The Impact of Carbon Emissions Trading on the Profitability and Debt Burden of Listed Companies
Abstract
:1. Introduction
2. Literature Review
3. Methodology and Data
3.1. Methodology
3.2. Data Sources
4. Empirical Results
4.1. Descriptive Statistics
4.2. PSM Matching and Parallel Trends Test
4.3. Carbon Emissions Trading, Firm Profitability, and Debt Burden
4.4. Mechanism Analysis
4.5. Robustness Test
5. Heterogeneity Test
5.1. Heterogeneity of State-Owned and Non-State-Owned Listed Companies
5.2. Heterogeneity of Monopolistic and Competitive Listed Companies
5.3. Heterogeneity of High and Low Carbon Emission Industries
6. Conclusions and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miao, Z.; Baleˇzentis, T.; Shao, S.; Chang, D. Energy use, industrial soot and vehicle exhaust pollution—China’s regional air pollution recognition, performance decomposition and governance. Energy Econ. 2019, 83, 501–514. [Google Scholar] [CrossRef]
- Peng, W.; Yuan, J.; Zhao, Y.; Lin, M.; Zhang, Q.; Victor, D.G. Air quality and climate benefits of long-distance electricity transmission in China. Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Porter, M.E.; Van, C. Toward a New Conception of the Environment-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Li, Y.; Yao, Q. The health costs of the industrial leap forward in China: Evidence from the sulfur dioxide emissions of coal-fired power stations. China Econ. Rev. 2018, 49, 68–83. [Google Scholar] [CrossRef]
- Jia, Z.; Lin, B. Rethinking the Choice of Carbon Tax and Carbon Trading in China. Technol. Forecast. Soc. Change 2020, 159, 120187. [Google Scholar] [CrossRef]
- Yang, L.; Yao, Y.; Zhang, J.; Zhang, X.; McAlinden, K.J. A CGE Analysis of Carbon Market Impact on CO2 Emission Reduction in China: A Technology-Led Approach. Nat. Hazards 2016, 81, 1107–1128. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, T.; Jin, Y.; Shen, B. The Impact of Carbon Trading on Economic Output and Carbon Emissions Reduction in China’s Industrial Sectors. Appl. Energy 2020, 260, 114290. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Li, G.; Guo, S. Emission Reduction Effect and Carbon Market Efficiency of Carbon Emissions Trading Policy in China. Energy 2020, 196, 117117. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, B. The Unintended Impact of Carbon Trading of China’s Power Sector. Energy Policy 2020, 147, 111876. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Luo, T.; Gao, J. The Effect of Emission Trading Policy on Carbon Emission Reduction: Evidence from an Integrated Study of Pilot Regions in China. J. Clean. Prod. 2020, 265, 121843. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, P.; Pan, Y. Does China’s Carbon Emission Trading Policy Have an Employment Double Dividend and a Porter Effect? Energy Policy 2020, 142, 111492. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Hao, Y.; Liu, Z. Shooting Two Hawks with One Arrow: Could China’s Emission Trading Scheme Promote Green Development Efficiency and Regional Carbon Equality? Energy Econ. 2021, 101, 105412. [Google Scholar] [CrossRef]
