel M. Water Recycling and Water Management; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 1–39. ISBN 9781617613050. [Google Scholar]
- Nair, P.K.R.; Kang, B.T.; Kass, D.C.L. Nutrient Cycling and Soil-Erosion Control in Agroforestry Systems. Agric. Environ. Bridg. Food Prod. Environ. Prot. Dev. Ctries. 1995, 60, 117–138. [Google Scholar] [CrossRef]
- Young, A. Soil Productivity, Soil Conservation and Land Evaluation. Agrofor. Syst. 1987, 5, 277–291. [Google Scholar] [CrossRef]
- Mutunga, K. Water Conservation, Harvesting and Management (WCHM)—Kenyan Experience. In Sustaining the Global Farm, Proceedings of the 10th International Soil Conservation Organization Meeting. Purdue University and the USDA-ARS National Soil Erosion Research Laboratory, Purdue University and the USDA-ARS National Soil Erosion Resear, West Lafayette, IN, USA, 24–29 May 1999; Stott, D.E., Mohtar, R.H., Steinhardt, G.C., Eds.; International Soil Conservation Organization, United States Department of Agriculture Agricultural Research Service National Soil Erosion Research Laboratory and Purdue University: West Lafayette, IN, USA, 2001; pp. 1139–1143. [Google Scholar]
- Linger, H.; Mekdaschi Studer, R.; Hauert, C.; Gurtner, M. Sustainable Land Management in Practice: Guidelines and Best Practices for Sub-Saharan Africa; TerrAfrica, World Overview of Conservation Approaches and Technologies (WOCAT) and Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011. [Google Scholar]
- Bouzza, A. Water Conservation in Wheat Rotations under Several Management and Tillage Systems in Semiarid Areas; University of Nebraska: Lincoln, NE, USA, 1990. [Google Scholar]
- Whitmore, J.S. Hardy and Drought-Evasive Cereal Crops. In Drought Management on Farmland; Whitmore, J.S., Ed.; Springer Science + Business Media Dordrecht: Berlin/Heidelberg, Germany, 2000; pp. 79–97. [Google Scholar]
- Hudson, N.W. Conservation Des Sols et Des Eaux Dans Les Zones Semi-Arides; FAO: Rome, Italy, 1990; ISBN 92-S-202946-X. [Google Scholar]
- Troeh, F.R.; Hobbs, J.A.; Donahue, R.L. Soil and Water Conservation for Productivity and Environmental Protection Fourth Edition; Prentice Hall: New York, NY, USA, 2004; ISBN 0130968072. [Google Scholar]
- Mugonola, B.; Deckers, J.; Poesen, J.; Isabirye, M.; Mathijs, E. Adoption of Soil and Water Conservation Technologies in the Rwizi Catchment of South Western Uganda. Int. J. Agric. Sustain. 2013, 11, 264–281. [Google Scholar] [CrossRef]
- Salako, F.K. Soil Physical Conditions in Nigerian Savannas and Biomass Production. Available online: https://www.osti.gov/etdeweb/biblio/20946973 (accessed on 30 January 2021).
- Roose, E. Restauration de La Productivité Des Sols Tropicaux et Méditerranéens: Contribution à l’agroécologie; Institut de Recherche pour le Developpement (IRD): Montpellier, France, 2015. [Google Scholar]
- Liniger, H.; Critchley, W. Where the Land Is Greener: Case Studies and Analysis of Soil and Water Conservation Initiatives Worldwide; World Overview of Conservation Approaches and Technologies (WOCAT): Bern, Switzerland, 2007; ISBN 9789290813392. [Google Scholar]
- Bantider, A.; Haileslassie, A.; Alamirew, T.; Zeleke, G. Soil and Water Conservation and Sustainable Development. In Clean Water and Sanitation, Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 1–13. ISBN 9783319700618. [Google Scholar]
- Mwangi, H.M. Evaluation of the Impacts of Soil and Water Conservation Practices on Ecosystem Services in Sasumua Watershed, Kenya, Using SWAT Model. Ph.D. Thesis, Kenyatta University of Agriculture and Technology, Nairobi, Kenya, 2013. [Google Scholar]
- Ahmad, N.S.B.N.; Mustafa, F.B.; Yusoff, S.Y.M.; Didams, G. A Systematic Review of Soil Erosion Control Practices on the Agricultural Land in Asia. Int. Soil Water Conserv. Res. 2020, 8, 103–115. [Google Scholar] [CrossRef]
- Arora, S.; Gupta, R.D. Soil Related Constraints in Crop Production and Their Management Options in North Western Himalayas. J. Soil Water Conserv. 2014, 13, 305–312. [Google Scholar]
- Karuku, G.N. Soil and Water Conservation Measures and Challenges in Kenya; a Review. Int. J. Agron. Agric. Res. 2018, 12, 116–145. [Google Scholar] [CrossRef] [Green Version]
- Drechsel, P.; Olaleye, A.; Adeoti, A.; Thiombiano, L.; Barry, B.; Vohland, K. Adoption Driver and Constraints of Resource Conservation Technologies in Sub-Saharan Africa. Available online: http://www.iwmi.cgiar.org/africa/west/pdf/AdoptionConstraints-Overview.pdf (accessed on 30 January 2021).
- Nicol, A.; Langan, S.; Victor, M.; Gonsalves, J. (Eds.) Water-Smart Agriculture in East Africa; CGIAR Research Program on Water, Land and Ecosystems (WLE): Colombo, Sri Lanka; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2015; ISBN 9781119130536. [Google Scholar]
- Destaw, F.; Fenta, M.M.; Management, R.; Resources, N.; Genet, W.; Resource, N. Climate Change Adaptation Strategies and Their Predictors amongst Rural Farmers in Ambassel. Jàmbá J. Disaster Risk Stud. 2020, 13, 1–11. [Google Scholar]
- Namirembe, S.; Nzyoka, J.M.; Gathenya, J.M. A Guide for Selecting the Right Soil and Water Conservation Practices for Small Holder Farming in Africa; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2015; ISBN 9789290593935. [Google Scholar]
- Critchley, W.R.S.; Reij, C.; Willcocks, T.J. Indigenous Soil and Water Conservation: A Review of the State of Knowledge and Prospects for Building on Traditions. L. Degrad. Dev. 1994, 5, 293–314. [Google Scholar] [CrossRef]
- Gathagu, J.N.; Mourad, K.A.; Sang, J. Effectiveness of Contour Farming and Filter Strips on Ecosystem Services. Water 2018, 10, 1312. [Google Scholar] [CrossRef] [Green Version]
- Anschütz, J.; Kome, A.; Nederlof, M.; de Neef, R.; van de Ven, T. Water Harvesting and Soil Moisture Retention; Anschütz, J., Nederlof, M., Eds.; Agromisa Foundation: Wageningen, The Netherlands, 2003; ISBN 90-77073-40-X. [Google Scholar]
- Erskine, J.M. Vetiver Grass: Its Potential Use in Soil and Moisture Conservation in Southern Africa. S. Afr. J. Sci. 1992, 88, 298–299. [Google Scholar]
- Bayen, P.; Traoré, S.; Bognounou, F.; Kaiser, D.; Thiombiano, A. Effet Du Zaï Amélioré Sur La Productivité Du Sorgho En Zone Sahélienne. VertigO 2012, 11, 1–10. [Google Scholar] [CrossRef]
- Prinz, D. Water Harvesting—Past and Future. In Sustainability of Irrigated Agriculture; Pereira, L.S., Feddes, R.A., Giley, J.R., Lesaffre, B., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; pp. 137–168. [Google Scholar]
- Kanté, S. Gestion de La Fertilite Des Sols Par Classe d’exploitation Au Mali-Sud; Wageningen University: Wageningen, The Netherlands, 2001. [Google Scholar]
- Roose, E.; Albergel, J.; Noni, G.D.E.; Laouina, A.; Sabir, M. Efficacité de La Gestion de l’eau et de La Fertilité Des Sols En Milieux Semi-Arides. In Proceedings of the Session 7 of the ISCO (International Soil Conservation Organization) Conference, Marrakech, Morocco, 14–19 May 2006; pp. 1–402. [Google Scholar]
- Sidibé, A. Farm-Level Adoption of Soil and Water Conservation Techniques in Northern Burkina Faso. Agric. Water Manag. 2005, 71, 211–224. [Google Scholar] [CrossRef]