- Oestreich, A.M.; Tsiakas, I. Carbon Emissions and Stock Returns: Evidence from the EU Emissions Trading Scheme. J. Bank. Financ. 2015, 58, 294–308. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, N. Environmental regulations and emissions trading in China. Energy Policy 2010, 38, 3356–3364. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wang, W. How does China’s carbon emissions trading (CET) policy affect the investment of CET-covered enterprises? Energy Econ. 2021, 98, 105224. [Google Scholar] [CrossRef]
- Chen, W.; Xu, R. Clean coal technology development in China. Energy Pol. 2010, 38, 2123–2130. [Google Scholar] [CrossRef]
- Lanoie, P. Environmental policy, innovation and performance: New insights on Porter hypothesis. J. Econ. Manag. Strategy 2011, 20, 803–842. [Google Scholar] [CrossRef] [Green Version]
- Qi, S.Z.; Zhou, C.B.; Li, K.; Tang, S.Y. Influence of a pilot carbon trading policy on enterprises’ low-carbon innovation in China. Clim. Policy 2021, 21, 318–336. [Google Scholar] [CrossRef]
- Liu, G.; Chen, Y.; He, H. China’s environmental challenges going rural and west. Environ. Plan. 2012, 44, 1657–1660. [Google Scholar] [CrossRef]
- Liu, G.; Müller, D.B. Mapping the global journey of anthropogenic aluminum: A trade-linked multilevel material flow analysis. Environ. Sci. Technol. 2013, 47, 11873–11881. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Yu, X.; Wei, Y.M.; Wang, B. Emissions trading and abatement cost savings: An estimation of China’s thermal power industry. Renew. Sustain. Energy Rev. 2016, 65, 1005–1017. [Google Scholar] [CrossRef]
- Lin, B.; Jia, Z. Why do we suggest small sectoral coverage in China’s carbon trading market? J. Clean. Prod. 2020, 257, 120557. [Google Scholar] [CrossRef]
- Calel, R.; Dechezlepretre, A. Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market. Rev. Econ. Stat. 2016, 98, 173–191. [Google Scholar] [CrossRef] [Green Version]
- Niu, B.; Xie, F.; Mu, Z.; Ji, P. Multinational firms’ local sourcing strategies considering unreliable supply and environmental sustainability. Resour. Conserv. Recycl. 2020, 155, 104648. [Google Scholar] [CrossRef]
- Lanjouw, J.O.; Mody, A. Innovation and the international diffusion of environmentally responsive technology. Res. Policy 1996, 25, 549–571. [Google Scholar] [CrossRef]
- Wu, G.; Baleˇzentis, T.; Sun, C.; Xu, S. Source control or end-of-pipe control: Mitigating air pollution at the regional level from the perspective of the Total Factor Productivity change decomposition. Energy Pol. 2019, 129, 1227–1239. [Google Scholar] [CrossRef]
- Vera, P.; Federico, D. Carbon emissions and the cost of debt in the eurozone: The role of public policies, climate-related disclosure and corporate governance. Bus. Strategy Environ. 2020, 29, 2953–2972. [Google Scholar] [CrossRef]
- Jaffe, R.B. Is the academic physician-scientist an oxymoron in contemporary obstetrics and gynecology? Am. J. Obstet. Gynecol. 1997, 177, 892–893. [Google Scholar] [CrossRef]