- Wolka, K.; Mulder, J.; Biazin, B. Effects of Soil and Water Conservation Techniques on Crop Yield, Runoff and Soil Loss in Sub-Saharan Africa: A Review. Agric. Water Manag. 2018, 207, 67–79. [Google Scholar] [CrossRef]
- Critchley, W.; Gowing, J. Water Harvesting in Sub-Saharan Africa; Technical Centre for Agricultural and Rural Cooperation (CTA): Wageningen, The Netherlands, 2012; ISBN 9780415537735. [Google Scholar]
- Maraux, F.; Dugué, P.; Ganry, F. Improving Soil Fertility and Rehabilitating Degraded Soils: Technical and Social Dynamics in Western and Central African Drylands. In Proceedings of the AIDA Conference, Agricultural Innovation in Dryland Africa, Accra, Ghana, 22–24 January 2007; pp. 1–12. [Google Scholar]
- Zougmoré, R.; Guillobez, S.; Kambou, N.F.; Son, G. Runoff and Sorghum Performance as Affected by the Spacing of Stone Lines in the Semiarid Sahelian Zone. Soil Tillage Res. 2000, 56, 175–183. [Google Scholar] [CrossRef]
- Kiema, A.; Nianogo, A.J.; Ouedraogo, T. Effect of Rock Bunds on the Regeneration of the Vegetation of a Natural Pasture on Open Glacis in the Sahelian Region of Burkina Faso. Cah. Agric. 2008, 17, 281–288. [Google Scholar] [CrossRef]
- Abou Abba, A.; Hofs, J.; Mergeai, G.; Esa, P.; Bp, S.; Cameroun, G. Relever Les Défis Environnementaux Pour Les FIlières Cotonnières d’Afrique de LʼOuest et Du Centre. Biotechnol. Agron. Soc. Environ. 2006, 10, 351–359. [Google Scholar]
- Roose, É.; Sabir, M.; Arabi, M.; Morsli, B.; Mazour, M. Soixante Années de Recherches En Coopération Sur l’érosion Hydrique et La Lutte Antiérosive Au Maghreb. Physio-Géo 2012, 6, 43–69. [Google Scholar] [CrossRef]
- EL Yadari, H.; Chikhaoui, M.; Naimi, M.; Sabir, M.; Raclot, D. Techniques de Conservation Des Eaux et Des Sols Au Maroc: Aperçu et Perspectives. Rev. Maroc. Des Sci. Agron. Vétérinaires 2019, 7, 343–355. [Google Scholar]
- Ganaba, S. Impact Des Aménagements de Conservation Des Eaux et Des Sols Sur La Régénération Des Ressources Ligneuses En Zone Sahélienne et Nord Soudanienne Du Burkina Faso. VertigO 2005, 6, 1–15. [Google Scholar] [CrossRef]
- Nafi, E. Interactive Tillage & Crop Residue Management Effects on Soil Properties, Crop Nutrient Uptake & Yield in Different Weathered Soils of West Africa Eeusha Nafi; Universität Bonn: Bonn, Germany, 2020. [Google Scholar]
- Missaoui, H. Soil and Water Conservation in Tunisia. In Sustaioobility of Irrigated Agriculture; Pereira, L.S., Feddes, R.A., Gilley, J.R., Lesaffre, B., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; pp. 121–135. [Google Scholar]
- Yang, Y.; Liu, X.; Li, W.; Li, C. Effect of Different Mulch Materials on Winter Wheat Production in Desalinized Soil in Heilonggang Region of North China. J. Zhejiang Univ. Sci. B 2006, 7, 858–867. [Google Scholar] [CrossRef] [Green Version]
- Turmel, M.S.; Speratti, A.; Baudron, F.; Verhulst, N.; Govaerts, B. Crop Residue Management and Soil Health: A Systems Analysis. Agric. Syst. 2015, 134, 6–16. [Google Scholar] [CrossRef]
- Vlaar, J.C.J. Techniques de Conservation Des Eaux et Des Sols Au Sahel. Bull. Liaison Du Com. Interafr. D’études Hydraul. 1993, 1–99. [Google Scholar]
- Chapagain, T.; Raizada, M.N. Agronomic Challenges and Opportunities for Smallholder Terrace Agriculture in Developing Countries. Front. Plant Sci. 2017, 8, 331. [Google Scholar] [CrossRef] [Green Version]
- Gachene, C.K.K.; Nyawade, S.O.; Karanja, N.N. Soil and Water Conservation: An Overview. In Encyclopedia of the UN Sustainable Development Goals; Filho, W.L., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 810–823. ISBN 9783319956749. [Google Scholar]
- Bizoza, A.R.; de Graaff, J. Financial Cost-Benefit Analysis of Bench Terraces in Rwanda. L. Degrad. Dev. 2010, 23, 103–115. [Google Scholar] [CrossRef]
- Stroosnijder, L. Modifying Land Management in Order to Improve Efficiency of Rainwater Use in the African Highlands. Soil Tillage Res. 2009, 103, 247–256. [Google Scholar] [CrossRef]
- Diatta, M.; Faye, E.; Grouzis, M.; Perez, P. Importance de La Haie Vive Isohypse Sur La Gestion de l’eau Du Sol et Le Rendement Des Cultures Dans Un Bassin Versant de Thyssé-Kaymor, Sénégal. Sécheresse 2001, 12, 15–24. [Google Scholar]
- Jalloh, A.; Rhodes, E.R.; Kollo, I.; Roy-Macauley, H.; Sereme, P. Nature and Management of the Soils in West and Central Africa: A Review to Inform Farming Systems Research and Development in the Region; Conseil Ouest et Centre Africain pour la Recherche et le Development Agricoles/West and Central African Council for Agricultural Research and Development (CORAF/WECARD): Dakar, Sénégal, 2011. [Google Scholar]
- Zougmoré, R.; Ouattara, K.; Mando, A.; Ouattara, B. Rôle Des Nutriments Dans Le Succès Des Techniques de Conservation Des Eaux et Des Sols (Cordons Pierreux, Bandes Enherbées, Zaï et Demi-lunes) Au Burkina Faso. Sécheresse 2004, 15, 41–48. [Google Scholar]
- Esser, K.; Vågen, G.T.; Haile, M. Soil Conservation in Tigray; Noragric, Centre for International Environment and Development Studies, Agricultural University of Norway (NLH): Ås, Norway, 2002. [Google Scholar]
- Mekonnen, M.; Keesstra, S.D.; Stroosnijder, L.; Baartman, J.E.M.; Maroulis, J. Soil Conservation Through Sediment Trapping: A Review. L. Degrad. Dev. 2015, 26, 544–556. [Google Scholar] [CrossRef]
- Brook, T.R. Soil and Water Conservation in Sisal. East Afr. Agric. J. 1952, 18, 79–83. [Google Scholar] [CrossRef]
- Calianno, M.; Fallot, J.-M.; Ben Fraj, T.; Ben Ouezdou, H.; Reynard, E.; Milano, M.; Abbassi, M.; Ghram Messedi, A.; Adatte, T. Benefits of Water-Harvesting Systems (Jessour) on Soil Water Retention in Southeast Tunisia. Water 2020, 12, 295. [Google Scholar] [CrossRef]
- Fourati, M.; Majdoub, R.; Khlifi, S.; Boujnah, D. Inventory and Characterization of the Meskat System as Runoff Harvesting Practice in Tunisian Sahel. In Proceedings of the 2nd International Conference on Advanced Technologies for Signal and Image Processing, Monastir, Tunisia, 21–23 March 2016; pp. 616–621. [Google Scholar]
- Roose, É.; Sabir, M.; Laouina, A. Gestion Durable Des Eaux et Des Sols Au Maroc: Valorisation Des Techniques Traditionnelles Méditerranéennes; IRD: Marseille, France, 2010; ISBN 978-2-7099-1683-7. [Google Scholar]
- Winterbottom, R.; Reij, C.; Garrity, D.; Glover, J.; Hellums, D.; McGahuey, M.; Scherr, S. Improving Land and Water Management; World Resources Institute: Washington, DC, USA, 2013. [Google Scholar]
- Benoit, G. Le Secteur Des Terres: Solution Au Problème Du Dérèglement Climatique? Ann. Des Mines Responsab. Environ. 2015, 80, 37–56. [Google Scholar] [CrossRef]
- Henry, B.; Murphy, B.; Cowie, A. Sustainable Land Management for Environmental Benefits and Food Security—A Synthesis Report for the GEF; GEF (Global Environmental Facility): Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- FAO Conservation Agriculture. Available online: http://www.fao.org/conservation-agriculture/overview/what-is-conservation-agriculture/en/ (accessed on 15 September 2021).
- Mrabet, R. No-Tillage Systems for Sustainable Dryland Agriculture in Morocco; INRA: Rabat, Morocco, 2008. [Google Scholar]
- Hobbs, P.R. Conservation Agriculture: What Is It and Why Is It Important for Future Sustainable Food Production? J. Agric. Sci. 2007, 145, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Powlson, D.S.; Stirling, C.M.; Thierfelder, C.; White, R.P.; Jat, M.L. Does Conservation Agriculture Deliver Climate Change Mitigation through Soil Carbon Sequestration in Tropical Agro-Ecosystems? Agric. Ecosyst. Environ. 2016, 220, 164–174. [Google Scholar] [CrossRef]
- Jayaraman, S.; Dang, Y.P.; Naorem, A.; Page, K.L.; Dalal, R.C. Conservation Agriculture as a System to Enhance Ecosystem Services. Agriculture 2021, 11, 718. [Google Scholar] [CrossRef]
- Abdallah, A.M.; Jat, H.S.; Choudhary, M.; Abdelaty, E.F.; Sharma, P.C.; Jat, M.L. Conservation Agriculture Effects on Soil Water Holding Capacity and Water-Saving Varied with Management Practices and Agroecological Conditions: A Review. Agronomy 2021, 11, 1681. [Google Scholar] [CrossRef]
- Mkomwa, S.; Kassam, A. Conservation Agriculture in Africa: Climate Smart Agricultural Development; CAB International: Boston, MA, USA, 2021; ISBN 9988-627-04-1. [Google Scholar]
- Friedrich, T.; Derpsch, R.; Kassam, A. Overview of the Global Spread of Conservation Agriculture. F. Actions Sci. Reports J. F. actions 2012, 6, 185–292. [Google Scholar] [CrossRef]
- Affholder, F.; Jourdain, D.; Quang, D.D.; Tuong, T.P.; Morize, M.; Ricome, A. Constraints to Farmers’ Adoption of Direct-Seeding Mulch-Based Cropping Systems: A Farm Scale Modeling Approach Applied to the Mountainous Slopes of Vietnam. Agric. Syst. 2010, 103, 51–62. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Shaxson, F.; Pretty, J. The Spread of Conservation Agriculture: Justification, Sustainability and Uptake. Int. J. Agric. Sustain. 2009, 7, 292–320. [Google Scholar] [CrossRef]
- Pannell, D.J.; Llewellyn, R.S.; Corbeels, M. The Farm-Level Economics of Conservation Agriculture for Resource-Poor Farmers. Agric. Ecosyst. Environ. 2014, 187, 52–64. [Google Scholar] [CrossRef] [Green Version]
- Giller, K.E.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation Agriculture and Smallholder Farming in Africa: The Heretics’ View. F. Crop. Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global Spread of Conservation Agriculture. Int. J. Environ. Stud. 2018, 76, 29–51. [Google Scholar] [CrossRef]
- Giller, K.E.; Corbeels, M.; Nyamangara, J.; Triomphe, B.; Affholder, F.; Scopel, E.; Tittonell, P. A Research Agenda to Explore the Role of Conservation Agriculture in African Smallholder Farming Systems. F. Crop. Res. 2011, 124, 468–472. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.; Nuberg, I.; Llewellyn, R. Pathways to Intensify the Utilization of Conservation Agriculture by African Smallholder Farmers. Renew. Agric. Food Syst. 2019, 34, 558–570. [Google Scholar] [CrossRef]
- Thierfelder, C.; Cheesman, S.; Rusinamhodzi, L. Benefits and Challenges of Crop Rotations in Maize-Based Conservation Agriculture (CA) Cropping Systems of Southern Africa. Int. J. Agric. Sustain. 2013, 11, 108–124. [Google Scholar] [CrossRef]
- Lahmar, R.; Bationo, B.A.; Dan Lamso, N.; Guéro, Y.; Tittonell, P. Tailoring Conservation Agriculture Technologies to West Africa Semi-Arid Zones: Building on Traditional Local Practices for Soil Restoration. F. Crop. Res. 2012, 132, 158–167. [Google Scholar] [CrossRef]
- Mason, S.C.; Ouattara, K.; Taonda, S.J.B.; Palé, S.; Sohoro, A.; Kaboré, D. Soil and Cropping System Research in Semi-Arid West Africa as Related to the Potential for Conservation Agriculture. Int. J. Agric. Sustain. 2014, 13, 120–134. [Google Scholar] [CrossRef]
- Naab, J.B.; Mahama, G.Y.; Yahaya, I.; Prasad, P.V.V. Conservation Agriculture Improves Soil Quality, Crop Yield, and Incomes of Smallholder Farmers in North Western Ghana. Front. Plant Sci. 2017, 8, 996. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.R. Soil Erosion and Agricultural Sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [Green Version]
- Delgado, J.A.; Nearing, M.A.; Rice, C.W. Conservation Practices for Climate Change Adaptation. Adv. Agron. 2013, 121, 47–115. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The Role of Conservation Agriculture in Sustainable Agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 543–555. [Google Scholar] [CrossRef]
- Nciizah, A.D.; Mupambwa, H.A.; Nyambo, P.; Muchara, B.; Nantapo, C.W.T. Ecological Agriculture’s Potential in Building the Resilience of Smallholder Agricultural Soils Under a Changing Climate. In Handbook of Climate Change Management; Filho, W.L., Luetz, J., Ayal, D., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 1–21. ISBN 9783030227593. [Google Scholar]
- Kuyah, S.; Sileshi, G.W.; Nkurunziza, L.; Chirinda, N.; Ndayisaba, P.C.; Dimobe, K.; Öborn, I. Innovative Agronomic Practices for Sustainable Intensification in Sub-Saharan Africa. A Review. Agron. Sustain. Dev. 2021, 41, 1–21. [Google Scholar] [CrossRef]
- Derpsch, R. No-Tillage and Conservation Agriculture: A Progress Report. In No-Till Farming Systems; Special Publication No. 3; Goddard, T., Zoebisch, M.A., Gan, Y.T., Ellis, W., Watson, A., Sombatpanit, S., Eds.; World Association of Soil and Water Conservation (WASWAC): Bangkok, Thailand, 2008; pp. 7–39. ISBN 978-974-8391-60-1. [Google Scholar]
- Henneron, L.; Bernard, L.; Hedde, M.; Pelosi, C.; Villenave, C.; Chenu, C.; Bertrand, M.; Girardin, C.; Blanchart, E. Fourteen Years of Evidence for Positive Effects of Conservation Agriculture and Organic Farming on Soil Life. Agron. Sustain. Dev. 2015, 35, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Bouthier, A.; Pelosi, C.; Villenave, C.; Peres, G.; Hedde, M.; Ranjard, L.; Vian, J.F.; Peigne, J.; Cortet, J.; Bispo, A.; et al. Impact Du Travail Du Sol Sur Son Fonctionnement Biologique. Faut-Il Trav. Le Sol 2014, 85–108. [Google Scholar]
- Serpantié, G. L’agriculture de Conservation à La Croisée Des Chemins En Afrique et à Madagascar. VertigO 2009, 9, 1–21. [Google Scholar] [CrossRef]
- Labbaci, T.; Dugué, P.; Kemoun, H.; Rollin, D. Innovation et Action Collective: Le Semis Direct Des Cultures Pluviales Au Moyen Sébou (Maroc). Cah. Agric. 2015, 24, 76–83. [Google Scholar] [CrossRef]
- Mrabet, R. No-Tillage Agriculture in West Asia and North Africa. In Rainfed Farming Systems; Tow, P.G., Cooper, I.M., Partridge, I., Birch, C.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1015–1042. ISBN 9781402091322. [Google Scholar]
- Vadon, B.; Raguin, M.; Marionneau, A. Un Semoir Semis Direct Innovant Pour Petite Mécanisation et Traction Animale. In Options Méditerranéennes. Séries A. Mediterranean Seminars; Bouzerzour, H., Irekti, H., Vadon, B., Eds.; CIHEAM-IAMZ: Zaragoza, Spain; ATU-PAM: Sétif, Algeria; INRAA: Alger, Algeria; ITGC: El Harrach, Algeria; FERT: Paris, France, 2011; pp. 227–229. ISBN 2-85352-462-0. [Google Scholar]
- Vadon, B.; Lamouchi, L.; Elmay, S.; Maghfour, A.; Mahnane, S.; Benaouda, H.; Elgharras, O. Organisations Paysannes: Un Levier Pour Developper L’Agriculture de Conservation Au Maghreb. Options Méditerranéennes 2006, 69, 87–99. [Google Scholar]
- Diakhaté, D.; Havard, M.; Ralisch, R.; Fall, A.; Sarr, I. Un Semoir de Semis Direct Sous Couvert Végétal à Traction Animale Adapté Aux Conditions Du Sénégal. In Proceedings of the Second Africa Congress on Conservation Agriculture, Making Climate-Smart Agriculture Real in Africa with Conservation Agriculture, Johannesburg, South Africa, 9–12 October 2018; Condensed Papers Book. pp. 217–223. [Google Scholar]
- Tekle, A.T. Adaptation and Constraints of Conservation Agriculture. J. Biol. Agric. Healthc. 2016, 6, 1–14. [Google Scholar]
- Sims, B.G.; Thierfelder, C.; Kienzle, J.; Friedrich, T.; Kassam, A. Development of the Conservation Agriculture Equipment Industry in Sub-Saharan Africa. Appl. Eng. Agric. 2012, 28, 813–823. [Google Scholar] [CrossRef]
- Steiner, K. Conserving Natural Resources and Enhancing Food Security by Adopting No-Tilage: An Assessment of the Potential for Soil-Conserving Production Systems in Various Agro-Ecological Zones of Africa; Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH: Eschborn, Germany, 1998; ISBN 3933984009. [Google Scholar]
- OCP-Al Moutmir OCP-Al Moutmir Activity Report 2020–2021. Available online: https://www.almoutmir.ma/en/publications (accessed on 18 June 2022).
- Vanlauwe, B.; Wendt, J.; Giller, K.E.; Corbeels, M.; Gerard, B.; Nolte, C. A Fourth Principle Is Required to Define Conservation Agriculture in Sub-Saharan Africa: The Appropriate Use of Fertilizer to Enhance Crop Productivity. F. Crop. Res. 2014, 155, 10–13. [Google Scholar] [CrossRef]
- ICRISAT and ICARDA Dryland Cereals: A Global Alliance for Improving Food Security, Nutrition and Economic Growth for the World’s Most Vulnerable Poor, 2012; A CGIAR Research Program Submitted by ICRISAT and ICARDA. Available online: https://www.icrisat.org/crp/CRP3.6_Dryland_Cereals_15Aug12.pdf (accessed on 5 February 2021).