- Richandson, A.J.; Welker, M. Social Disclosure, Financial Disclosure and the Cost of Equity Capital. J. Account. Organ. Soc. 2001, 26, 597–616. [Google Scholar] [CrossRef]
- Plumlee, M.; Brown, D.; Hayes, R.M.; Marshall, R.S. Voluntary environmental disclosure quality and firm value: Further evidence. J. Account. Public Policy 2015, 34, 336–361. [Google Scholar] [CrossRef]
- Rankin, M.; Windsor, C.; Wahyuni, D. An Investigation of Voluntary Corporate Greenhouse Gas Emissions Reporting in a Market Governance System: Australian Evidence. Account. Audit. Account. J. 2011, 24, 1037–1070. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Su, Z.; Qiao, Q.; Hu, X.; Wan, S.; Zhao, R. Integrated assessment of process pollution prevention and end-of-pipe control in secondary lead smelting. Resour. Conserv. Recycl. 2017, 117, 1–11. [Google Scholar] [CrossRef]
- Hang, Y.; Wang, Q.; Wang, Y.; Su, B.; Zhou, D. Industrial SO2 emissions treatment in China: A temporal-spatial whole process decomposition analysis. J. Environ. Manag. 2019, 243, 419–434. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Firth, M.; Xin, Y.; Xu, L. Control Transfers, Privatization, and Corporate Performance: Efficiency Gains in China’s Listed Companies. J. Financ. Quant. Anal. 2008, 43, 161–190. [Google Scholar] [CrossRef] [Green Version]
- Franks, J.; Mayer, C. Ownership and Control of German Corporations. Rev. Financ. Stud. 2001, 14, 943–977. [Google Scholar] [CrossRef]
- Dai, Y.; Li, N.; Gu, R.; Zhu, X. Can China’s Carbon Emissions Trading Rights Mechanism Transform its Manufacturing Industry? Based on the Perspective of Enterprise Behavior. Sustainability 2018, 10, 2421. [Google Scholar] [CrossRef] [Green Version]
- Testa, F.; Iraldo, F.; Frey, M. The effect of environmental regulation on firms’ competitive performance: The case of the building & construction sector in some EU regions. J. Environ. Manag. 2011, 92, 2136–2144. [Google Scholar] [CrossRef]
Variable | Variable Name | Calculation Method |
---|---|---|
roa | Return on assets | Net profit/total assets |
profit | Cost and expense margin | Total profit/(operating costs + sales expenses + management expenses + financial expenses) |
deca | Debt capital | Total debt capital |
debt | Debt | Total liabilities |
t | Time variable | Dummy variable, value after 2014 equals 1, otherwise equals 0 |
treated | Policy variables | Dummy variable, equal to 1 for pilot companies in pilot cities, otherwise equal to 0 |
current | Current ratio | Current assets/current liabilities |
lev | Assets and liabilities | Total liabilities/total assets |
turnover | Turnover rate of total assets | Sales revenue/total assets |
size | Company Size | Natural logarithm of total assets |
Shrhfd | Equity concentration | The largest shareholder’s shareholding ratio |
growth | Operating income growth rate | Increase in operating income/total operating income of the previous year |
Panel A: (before PSM) | |||||
---|---|---|---|---|---|
Name | Sample Size | Average | Standard Deviation | Minimum | Max |
roa | 6120 | 0.041 | 0.177 | −7.285 | 7.249 |
t | 6120 | 0.600 | 0.490 | 0.000 | 1.000 |
treated | 6120 | 0.092 | 0.288 | 0.000 | 1.000 |
size | 6120 | 9.655 | 0.680 | 4.929 | 12.388 |
Shrhfd | 6120 | 35.173 | 15.761 | 0.286 | 89.093 |
turnover | 6120 | 0.706 | 0.613 | 0.000 | 9.380 |
growth | 6120 | 2.311 | 68.216 | −2.425 | 4500.016 |
current | 6120 | 2.870 | 5.880 | 0.015 | 204.742 |
lev | 6120 | 0.443 | 0.546 | 0.007 | 29.698 |
Panel B: (after PSM) | |||||
Name | Sample size | Average | Standard deviation | Minimum | Max |
roa | 1012 | 0.043 | 0.067 | −0.420 | 1.238 |
t | 1012 | 0.626 | 0.484 | 0.000 | 1.000 |
treated | 1012 | 0.513 | 0.500 | 0.000 | 1.000 |
size | 1012 | 9.968 | 0.641 | 8.595 | 11.622 |
Shrhfd | 1012 | 37.083 | 16.175 | 3.622 | 89.093 |
turnover | 1012 | 0.760 | 0.649 | 0.000 | 8.246 |
growth | 1012 | 0.307 | 2.161 | −1.730 | 50.818 |
current | 1012 | 2.473 | 9.419 | 0.061 | 204.742 |
lev | 1012 | 0.481 | 0.208 | 0.007 | 1.003 |
Variable | Sample | Mean | Deviation Rate (%) | Deviation Reduction Ratio (%) | t Test | V(T)/ V(C) | ||
---|---|---|---|---|---|---|---|---|
Treatment Group | Control Group | t | p > |t| | |||||
size | Not matched | 10.010 | 9.620 | 58.300 | 13.140 | 0.000 | 1.000 | |
matched | 10.010 | 10.017 | −1.000 | 98.200 | −0.180 | 0.861 | 1.040 | |
shrhfd | Not matched | 38.056 | 34.877 | 19.800 | 4.550 | 0.000 | 1.090 | |
matched | 38.056 | 36.588 | 9.200 | 53.800 | 1.510 | 0.133 | 1.010 | |
turnover | Not matched | 0.750 | 0.704 | 7.800 | 1.680 | 0.094 | 0.76 | |
matched | 0.750 | 0.753 | −0.600 | 92.800 | −0.080 | 0.932 | 0.53 | |
growth | Not matched | 0.262 | 2.529 | −4.500 | −0.750 | 0.455 | 0.00 | |
matched | 0.262 | 0.314 | −0.100 | 97.700 | −0.420 | 0.673 | 1.50 | |
current | Not matched | 2.313 | 2.914 | −7.800 | −2.320 | 0.020 | 3.17 | |
matched | 2.313 | 2.752 | −5.700 | 27.000 | −0.690 | 0.488 | 0.67 | |
lev | Not matched | 0.493 | 0.432 | 18.600 | 3.420 | 0.001 | 0.24 | |
matched | 0.493 | 0.481 | 3.500 | 81.100 | 0.910 | 0.361 | 0.900 |
(1) | (2) | |
---|---|---|
Treated*pre_4 | −0.021 | 0.068 |
(0.036) | (0.06) | |
Treated*pre_3 | −0.034 | 0.035 |
(0.045) | (0.034) | |
Treated*pre_2 | −0.007 | −0.028 |
(0.033) | (0.029) | |
now | −0.002 *** | −0.007 *** |
(0) | (0) | |
Treated*post_1 | −0.061 | −0.042 * |
(0.039) | (0.022) | |
Treated*post_2 | 0.058 | −0.042 |
(0.048) | (0.026) | |
Treated*post_3 | −0.047 ** | −0.032 |
(0.02) | (0.023) | |
Treated*post_4 | −0.023 | −0.079 ** |
(0.034) | (0.038) | |
Treated*post_5 | −0.026 | −0.031 |
(0.031) | (0.026) | |
size | 0.092 ** | 0.902 *** |
(0.041) | (0.048) | |
Shrhfd | 0 | 0.002 * |
(0.001) | (0.001) | |
turnover | 0.095 *** | 0.004 |
(0.024) | (0.018) | |
growth | 0.003 *** | 0.002 |
(0.001) | (0.002) | |
current | −0.0005056 | −0.007 |
(0.001) | (0.001) | |
lev | −0.307 *** | 0.975 *** |
(0.084) | (0.111) | |
Constant | −0.758 * | 0.152 |
(0.389) | (0.46) | |
Observations | 830 | 830 |
R-squared | 0.664 | 0.991 |
Adj_R2 | 0.511 | 0.988 |
F | 3.59 | 211.81 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
treatedt | 0.005 (0.012) | 0.016 ** (0.01) | −0.055 *** (0.02) | −0.047 *** (0.02) |