- Roose, E. Problèmes Posés Par l’aménagement Des Terroirs En Zone d’Afrique Occidentale. In Département Systèmes Agraires (DSA) du CIRAD, 1987 Aménagements hydro-agricoles et systèmes de production; Actes du 3ème Séminaire Montpellier (France) 16- 9 décembre 1986 Tome I; Collection Documents Systèmes Agraires N° 6; CIRAD-DSA: Montpellier, France, 1987; Volume 6, pp. 55–65. [Google Scholar]
- Rusinamhodzi, L. Crop Rotations and Residue Management in Conservation Agriculture. In Conservation Agriculture; Farooq, M., Siddique, K.H.M., Eds.; Springer International Publishing Switzerland: Cham, Switzerland, 2015; pp. 21–37. ISBN 9783319116204. [Google Scholar]
- Fowler, R.; Rockstrom, J. Conservation Tillage for Sustainable Agriculture: An Agrarian Revolution Gathers Momentum in Africa. Soil Tillage Res. 2001, 61, 93–108. [Google Scholar] [CrossRef]
- Dugué, P. Etude d’évaluation Environnementale et Du Développement de Systèmes de Production Durables Dans Le Cadre Des Projets de Soutien à La Production Vivrière (Mali et Burkina Faso); Fondation pour l’agriculture et la ruralité dans le monde (FARM): Montrouge, France, 2009. [Google Scholar]
- Freitas, V.H. Soil Management and Conservation for Small Farms: Strategies and Methods of Introduction, Technologie and Equipment: Experiences from the State of Santa Catarina, Brazil; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2000; ISBN 9251044996. [Google Scholar]
- SSSA. Glossary of Soil Science Terms 2008; Soil Science Society of America: Madison, WI, USA, 2008; Volume 42, ISBN 9780891188513. [Google Scholar]
- Blanco-Canqui, H.; Lal, R. Principles of Soil Conservation and Management; Springer Science + Business Media B.V.: Berlin/Heidelberg, Germany, 2010; ISBN 9789048185290. [Google Scholar]
- Unger, P.W.; Vigil, M.F. Cover Crop Effects on Soil Water Relationships. J. Soil Water Conserv. 1998, 53, 200–2006. [Google Scholar]
- Brévault, T.; Bikay, S.; Maldès, J.M.; Naudin, K. Impact of a No-till with Mulch Soil Management Strategy on Soil Macrofauna Communities in a Cotton Cropping System. Soil Tillage Res. 2007, 97, 140–149. [Google Scholar] [CrossRef]
- Dube, E.; Chiduza, C.; Muchaonyerwa, P. Conservation Agriculture Effects on Soil Organic Matter on a Haplic Cambisol after Four Years of Maize-Oat and Maize-Grazing Vetch Rotations in South Africa. Soil Tillage Res. 2012, 123, 21–28. [Google Scholar] [CrossRef]
- Dube, E.; Chiduza, C.; Muchaonyerwa, P. Conservation Agriculture Effects on Plant Nutrients and Maize Grain Yield after Four Years of Maize-Winter Cover Crop Rotations. S. Afr. J. Plant Soil 2013, 30, 227–232. [Google Scholar] [CrossRef]
- Lal, R.; Wilson, G.F.; Okigbo, B.N. No-till Farming after Various Grasses and Leguminous Cover Crops in Tropical Alfisol. I. Crop Performance. F. Crop. Res. 1978, 1, 71–84. [Google Scholar] [CrossRef]
- Mupambwa, H.A.; Wakindiki, I.I.C. Winter Cover Crops Effects on Soil Strength, Infiltration and Water Retention in a Sandy Loam Oakleaf Soil in Eastern Cape, South Africa. S. Afr. J. Plant Soil 2012, 29, 121–126. [Google Scholar] [CrossRef]
- Rodenburg, J.; Randrianjafizanaka, M.T.; Büchi, L.; Dieng, I.; Andrianaivo, A.P.; Ravaomanarivo, L.H.R.; Autfray, P. Mixed Outcomes from Conservation Practices on Soils and Striga-Affected Yields of a Low-Input, Rice–Maize System in Madagascar. Agron. Sustain. Dev. 2020, 40, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Koulibaly, B.; Ouattara, A.; Dakuo, D.; Ouattara, K.; Traoré, O.; Di Stefano, J.G.; Lompo, F. Efficacy of the Association of Cover Crops with Maize and Direct Sowing Short-Term Effect on Crops Yields in Maize-Cotton Cropping System in Western Burkina Faso. Afr. J. Agric. Res. 2017, 12, 3577–3584. [Google Scholar] [CrossRef]
- Husson, O. Rakotondramanana Mise Au Point, Évaluation et Diffusion Des Techniques Agro-Écologiques à Madagascar. In Proceedings of the Papers and posters presented at the Third World Congress on Conservation Agriculture, Nairobi, Kenya, 3–7 October 2005; Groupement Semis Direct de Madagascar (GSDM): Antananarivo, Madagascar, 2006; pp. 1–80. [Google Scholar]
- Sanderson, M.A.; Archer, D.; Hendrickson, J.; Kronberg, S.; Liebig, M.; Nichols, K.; Schmer, M.; Tanaka, D.; Aguilar, J. Diversification and Ecosystem Services for Conservation Agriculture: Outcomes from Pastures and Integrated Crop-Livestock Systems. Renew. Agric. Food Syst. 2013, 28, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Giller, K.E.; Cadisch, G.; Ehaliotis, C.; Adams, E.; Sakala, W.D.; Mafongoya, P.L. Building Soil Nitrogen Capital in Africa. In Replenishing Soil Fertility in Africa; SSSA special publication, no. 51; Buresh, R.J., Sánchez, P.A., Calhoun, F., Eds.; Soil Science Society of America: Madison, WI, USA, 1997; pp. 151–192. [Google Scholar]
- Carsky, R.; Douthwaite, B.; Manyong, V.; Sanginga, N.; Schulz, S.; Vanlauwe, B.; Diels, J.; Keatinge, J. Amélioration de La Gestion Des Sols Par l’introduction de Légumineuses Dans Les Systèmes Céréaliers Des Savanes Africaines: Les Savanes Africaines: Des Espaces, Des Hommes, Des Productions Agricoles. et Des Défis à Relever Pour La Recherche. Cah. Agric. 2003, 12, 227–233. [Google Scholar]
- Mrabet, R.; Ibno-Namr, K.; Bessam, F.; Saber, N. Soil Chemical Quality Changes and Implications for Fertilizer Management after 11 Years of No-Tillage Wheat Production Systems in Semiarid Morocco. L. Degrad. Dev. 2001, 12, 505–517. [Google Scholar] [CrossRef]
- Zikeli, S.; Gruber, S. Reduced Tillage and No-till in Organic Farming Systems, Germany—Status Quo, Potentials and Challenges. Agriculture 2017, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Dias, T.; Dukes, A.; Antunes, P.M. Accounting for Soil Biotic Effects on Soil Health and Crop Productivity in the Design of Crop Rotations. J. Sci. Food Agric. 2014, 95, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Berner, A.; Hildermann, I.; Fließbach, A.; Pfiffner, L.; Niggli, U.; Mäder, P. Crop Yield and Soil Fertility Response to Reduced Tillage under Organic Management. Soil Tillage Res. 2008, 101, 89–96. [Google Scholar] [CrossRef]
- Mudgal, S.; Lavelle, P.; Cachia, F.; Somogyi, D.; Majewski, E.; Fontaine, L.; Bechini, L.; Debaeke, P. Environmental Impacts of Different Crop Rotations in the European Union; European Commission-DG ENV: Brussels, Belgium, 2010. [Google Scholar]
- Rusinamhodzi, L. No-till Farming Systems for Sustainable Agriculture: An Overview. In No-Till Farming Systems for Sustainable Agriculture; Dang, Y., Dalal, R., Menzies, N., Eds.; Springer: Cham, Switzerland, 2020; pp. 21–31. ISBN 9783030464080. [Google Scholar]
- Aboudrare, A.; Debaeke, P.; Bouaziz, A.; Chekli, H. Effects of Soil Tillage and Fallow Management on Soil Water Storage and Sunflower Production in a Semi-Arid Mediterranean Climate. Agric. Water Manag. 2006, 83, 183–196. [Google Scholar] [CrossRef]
- Cooper, P.J.M.; Gregory, P.J. Soil Water Management in the Rain-fed Farming Systems of the Mediterranean Region. Soil Use Manag. 1987, 3, 57–62. [Google Scholar] [CrossRef]