t | −0.014 (0.004) | −0.022 *** (0.006) | −0.018 *** (0.01) | 0.023 * (0.01) |
treated | −0.001 (0.010) | −0.009 (0.006) | 0.060 *** (0.01) | 0.056 *** (0.01) |
size | 0.015 (0.003) | 0.005 (0.004) | 1.083 *** (0.004) | 0.981 *** (0.008) |
Shrhfd | 0 (0) | 0.0004 *** (0.0001) | −0.0004 ** (0.0002) | 0.0008 *** (0.0003) |
turnover | 0.028 (0.003) | 0.012 *** (0.003) | 0.056 *** (0.004) | 0.009 (0.006) |
growth | 0 (0) | 0.001 (0.001) | 0.0001 (0.00004) | 0.003 (0.002) |
current | −0.001 (0) | −0.0004 * (0.0002) | −0.021 *** (0.0005) | −0.008 *** (0.0004) |
lev | −0.167 (0.005) | −0.108 *** (0.012) | 0.338 *** (0.01) | 1.108 *** (0.02) |
Constant | −0.042 (0.027) | 0.028 (0.03) | −1.301 *** (0.04) | −0.722 *** (0.07) |
Year/Industry | Yes | Yes | Yes | Yes |
Observations | 6120 | 1012 | 6120 | 1012 |
R-squared | 0.188 | 0.129 | 0.9404 | 0.976 |
Adj_R2 | 0.187 | 0.121 | 0.9403 | 0.975 |
F | 156.62 | 16.530 | 10667.92 | 4440.86 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
treatedt | 0.005 | 0.004 | −0.055 *** | −0.05 ** |
(0.012) | (0.009) | (0.018) | (0.023) | |
t | −0.014 *** | −0.004 | −0.018 *** | −0.033 * |
(0.004) | (0.007) | (0.006) | (0.018) | |
treated | 0 | 0.005 | 0.061 *** | 0.04 ** |
(0.01) | (0.007) | (0.014) | (0.019) | |
size | 0.015 *** | −0.005 | 1.084 *** | 1.111 *** |
(0.003) | (0.004) | (0.004) | (0.009) | |
Shrhfd | 0 | 0.001 *** | 0 ** | −0.002 *** |
(0) | (0) | (0) | (0) | |
turnover | 0.029 *** | 0.011 *** | 0.057 *** | 0.045 *** |
(0.003) | (0.003) | (0.004) | (0.008) | |
growth | 0 | 0.001 | 0 | 0.01 *** |
(0) | (0.001) | (0) | (0.003) | |
current | −0.001 *** | 0 | −0.021 *** | −0.029 *** |
(0) | (0.001) | (0) | (0.001) | |
lev | −0.168 *** | −0.046 *** | 0.337 *** | 0.172 *** |
(0.005) | (0.005) | (0.007) | (0.012) | |
city | −0.011 ** | 0.013 * | −0.015 ** | −0.016 |
(0.005) | (0.007) | (0.007) | (0.018) | |
Constant | −0.037 | 0.059 * | −1.293 *** | −1.377 *** |
(0.027) | (0.036) | (0.04) | (0.091) | |
Year/Industry | Yes | Yes | Yes | Yes |
Observations | 6120 | 1012 | 6120 | 1012 |
R-squared | 0.189 | 0.143 | 0.94 | 0.95 |
Adj_R2 | 0.187 | 0.135 | 0.940 | 0.950 |
F | 141.53 | 16.81 | 9606.64 | 19233.72 |
(1) | (2) | |
---|---|---|
treatedt | 3.473 *** | 1.491 * |
(0.71) | (0.846) | |
size | 2.135 *** | 3.556 *** |
(0.258) | (0.781) | |
Shrhfd | −0.018 * | −0.03 |
(0.01) | (0.022) | |
turnover | −1.889 *** | −1.426 * |
(0.229) | (0.724) | |
growth | -0.002 | −0.256 |
(0.013) | (0.192) | |
current | 0.002 | -0.026 |
(.02) | (0.17) | |
lev | −1.623 *** | −5.323 ** |
(0.492) | (2.111) | |
Constant | −13.833 *** | −27.575 *** |
(2.569) | (7.19) | |
Year/Industry | Yes | Yes |
Observations | 6120 | 1,200 |
R-squared | 0.093 | 0.241 |
F | 29.31 | 9.94 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
treatedt | 0.053 * (0.030) | −0.054 ** (0.024) | −0.036 (0.027) | −0.013 (0.011) |
t | −0.086 *** (0.022) | −0.014 (0.018) | −0.032 (0.020) | 0.002 (0.008) |
treated | −0.067 *** (0.024) | 0.055 *** (0.019) | 0.062 *** (0.023) | 0.015 (0.009) |
size | 0.071 *** (0.014) | 1.104 *** (0.010) | 0.971 *** (0.011) | 0.017 *** (0.005) |
Shrhfd | 0.001 ** (0.0005) | −0.001 *** (0.0004) | 0.001 (0.0004) | 0.0003 (0.0002) |
turnover | −0.057 *** (0.012) | 0.050 *** (0.009) | 0.003 (0.010) | 0.017 *** (0.004) |
growth | 0.003 (0.003) | 0.011 *** (0.003) | 0.001 (0.002) | 0.001 (0.001) |
current | 0.001 (0.001) | −0.015 *** (0.001) | −0.017 *** (0.001) | −0.001 * (0.0005) |
lev | −0.519 *** (0.043) | 0.326 *** (0.018) | 0.987 *** (0.038) | −0.152 *** (0.015) |
Constant | −0.260 ** (0.128) | −1.471 *** (0.092) | −0.483 *** (0.100) | −0.073 * (0.040) |
Year/Industry | Yes | Yes | Yes | Yes |
Observations | 1010 | 1010 | 310 | 310 |
R-squared | 0.1972 | 0.9487 | 0.9830 | 0.3168 |
Adj_R2 | 0.1899 | 0.9482 | 0.9825 | 0.2965 |
F | 27.34 | 2090.73 | 1942.21 | 15.61 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
treatedt | −0.001 | 0.012 | 0.015 | 0.021 | 0.005 | −0.002 |
(0.015) | (0.026) | (0.011) | (0.02) | (0.011) | (0.019) | |
t | −0.016 | −0.032 * | −0.024 *** | −0.036 ** | −0.014 * | −0.02 |
(0.011) | (0.02) | (0.008) | (0.014) | (0.008) | (0.014) | |
treated | 0.005 | −0.013 | −0.006 | −0.016 | 0.002 | −0.002 |
(0.014) | (0.024) | (0.009) | (0.016) | (0.008) | (0.014) | |
size | 0.037 *** | 1.033 *** | 0.038 *** | 1.035 *** | 0.037 *** | 1.034 *** |
(0.005) | (0.009) | (0.005) | (0.009) | (0.005) | (0.009) | |
Shrhfd | 0 | −0.001 * | 0 | −0.001 * | 0 | −0.001 |
(0) | (0) | (0) | (0) | (0) | (0) | |
turnover | 0.023 *** | 0.029 *** | 0.023 *** | 0.03 *** | 0.024 *** | 0.031 *** |
(0.005) | (0.009) | (0.005) | (0.009) | (0.005) | (0.009) | |
growth | 0.009 ** | 0.041 *** | 0.009 ** | 0.041 *** | 0.008 * | 0.039 *** |
(0.005) | (0.008) | (0.005) | (0.008) | (0.005) | (0.008) | |
current | −0.003 *** | −0.024 *** | −0.003 *** | −0.024 *** | −0.003 *** | −0.024 *** |
(0.001) | (0.002) | (0.001) | (0.002) | (0.001) | (0.002) | |
lev | −0.284 *** | 0.693 *** | −0.285 *** | 0.692 *** | −0.282 *** | 0.696 *** |
(0.014) | (0.024) | (0.014) | (0.024) | (0.014) | (0.024) | |
Constant | −0.195 *** | −0.921 *** | −0.203 *** | −0.942 *** | −0.206 *** | −0.954 *** |
(0.049) | (0.087) | (0.048) | (0.086) | (0.048) | (0.086) | |
Observations | 610 | 610 | 610 | 610 | 610 | 610 |
R-squared | 0.445 | 0.977 | 0.449 | 0.977 | 0.444 | 0.977 |
Adj_R2 | 0.436 | 0.976 | 0.441 | 0.976 | 0.436 | 0.976 |
F | 53.27 | 2767.58 | 54.34 | 2783.1 | 53.16 | 277.93 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
treatedt | 0.021 ** (0.009) | −0.002 (0.007) | −0.056 *** (0.016) | −0.050 ** (0.025) |
size | −0.091 *** (0.018) | −0.001 (0.018) | 1.004 *** (0.007) | 0.970 *** (0.014) |
Shrhfd | −0.001 (0.000) | 0.000 (0.001) | 0.0001 (0.0003) | 0.001 (0.0004) |
turnover | 0.041 *** (0.015) | 0.042 *** (0.011) | 0.029 *** (0.009) | 0.002 (0.009) |
growth | 0.000 (0.001) | 0.003 (0.006) | 0.002 (0.002) | 0.028 *** (0.009) |
current | 0.022 *** (0.007) | −0.004 ** (0.001) | −0.035 *** (0.004) | −0.030 *** (0.003) |
lev | 0.210 *** (0.043) | −0.133 ** (0.067) | 0.830 *** (0.029) | 0.995 *** (0.042) |