- Mrabet, R.; El-Brahli, A.; Anibat, I.; Bessam, F. No-Tillage Technology: Research Review of Impacts on Soil Quality and Wheat Production in Semiarid Morocco. In Mediterranean Rainfed Agriculture: Strategies for Sustainability; CIHEAM, Options Méditerranéennes: Série A. Séminaires Méditerranéens; n., 60; Cantero-Martínez, C., Gabiña, D., Eds.; CIHEAM: Zaragoza, Spain, 2004; pp. 133–138. ISBN 1016-121X. [Google Scholar]
- El Mejahed, K. Effect of N on Yield, N Uptake and Water Use Efficiency of Wheat in Rotation Systems under Semiarid Conditions of Morocco; University of Nebraska: Lincoln, NE, USA, 1993. [Google Scholar]
- Pala, M.; Beukes, D.J.; Dimes, J.P.; Myers, R.J.K. Management for Improved Water Use Efficiency in the Dry Areas of Africa and West Asia. In Proceedings of the workshop organized by the Optimizing Soil Water Use (OSWU) Consortium, Ankara, Turkey, 22–26 April 2002; ICARDA: Aleppo, Syria; ICRISAT: Patancheru, India, 2005; pp. 1–280. [Google Scholar]
- Power, J.F.; Peterson, G.A. Nitrogen Transformations, Utilization, and Conservation as Affected by Fallow Tillage Method. Soil Tillage Res. 1998, 49, 37–47. [Google Scholar] [CrossRef]
- Danga, B.O.; Ouma, J.P.; Wakindiki, I.I.C.; Bar-Tal, A. Chapter 5 Legume-Wheat Rotation Effects on Residual Soil Moisture, Nitrogen and Wheat Yield in Tropical Regions, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2009; Volume 101, ISBN 9780123748171. [Google Scholar]
- Gowing, J.W.; Palmer, M. Sustainable Agricultural Development in Sub-Saharan Africa: The Case for a Paradigm Shift in Land Husbandry. Soil Use Manag. 2008, 24, 92–99. [Google Scholar] [CrossRef]
- Araujo, A.S.F.; Leite, L.F.C.; De Freitas Iwata, B.; De Andrade Lira, M.; Xavier, G.R.; Do Vale Barreto Figueiredo, M. Microbiological Process in Agroforestry Systems. A Review. Agron. Sustain. Dev. 2012, 32, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Mbow, C.; Van Noordwijk, M.; Luedeling, E.; Neufeldt, H.; Minang, P.A.; Kowero, G. Agroforestry Solutions to Address Food Security and Climate Change Challenges in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Lundgren, B.O.; Raintree, J.B. Sustained Agroforestry. In Agricultural Research for Development: Potentials and challenges in Asia, ISNAR, The Hague; Nestel, B., Ed.; ICRAF: Nairobi, Kenya, 1983; pp. 37–49. [Google Scholar]
- Nair, P.K.R.; Kumar, B.M.; Nair, V.D. An Introduction to Agroforestry: Four Decades of Scientific Developments, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2021; ISBN 0792321340. [Google Scholar]
- Torquebiau, E.F. A Renewed Perspective on Agroforestry Concepts and Classification. C.R. Acad. Sci. Paris Sci. La Vie/Life Sci. 2000, 323, 1009–1017. [Google Scholar] [CrossRef]
- Manzo, O.L.; Garba, O.B.; Morou, B.; Karim, S.; Mahamane, A. État de La Végétation Ligneuse Au Sahel: Cas de Guidan Roumdji Au Sahel Central Du Niger. J. Anim. Plant Sci. 2017, 31, 5033–5049. [Google Scholar]
- Mugendi, D.N.; Waswa, B.; Mucheru-Muna, M.; Mugwe, J.N. Agroforestry for Land and Water Management in Kenya. In Environment and Sustainable Development: A Guide for Tertiary Education in Kenya; Waswa, F., Otor, S., Olukoye, G., Mugendi, D., Eds.; Downtown Printing Works Ltd.: Nairobi, Kenya, 2007; Volume II, pp. 122–138. ISBN 9966-776-34-6. [Google Scholar]
- Bationo, B.A.; Kalinganire, A.; Bayala, J. Potentialités Des Ligneux Dans La Pratique de l’agriculture de Conservation Dans Les Zones Arides et Semi-Arides de l’Afrique de l’Ouest: Aperçu de Quelques Systèmes Candidats; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2012; ISBN 9789290593232. [Google Scholar]
- Kessler, J.; and Boni, J. L’agroforesterie Au Burkina Faso: Bilan et Analyse: Ministère de l’environnement et du Tourisme/Direction Forêts et Reboisement: Ouagadougou, Burkina Faso; Wageningen University: Wageningen, The Netherlands, 1991; pp. 1–144. [Google Scholar]
- von Maydell, H.-J. Trees and Shrubs of the Sahel—Their Characteristics and Uses; Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH: Eschborn, Germany, 1986. [Google Scholar]
- Verheij, E. Agroforestry, Agrodok-Series No. 16; Agromisa Foundation: Wageningen, The Netherlands, 2003; ISBN 978-90-8573-072-9. [Google Scholar]
- Pagella, T.; Kmoch, L.; Leudeling, E.; Mulia, R.; Sinclair, F. Agroforestry from Mediterranean Partner Countries: Report on Possible Technology Transfer from Mediterranean Partner Countries to European Countries; AGFORWARD Agroforestry for Europe: Cranfield, UK; World Agroforesty Centre: Nairobi, Kenya, 2014. [Google Scholar]
- Le Houérou, H.N. Agroforestry and Sylvopastoralism to Combat Land Degradation in the Mediterranean Basin: Old Approaches to New Problems. Agric. Ecosyst. Environ. 1990, 33, 99–109. [Google Scholar] [CrossRef]
- Weiwei, L.; Wenhua, L.; Moucheng, L.; Fuller, A.M. Traditional Agroforestry Systems: One Type of Globally Important Agricultural Heritage Systems. J. Resour. Ecol. 2014, 5, 306–313. [Google Scholar] [CrossRef]
- Young, A. Agroforestry for Soil Conservation. Soil Eros. Conserv. 1989, 35, 703–717. [Google Scholar] [CrossRef]
- Atangana, A.; Khasa, D.; Chang, S.; Degrande, A.; Atangana, A.; Khasa, D.; Chang, S.; Degrande, A. Tropical Agroforestry; Springer Science + Business Media Dordrecht: Berlin/Heidelberg, Germany, 2014; ISBN 9789400777231. [Google Scholar]
- Feliciano, D.; Ledo, A.; Hillier, J.; Nayak, D.R. Which Agroforestry Options Give the Greatest Soil and above Ground Carbon Benefits in Different World Regions? Agric. Ecosyst. Environ. 2018, 254, 117–129. [Google Scholar] [CrossRef]
- Mafongoya, P.L.; Mpepereki, S.; Mudyazhezha, S. The Importance of Biological Nitrogen Fixation in Cropping Systems in Nonindustrialized Nations. In Nitrogen Fixation in Crop Production; Emerich, D.W., Krishnan, H., Mafongoya, P.L., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2009; pp. 329–348. ISBN 9780891181927. [Google Scholar]
- Baldy, C.; Dupraz, C.; Schilizzi, S. Vers de Nouvelles Agroforesteries En Climats Tempérés et Méditerranéens. I: Aspects Agronomiques. Cah. Agric. 1993, 2, 375–386. [Google Scholar]
- Dollinger, J.; Jose, S. Agroforestry for Soil Health. Agrofor. Syst. 2018, 92, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Mbow, C.; Smith, P.; Skole, D.; Duguma, L.; Bustamante, M. Achieving Mitigation and Adaptation to Climate Change through Sustainable Agroforestry Practices in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.K.; Nair, V.D.; Kumar, M.B.; Showalter, J.M. Carbon Sequestration in Agroforestry Systems. Adv. Agron. 2010, 108, 237–307. [Google Scholar] [CrossRef]
- Ajayi, O.C.; Akinnifesi, F.K.; Sileshi, G.; Chakeredza, S.; Mn’gomba, S.; Ajayi, O.; Nyoka, I.; Chineke, T. Local Solutions to Global Problems: The Potential of Agroforestry for Climate Change Adaptation and Mitigation in Southern Africa. 2008. Available online: http://apps.worldagroforestry.org/downloads/Publications/PDFS/pp08305.pdf (accessed on 5 February 2021).