Constant | 0.816 *** (0.181) | 0.097 (0.172) | −0.746 *** (0.069) | −0.481 *** (0.127) |
Year/Industry | Yes | Yes | Yes | Yes |
Observations | 580 | 430 | 580 | 430 |
R-squared | 0.1454 | 0.2059 | 0.9855 | 0.9719 |
Adj_R2 | 0.015 | 0.1234 | 0.9853 | 0.9713 |
F | 8.87 | 3.78 | 4363.26 | 1602.07 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
treatedt | −0.015 ** (0.007) | 0.001 (0.005) | 0.015 (0.021) | −0.032 ** (0.015) |
size | 0.070 ** (0.030) | −0.006 (0.008) | 0.988 *** (0.010) | 0.964 *** (0.008) |
Shrhfd | 0.000 (0.001) | 0.000 ** (0.000) | 0.0001 (0.0003) | 0.0005 * (0.0003) |
turnover | 0.034 (0.033) | 0.047 *** (0.006) | −0.027 *** (0.009) | −0.003 (0.006) |
growth | −0.004 (0.006) | 0.000 (0.001) | 0.014 (0.012) | 0.001 (0.002) |
current | −0.004 *** (0.001) | −0.001 (0.001) | −0.028 *** (0.003) | −0.023 *** (0.002) |
lev | −0.231 *** (0.049) | −0.087 *** (0.018) | 0.772 *** (0.037) | 1.039 *** (0.027) |
Constant | −0.593 * (0.326) | 0.092 (0.076) | −0.505 *** (0.093) | −0.431 *** (0.071) |
Year/Industry | Yes | Yes | Yes | Yes |
Observations | 190 | 820 | 190 | 820 |
R-squared | 0.2522 | 0.1896 | 0.9928 | 0.9795 |
Adj_R2 | 0.1175 | 0.0774 | 0.9924 | 0.9793 |
F | 4.58 | 16.71 | 2671.04 | 4280.85 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
treatedt | 0.002 (0.008) | 0.010 (0.010) | −0.040 ** (0.017) | −0.017 (0.027) |
size | 0.011 *** (0.004) | 0.012 *** (0.004) | 0.960 *** (0.008) | 1.030 *** (0.011) |
Shrhfd | 0.0005 *** (0.0001) | 0.0003 * (0.0002) | 0.001 *** (0.0003) | −0.001 (0.001) |
turnover | 0.027 *** (0.004) | 0.010 (0.006) | 0.012 (0.007) | 0.046 *** (0.016) |
growth | −0.003 (0.006) | 0.001 * (0.001) | 0.018 (0.012) | 0.004 ** (0.002) |
current | −0.001 *** (0.0002) | −0.001 (0.002) | −0.009 *** (0.001) | −0.038 *** (0.007) |
lev | −0.128 *** (0.013) | −0.113 *** (0.013) | 1.181 *** (0.027) | 0.723 *** (0.035) |
Constant | −0.032 (0.033) | −0.036 (0.039) | −0.546 *** (0.069) | −0.911 *** (0.106) |
Year/Industry | Yes | Yes | Yes | Yes |
Observations | 750 | 260 | 750 | 260 |
R-squared | 0.2034 | 0.3179 | 0.9831 | 0.9862 |
Adj_R2 | 0.1935 | 0.2933 | 0.9829 | 0.9857 |
F | 20.52 | 12.94 | 4676.09 | 1980.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, E.; Nie, J.; Zhan, H. The Impact of Carbon Emissions Trading on the Profitability and Debt Burden of Listed Companies. Sustainability 2022, 14, 13429. https://doi.org/10.3390/su142013429
Wang E, Nie J, Zhan H. The Impact of Carbon Emissions Trading on the Profitability and Debt Burden of Listed Companies. Sustainability. 2022; 14(20):13429. https://doi.org/10.3390/su142013429
Chicago/Turabian StyleWang, Enci, Jianyun Nie, and Hong Zhan. 2022. "The Impact of Carbon Emissions Trading on the Profitability and Debt Burden of Listed Companies" Sustainability 14, no. 20: 13429. https://doi.org/10.3390/su142013429
APA StyleWang, E., Nie, J., & Zhan, H. (2022). The Impact of Carbon Emissions Trading on the Profitability and Debt Burden of Listed Companies. Sustainability, 14(20), 13429. https://doi.org/10.3390/su142013429