- Beer, J.; Harvey, C.A.; Ibrahim, M.; Harmand, J.M.; Somarriba, E. Service Functions of Agroforestry Systems. In Proceedings of the XII World Forestry Congress, Quebec, PQ, Canada, 21–28 September 2003; pp. 417–424. [Google Scholar]
- Sollen-Norrlin, M.; Ghaley, B.B.; Rintoul, N.L.J. Agroforestry Benefits and Challenges for Adoption in Europe and Beyond. Sustainability 2020, 12, 7001. [Google Scholar] [CrossRef]
- Miccolis, A.; Peneireiro, F.M.; Vieira, D.L.M.; Marques, H.R.; Hoffmann, M.R.M. Restoration through Agroforestry: Options for Reconciling Livelihoods with Conservation in the Cerrado and Caatinga Biomes in Brazil. Exp. Agric. 2019, 55, 208–225. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.R.; Nair, P.K.R.; Ong, C.K. Biophysical Interactions in Tropical Agroforestry Systems. Agrofor. Syst. 1997, 38, 3–50. [Google Scholar] [CrossRef]
- Tomar, V.P.S.; Narain, P.; Dadhwal, K.S. Effect of Perennial Mulches on Moisture Conservation and Soil-Building Properties through Agroforestry. Agrofor. Syst. 1992, 19, 241–252. [Google Scholar] [CrossRef]
- Diedhiou, S.; Assigbetsee, K.B.; Goudiaby, A.O.K.; Diedhiou, I.; Badiane, A.N.; Sène, M.; Khouma, M.; Samba, A.N.S.; Dick, R.P. Arid Agroecosystem Shrubs Enhance Enzyme Activities during the Dry Season. Am. J. Plant Sci. 2020, 11, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.S.O.; Adams, M.A.; Turner, N.C.; Ong, C.K. The Redistribution of Soil Water by Tree Root Systems. Oecologia 1998, 115, 306–311. [Google Scholar] [CrossRef]
- Kizito, F.; Dragila, M.I.; Senè, M.; Brooks, J.R.; Meinzer, F.C.; Diedhiou, I.; Diouf, M.; Lufafa, A.; Dick, R.P.; Selker, J.; et al. Hydraulic Redistribution by Two Semi-Arid Shrub Species: Implications for Sahelian Agro-Ecosystems. J. Arid Environ. 2012, 83, 69–77. [Google Scholar] [CrossRef]
- Bogie, N.A.; Bayala, R.; Diedhiou, I.; Conklin, M.H.; Fogel, M.L.; Dick, R.P.; Ghezzehei, T.A. Hydraulic Redistribution by Native Sahelian Shrubs: Bioirrigation to Resist in-Season Drought. Front. Environ. Sci. 2018, 6, 98. [Google Scholar] [CrossRef] [Green Version]
- Diakhaté, S.; Gueye, M.; Chevallier, T.; Diallo, N.H.; Assigbetse, K.; Abadie, J.; Diouf, M.; Masse, D.; Sembène, M.; Ndour, Y.B.; et al. Soil Microbial Functional Capacity and Diversity in a Millet-Shrub Intercropping System of Semi-Arid Senegal. J. Arid Environ. 2016, 129, 71–79. [Google Scholar] [CrossRef]
- Bayala, J.; Balesdent, J.; Marol, C.; Zapata, F.; Teklehaimanot, Z.; Ouedraogo, S.J. Relative Contribution of Trees and Crops to Soil Carbon Content in a Parkland System in Burkina Faso Using Variations in Natural 13C Abundance. Nutr. Cycl. Agroecosystems 2006, 76, 193–201. [Google Scholar] [CrossRef]
- Bambara, D.; Bilgo, A.; Sawadogo, J.; Gnankambary, Z.; Thiombiano, A. Évaluation de La Diversité et de La Qualité de Pratiques d’agriculteurs Face à La Dégradation Du Milieu Biophysique Au Burkina Faso. J. Appl. Biosci. 2018, 125, 12551–12565. [Google Scholar] [CrossRef]
- Dia, A.; Duponnois, R. Le Projet Majeur Africain de La Grande Muraille Verte: Concepts et Mise En Œuvre; IRD: Marseille, France, 2012; ISBN 9782709916967. [Google Scholar]
- Lawali, S.; Diouf, A.; Morou, B.; Kona, K.A.; Saidou, L.; Guero, C. Régénération Naturelle Assistée (RNA): Outil d’adaptation et Résilience Des Ménages Ruraux d’Aguié Au Niger. Int. J. Biol. Chem. Sci. 2018, 12, 75–89. [Google Scholar] [CrossRef]
- Mafongoya, P.; Kuntashula, E.; Sileshi, G. Managing Soil Fertility and Nutrient Cycles through Fertilizer Trees in Southern Africa. Biol. Approaches Sustain. Soil Syst. Taylor Fr. 2006, 273–289. [Google Scholar] [CrossRef]
- Fairhurst, T. Handbook for Integrated Soil Fertility Management; CAB International: Wallingford, UK, 2012. [Google Scholar]
- Sanginga, N.; Woomer, P.L. Integrated Soil Fertility Management in Africa: Principles, Practices and Developmental Process; Tropical Soil Biology and Fertility Institute of the International Centre for Tropical Agriculture (TSBF-CIAT): Nairobi, Kenya, 2009; ISBN 9789290592617. [Google Scholar]
- Garrity, D.P.; Akinnifesi, F.K.; Ajayi, O.C.; Weldesemayat, S.G.; Mowo, J.G.; Kalinganire, A.; Larwanou, M.; Bayala, J. Evergreen Agriculture: A Robust Approach to Sustainable Food Security in Africa. Food Secur. 2010, 2, 197–214. [Google Scholar] [CrossRef]
- Akinnifesi, F.K.; Ajayi, O.C.; Sileshi, G.; Chirwa, P.W.; Chianu, J. Fertiliser Trees for Sustainable Food Security in the Maize-Based Production Systems of East and Southern Africa. A Review. Agron. Sustain. Dev. 2010, 30, 615–629. [Google Scholar] [CrossRef]
- Sileshi, G.W.; Mafongoya, P.L.; Akinnifesi, F.K.; Phiri, E.; Chirwa, P.; Beedy, T.; Makumba, W.; Nyamadzawo, G.; Njoloma, J.; Wuta, M.; et al. Agroforestry: Fertilizer Trees. In Neal Van Alfen, editor-in-chief. Encyclopedia of Agriculture and Food Systems; Elsevier: San Diego, CA, USA, 2014; Volume 1, pp. 222–234. ISBN 9780080931395. [Google Scholar]
- Sanchez, P.A. Improved Fallows Come of Age in the Tropics. Agrofor. Syst. 1999, 47, 3–12. [Google Scholar] [CrossRef]
- Matata, P.Z.; Ajay, O.C.; Oduol, P.A.; Agumya, A. Socio-Economic Factors Influencing Adoption of Improved Fallow Practices among Smallholder Farmers in Western Tanzania. Afr. J. Agric. Res. 2010, 5, 818–823. [Google Scholar] [CrossRef]
- Kang, B.T.; Grimme, H.; Lawson, T.L. Alley Cropping Sequentially Cropped Maize and Cowpea with Leucaena on a Sandy Soil in Southern Nigeria. Plant Soil 1985, 85, 267–277. [Google Scholar] [CrossRef]
- Kaczan, D.; Arslan, A.; Lipper, L. Climate Smart Agriculture? A Review of Current Practice of Agroforestry and Conservation Agriculture in Malawi and Zambia; ESA Working Paper; FAO: Rome, Italy, 2013. [Google Scholar]
- Akinnifesi, F.K.; Chirwa, P.W.; Ajayi, O.C.; Sileshi, G.; Matakala, P.; Kwesiga, F.R.; Harawa, H.; Makumba, W. Contributions of Agroforestry Research to Livelihood of Smallholder Farmers in Southern Africa: 1. Taking Stock of the Adaptation, Adoption and Impact of Fertilizer Tree Options. Agric. J. 2008, 3, 58–75. [Google Scholar]
- Ben Salem, H.; Norman, H.C.; Nefzaoui, A.; Mayberry, D.E.; Pearce, K.L.; Revell, D.K. Potential Use of Oldman Saltbush (Atriplex Nummularia Lindl.) in Sheep and Goat Feeding. Small Rumin. Res. 2010, 91, 13–28. [Google Scholar] [CrossRef]
- El-Mzouri, E.; Chriyaa, A.; El-Mourid, M.; Laamari, A. Improving Feed Resources and Quality in the Dryland Areas of Morocco by Introducing the Strip-Alley Cropping System. In Fodder Shrub Development in Arid and Semi-arid Zones, Proceedings of the Workshop on Native and Exotic Fodder Shrubs in Arid and Semi-arid Zones, 27 October–2 November 1996; Gintzburger, G., Bounejmate, M., Nefzaoui, A., Eds.; ICARDA: Hammamet, Tunisia, 2000; Volume II, pp. 340–347. [Google Scholar]
- Chebli, Y.; Mrabet, R.; Chentouf, M. Alley Cropping as a Durable Alternative for Pasture Land Development in Drought Prone Mediterranean Region. Options Méditerranéennes 2015, 452, 449–452. [Google Scholar]
- Barmo, S.; Amani, A.; Soumana, I.; Ichaou, A. Structure et Diversité Des Parcs Agroforestiers Adjacents à La Forêt Protégée de Baban Rafi, Niger—Afrique de l ’ Ouest. Afrique Sci. 2019, 15, 166–185. [Google Scholar]
- Peltier, R.; Duhem, C.S.; Ichaou, A. Valoriser Les Produits Du Palmier Doum Pour Gérer Durablement Le Système Agroforestier d’une Vallée Sahélienne Du Niger et Éviter Sa Désertification. VertigO 2008, 8, 1–22. [Google Scholar] [CrossRef]
- Bayé-Niwah, C.; Hanawa, Y.; Loura, B.B.; Fawa, G.; Mapongmetsem, P.M. Production de Litières et Apport de Bioéléments de Quatre Espèces Fruitières Locales Des Hautes Savanes Guinéennes Du Cameroun. J. Anim. Plant Sci. 2019, 42, 7162–7174. [Google Scholar] [CrossRef]
- Ong, C.K.; Corlett, J.E.; Singh, R.P.; Black, C.R. Above and below Ground Interactions in Agroforestry Systems. For. Ecol. Manag. 1991, 45, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Nair, P.K.R. Classification of Agroforestry Systems. Agrofor. Syst. 1985, 3, 97–128. [Google Scholar] [CrossRef]
- Alexandre, L.B.; Kashuva, M.; Georges, L.A.; Boniface, P.N. Effets Des Biomasses Des Légumineuses Ligneuses Sur La Croissance et Le Rendement Du Maïs En Couloirs Sur Un Ferralsol de Yangambi, RD Congo. J. Appl. Biosci. 2018, 131, 13382–13391. [Google Scholar] [CrossRef] [Green Version]
- Aliyu, M.D.; Sabo, B.B.; Ali, S.; Hussaini, H. The Role of Agroforestry in Addressing Food Insecurity and Climate Change Impacts in the African Drylands. In Proceedings of the 1st International Conference on Drylands “Climate Change and Food Security in the African Drylands”, kano, Nigeria, 12–16 December 2016; Centre for Dryland Agriculture: Kano, Nigeria, 2016; pp. 204–211. [Google Scholar]
- Reynolds, P.E.; Simpson, J.A.; Thevathasan, N.V.; Gordon, A.M. Effects of Tree Competition on Corn and Soybean Photosynthesis, Growth, and Yield in a Temperate Tree-Based Agroforestry Intercropping System in Southern Ontario, Canada. Ecol. Eng. 2007, 29, 362–371. [Google Scholar] [CrossRef]
- Leftoy, R.D.B.; Blair, O.J.; Craswell, E.T. Soil Organic Matter Management for Sustainable Agriculture; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 1995; pp. 234–250. [Google Scholar]
- Hillbrand, A.; Borelli, S.; Conigliaro, M.; Olivier, E. Agroforestry for Landscape Restoration: Exploring the Potential of Agroforestry to Enhance the Sustainability and Resilience of Degraded Landscapes; FAO: Rome, Italy, 2017. [Google Scholar]
- Fonton, N.H.; Agbahungba, G.A. Diagnostic En Agroforesterie de La Contradiction Entre Les Resultats En Station Experimentale et En Conditions Reelles: Note Technique; Bulletin de la Recherche Agronomique du Bénin, 1996; pp. 8–16. Available online: http://www.slire.net/download/1094/fonton_bra_015_1996-2.pdf (accessed on 5 February 2021).
- Prinz, D.; Malik, A.H. Runoff Farming; Institute of Water Resources Management, Hydraulic and Rural Engineering, Dept. of Rural Engineering, University of Karlsruhe: Karlsruhe, Germany, 2002. [Google Scholar]
- Vohland, K.; Barry, B. A Review of in Situ Rainwater Harvesting (RWH) Practices Modifying Landscape Functions in African Drylands. Agric. Ecosyst. Environ. 2009, 131, 119–127. [Google Scholar] [CrossRef]
- Biazin, B.; Sterk, G.; Temesgen, M.; Abdulkedir, A.; Stroosnijder, L. Rainwater Harvesting and Management in Rainfed Agricultural Systems in Sub-Saharan Africa—A Review. Phys. Chem. Earth 2012, 47–48, 139–151. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Wendt, J.; Diels, J. Combined Application of Organic Matter and Fertilizer. In Sustaining Soil Fertility in West Africa; Tian, G., Ishida, F., Keatinge, J.D.H., Eds.; SSSA Special Publication: Madison, WI, USA, 2001; pp. 247–279. [Google Scholar]
- Mugwe, J.; Ngetich, F.; Otieno, E.O. Integrated Soil Fertility Management in Sub-Saharan Africa: Evolving Paradigms Toward Integration. In Zero Hunger; Filho, W.L., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 1–12. ISBN 9783319696263. [Google Scholar]
- Vanlauwe, B.; Giller, K.E. Popular Myths around Soil Fertility Management in Sub-Saharan Africa. Agric. Ecosyst. Environ. 2006, 116, 34–46. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Shepherd, K.D.; Soule, M.J.; Place, F.M.; Buresh, R.J.; Izac, A.-M.N.; Uzo Mokwunye, A.; Kwesiga, F.R.; Ndiritu, C.G.; Woomer, P.L. Soil Fertility Replenishment in Africa: An Investment in Natural Resource Capital. In Replenishing Soil Fertility in Africa; no. 51; Buresh, R.J., Sánchez, P.A., Calhoun, F., Eds.; SSSA Special Publication: Madison, WI, USA, 1997; pp. 1–46. [Google Scholar]
- Bekunda, M.A.; Bationo, A.; Ssali, H. Soil Fertility Management in Africa: A Review of Selected Research Trials. In Replenishing Soil Fertility in Africa; Soil Science Society of America: Madison, WI, USA, 1997; pp. 63–79. ISBN 9780891189466. [Google Scholar]
- Bationo, A.; Christianson, C.B.; Klaij, M.C. The Effect of Crop Residue and Fertilizer Use on Pearl Millet Yields in Niger. Fertil. Res. 1993, 34, 251–258. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Bationo, A.; Chianu, J.; Giller, K.E.; Merckx, R.; Mokwunye, U.; Ohiokpehai, O.; Pypers, P.; Tabo, R.; Shepherd, K.D.; et al. Integrated Soil Fertility Management: Operational Definition and Consequences for Implementation and Dissemination. Outlook Agric. 2010, 39, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Mucheru-Muna, M.; Pypers, P.; Mugendi, D.; Kung’u, J.; Mugwe, J.; Merckx, R.; Vanlauwe, B. A Staggered Maize-Legume Intercrop Arrangement Robustly Increases Crop Yields and Economic Returns in the Highlands of Central Kenya. F. Crop. Res. 2010, 115, 132–139. [Google Scholar] [CrossRef]
- Nalivata, P.; Kibunja, C.; Mutegi, J.K.; Tetteh, F.M. Integrated Soil Fertility Management in Sub-Saharan Africa. In Fertilizer Use Optimization in Sub-Saharan Africa; Wortmann, C.S., Sones, K., Eds.; CAB International: Nairobi, Kenya, 2017; pp. 25–39. ISBN 9781786392046. [Google Scholar]
- Tothill, J.C. The Role of Legumes in Farming Systems of Sub- Saharan Africa. Potentials of Forage Legumes in Farming Systems of Sub-Saharan Africa. In Proceedings of the Workshop Held at ILCA, Addis Ababa, Ethiopia, 16–19 September 1985; Haque, I., Jutzi, S., Neate, P.J.H., Eds.; ILCA: Addis Ababa, Ethiopia, 1985. [Google Scholar]
- Gogoi, N.; Baruah, K.K.; Meena, R.S. Grain Legumes: Impact on Soil Health and Agroecosystem. In Legumes for Soil Health and Sustainable Management; Meena, R.S., Das, A., Yadav, G.S., Lal, R., Eds.; Springer: Singapore, 2018; pp. 511–539. ISBN 9789811302534. [Google Scholar]
- Collaborative Group on Maize-Based Systems Research (COMBS). Improvement of Soil Fertility and Weed Suppression through Legume-Based Technologies; IITA Research Guide 48; International Institute of Tropical Agriculture: Ibadan, Nigeria, 1995. [Google Scholar]
- Aune, J.B.; Coulibaly, A.; Giller, K.E. Precision Farming for Increased Land and Labour Productivity in Semi-Arid West Africa. A Review. Agron. Sustain. Dev. 2017, 37, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bouabid, R.; Soudi, B.; Badraoui, M. Nitrogen Dynamics and Management in Rainfed Drylands: Issues and Challenges. In Soil and Fertilizers: Managing the Environmental Footprint, 1st ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2019; pp. 271–300. [Google Scholar]
- Jayne, T.S.; Snapp, S.; Place, F.; Sitko, N. Sustainable Agricultural Intensification in an Era of Rural Transformation in Africa. Glob. Food Sec. 2019, 20, 105–113. [Google Scholar] [CrossRef]
- Soumaré, M.; Demeyer, A.; Tack, F.M.G.; Verloo, M.G. Nutrient Availability in the Surface Horizons of Four Tropical Agricultural Soils in Mali. Tropicultura 2002, 20, 58–63. [Google Scholar]
- Kassam, A.; Basch, G.; Friedrich, T.; Shaxson, F.; Goddard, T.; Amado, T.J.C.; Crabtree, B.; Hongwen, L.; Mello, I.; Pisante, M.; et al. Sustainable Soil Management Is More than What and How Crops Are Grown. In Principles of Soil Management in Agro-Ecosystems. Advances in Soil Science; Lal, R., Stewart, B.A., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FA, USA, 2013; pp. 337–399. ISBN 9781466513471. [Google Scholar]
- Peter, P.C. Biochar and Conservation Agriculture Nexus: Synergy and Research Gaps for Enhanced Sustainable Productivity in Degraded Soils—Review. Commun. Soil Sci. Plant Anal. 2018, 49, 389–403. [Google Scholar] [CrossRef]
- Roose, E.; Barthès, B. Organic Matter Management for Soil Conservation and Productivity Restoration in Africa: A Contribution from Francophone Research. Nutr. Cycl. Agroecosystems 2001, 61, 159–170. [Google Scholar] [CrossRef]
- Shah, F.; Wu, W. Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef]
- Gan, Y.; Siddique, K.H.M.; Turner, N.C.; Li, X.G.; Niu, J.Y.; Yang, C.; Liu, L.; Chai, Q. Ridge-Furrow Mulching Systems-An Innovative Technique for Boosting Crop Productivity in Semiarid Rain-Fed Environments. Adv. Agron. 2013, 118, 429–476. [Google Scholar] [CrossRef]
- Zhang, K.; Xing, Y.; Wang, G.; Shemi, R.; Duan, M.; Wang, L.; Xie, X. Ridge-Furrow with Film Mulching Practice Ameliorates Soil Microbial Metabolic Activity and Carbon Utilization in Rhizosphere Soil of Rapeseed (Brassica Napus L.). J. Soils Sediments 2019, 19, 2764–2776. [Google Scholar] [CrossRef]
- Mo, F.; Wang, J.Y.; Xiong, Y.C.; Nguluu, S.N.; Li, F.M. Ridge-Furrow Mulching System in Semiarid Kenya: A Promising Solution to Improve Soil Water Availability and Maize Productivity. Eur. J. Agron. 2016, 80, 124–136. [Google Scholar] [CrossRef]
- Mo, F.; Wang, J.Y.; Zhou, H.; Luo, C.L.; Zhang, X.F.; Li, X.Y.; Li, F.M.; Xiong, L.B.; Kavagi, L.; Nguluu, S.N.; et al. Ridge-Furrow Plastic-Mulching with Balanced Fertilization in Rainfed Maize (Zea Mays L.): An Adaptive Management in East African Plateau. Agric. For. Meteorol. 2017, 236, 100–112. [Google Scholar] [CrossRef]
- Zhang, X.F.; Luo, C.L.; Ren, H.X.; Mburu, D.; Wang, B.Z.; Kavagi, L.; Wesly, K.; Nyende, A.B.; Xiong, Y.C. Water Productivity and Its Allometric Mechanism in Mulching Cultivated Maize (Zea Mays L.) in Semiarid Kenya. Agric. Water Manag. 2021, 246, 106647. [Google Scholar] [CrossRef]
- Wang, J.Y.; Mo, F.; Zhou, H.; Kavagi, L.; Nguluu, S.N.; Xiong, Y.C. Ridge–Furrow with Grass Straw Mulching Farming System to Boost Rainfed Wheat Productivity and Water Use Efficiency in Semiarid Kenya. J. Sci. Food Agric. 2021, 101, 3030–3040. [Google Scholar] [CrossRef] [PubMed]
- Du Preez, C.C.; Van Huyssteen, C.W.; Mnkeni, P.N.S. Land Use and Soil Organic Matter in South Africa 2: A Review on the Influence of Arable Crop Production. S. Afr. J. Sci. 2011, 107, 2–9. [Google Scholar] [CrossRef]
Technique | Regions Where the Technique Is Used (e.g.) | Description of the Technique | Benefits | Limitations |
---|---|---|---|---|
Zai/Zay/Zaï/Za’i/Planting pits 1 | West, East and North Africa [35] | Digging small holes (depth from 5–15 cm and diameter from 10–30 cm with the spacing of holes between 50 and 100 cm) where crops will be planted with a hoe, using the rest of the soil to form a small dike downslope of the pits and enriching them with manure, compost or grass straw [43,44,45]. | ||
Stone bunds/lines/rows | West Africa [35], Eastern and Southern Africa [48] | Making strips of stones arranged on contour lines at a spacing from 15–30 m apart [45,47,49]. Stone lines can be used to form the framework of the system where there are a few stones available [41]. |
| |
Half-moons/semi-circular hoops/ semi-circular bunds | West and East Africa [35], Morocco [55] | Digging of basins in the form of semi-circles open towards the top of the slope and surrounded downstream by earth levees in the form of half-moon extended by stone or earth wings [45]. Variations of this technique include triangular and trapezoidal bunds. |
| Difficulty mechanizing agricultural work, significant need for maintenance, loss of plot plantable area, economic profitability not apparent [45]. |
Contour ridging | West Africa [57] | Contour ridges (i.e., ridges are made parallel to contour lines) are small earthen banks (15–20 cm high), between which is a furrow that collects runoff from an uncultivated strip between the ridges [41,57]. The partitioned furrow technique, also known as tied-ridging, is a variation on ridging [41]. | ||
(Plant) mulching | Burkina Faso [24], Mali [45], Morocco [55], Senegal [21] and other regions | Soil covered with crop residues (mainly straw of cereals) or other man-made materials (plastic, for example, in vegetable crops). | Improving water, heat energy and nutrient status in soil, preventing soil and water loss, preventing soil salinity from flowing back to the surface, and controlling weeds [59]. | |
Scarifying | The Sahel region 3 [45,61] | Scratching of the surface layer of the unploughed field with a tine device or hand work (hoe or daba) [45,61]. | ||
Terrace cultivation/terracing (e.g., bench terraces, Fanya juu terraces, etc.) | East Africa [48], Cameroon, Rwanda, Sudan, Togo [39], Morocco [55], steep areas throughout Africa [21] | Dividing slopes into narrow but graduated steps facilitates the growth of different crops alone or in an agroforestry system [62]. Terracing can be carried out by excavating ditches, constructing earth and some stone bunds and vegetative barriers [63]. |
| |
Hedgerows/live fencing | Kenya, Cameroon, Rwanda [39] | Use of perennial species to delimit fields or protect them from livestock [55]. |
| |
Windbreaks | Usable in areas with high wind speed (more than 35 km/h) [38] | Planting of tree species, generally perpendicular to the wind direction [67]. | Creation of a favorable microclimate, protection against wind erosion, loss of soil moisture and physical damage, and supply of firewood as well [67]. | |
Grass strips | Kenya, Tanzania [21], Burkina Faso [68], Ethiopia [69], etc. | Bands of grass are planted in agricultural fields across the slope and along contours at specified vertical intervals [39,70]. |
|
Benefits | References |
---|---|
Reducing runoff and soil erosion (i.e., soil and nutrient losses) | [80,82,83,85,87,89,91,95,96,97] |
Moderating/buffering soil temperatures (in value and variability) | [80,87,98,99] |
Preventing formation of crust at soil surfaces | [90,95,100] |
Increasing SOM (especially in the surface layers) and minimizing its losses | [77,80,81,83,87,89,91,96,99] |
Increasing soil moisture (less soil evaporation, reduced water runoff and increased water infiltration) and prolonging the availability of soil water to plants in times of drought | [80,87,89,99,101,102] |
Favoring nutrient cycling and retention and biological nitrogen fixation (BNF) | [87,96] |
Improving soil structure, soil aggregation and soil aggregate stability | [80,82,87,89,99] |
Reducing soil compaction through soil biological tillage (by plant roots and soil fauna) | [80,99] |
Increasing below and above-ground soil biodiversity | [80,82,87,90,99,103,104] |
Benefits | References |
---|---|
Controlling water erosion (soil protection by surface litter and canopy cover) | [101,164,165] |
Reducing wind erosion (through the use of windbreaks), especially in dry areas | [98,101,164,165] |
Improving soil fertility and nutrient cycling through decomposition of litter, prunings, crop residues, deep nutrient capture, reduced leaching and BNF | [46,151,164,165,166,167,168,169,170] |
Improving SOM and soil carbon storage up to deeper soil layers | [151,165,166,169,171,172] |
Reducing runoff and increasing infiltration | [101,173,174] |
Restoring degraded land | [21,101,175] |
Breaking up of compacted soil layers and creation of biopores by deep roots of trees, and improvement of water infiltration | [164,165,176] |
Reducing water losses through non-productive evaporation | [77,177] |
Redistributing moisture within the soil profile through the “Hydraulic Redistribution” mechanism | [178,179,180,181,182] |
Improving soil microbial status and dynamics | [150,169,174] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diop, M.; Chirinda, N.; Beniaich, A.; El Gharous, M.; El Mejahed, K. Soil and Water Conservation in Africa: State of Play and Potential Role in Tackling Soil Degradation and Building Soil Health in Agricultural Lands. Sustainability 2022, 14, 13425. https://doi.org/10.3390/su142013425
Diop M, Chirinda N, Beniaich A, El Gharous M, El Mejahed K. Soil and Water Conservation in Africa: State of Play and Potential Role in Tackling Soil Degradation and Building Soil Health in Agricultural Lands. Sustainability. 2022; 14(20):13425. https://doi.org/10.3390/su142013425
Chicago/Turabian StyleDiop, Massamba, Ngonidzashe Chirinda, Adnane Beniaich, Mohamed El Gharous, and Khalil El Mejahed. 2022. "Soil and Water Conservation in Africa: State of Play and Potential Role in Tackling Soil Degradation and Building Soil Health in Agricultural Lands" Sustainability 14, no. 20: 13425. https://doi.org/10.3390/su142013425
APA StyleDiop, M., Chirinda, N., Beniaich, A., El Gharous, M., & El Mejahed, K. (2022). Soil and Water Conservation in Africa: State of Play and Potential Role in Tackling Soil Degradation and Building Soil Health in Agricultural Lands. Sustainability, 14(20), 13425. https://doi.org/10.3390/su142013425