Impact of Land System Changes and Extreme Precipitation on Peak Flood Discharge and Sediment Yield in the Upper Jhelum Basin, Kashmir Himalaya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. KINEROS2 Model
2.3. Model Input Parameters
2.4. Storm Runoff Simulation
2.5. Land Use and Land Cover Information
2.6. Model Calibration and Validation
3. Results
3.1. Land Use-Land Cover Change Analysis
3.2. Runoff, Soil Loss, and Sediment Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Ruiz, J.M.; Regüés, D.; Alvera, B.; Lana-Renault, N.; Serrano-Muela, P.; Nadal-Romero, E.; Navas, A.; Latron, J.; Martí-Bono, C.; Arnáez, J. Flood Generation and Sediment Transport in Experimental Catchments Affected by Land Use Changes in the Central Pyrenees. J. Hydrol. 2008, 356, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Lu, X.X.; Higgitt, D.L.; Chen, C.-T.A.; Han, J.; Sun, H. Recent Changes of Water Discharge and Sediment Load in the Zhujiang (Pearl River) Basin, China. Glob. Planet. Chang. 2008, 60, 365–380. [Google Scholar] [CrossRef]
- Zhang, X.; Wenhong, C.; Qingchao, G.; Sihong, W. Effects of Landuse Change on Surface Runoff and Sediment Yield at Different Watershed Scales on the Loess Plateau. Int. J. Sediment Res. 2010, 25, 283–293. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R. Global Threats to Human Water Security and River Biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conacher, A.J.; Sala, M. Land Degradation in Mediterranean Environments of the World: Nature and Extent, Causes and Solutions; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 1998. [Google Scholar]
- Morton, R.A. Geoindicators of Coastal Wetlands and Shorelines. In Proceedings of the Geoindicators: Assessing Rapid Environmental Changes in Earth Systems, 1996; pp. 207–230. Available online: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6310962 (accessed on 23 July 2022).
- Reynard, N.S.; Prudhomme, C.; Crooks, S.M. The Flood Characteristics of Large UK Rivers: Potential Effects of Changing Climate and Land Use. Clim. Chang. 2001, 48, 343–359. [Google Scholar] [CrossRef]
- Yanmaz, A.M.; Usul, N. Assessment of Flood Induced Problems of Urbanized Areas in Turkey. 1999. Available online: https://open.metu.edu.tr/handle/11511/78307 (accessed on 23 July 2022).
- Zaz, S.N.; Romshoo, S.A. Assessing the Geoindicators of Land Degradation in the Kashmir Himalayan Region, India. Nat. Hazards 2012, 64, 1219–1245. [Google Scholar] [CrossRef]
- Ullah, I.; Saleem, F.; Iyakaremye, V.; Yin, J.; Ma, X.; Syed, S.; Hina, S.; Asfaw, T.G.; Omer, A. Projected Changes in Socioeconomic Exposure to Heatwaves in South Asia under Changing Climate. Earth’s Future 2022, 10, e2021EF002240. [Google Scholar] [CrossRef]
- Meraj, G.; Romshoo, S.A.; Yousuf, A.R.; Altaf, S.; Altaf, F. Assessing the Influence of Watershed Characteristics on the Flood Vulnerability of Jhelum Basin in Kashmir Himalaya. Nat. Hazards 2015, 77, 153–175. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Amin, M.; Ahmad, I.; Sastry, K. Soil Erosion Estimation of Lidder Watershed, Kashmir Himalaya Using Morgan-Morgan-Finney Model in GIS Environment. J. Himal. Ecol. Sustain. Dev. 2016, 11, 3–20. [Google Scholar]
- Hassan, Z.u.; Shah, J.A.; Kanth, T.A.; Pandit, A.K. Influence of Land Use/Land Cover on the Water Chemistry of Wular Lake in Kashmir Himalaya (India). Ecol. Process. 2015, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Oza, G.M. Destruction of forests and wildlife in the Kashmir wilderness. Environmentalist 2003, 23, 189–192. [Google Scholar] [CrossRef]
- Rather, M.I.; Rashid, I.; Shahi, N.; Murtaza, K.O.; Hassan, K.; Yousuf, A.R.; Romshoo, S.A.; Shah, I.Y. Massive Land System Changes Impact Water Quality of the Jhelum River in Kashmir Himalaya. Environ. Monit. Assess. 2016, 188, 185. [Google Scholar] [CrossRef] [PubMed]
- World Bank World Bank. Environment and Social Management Framework, Jhelum and Tawi Flood Recovery Project; Project Management Unit, J&T FRP, Government of Jammu and Kashmir: Srinagar, India, 2015. [Google Scholar]
- Ray, K.; Bhan, S.C.; Bandopadhyay, B.K. The Catastrophe over Jammu and Kashmir in September 2014: A Meteorological Observational Analysis. Curr. Sci. 2015, 109, 580–591. [Google Scholar]
- Wu, F.; Zhan, J.; Xu, Q.; Xiong, Y.; Sun, Z. A Comparison of Two Land Use Simulation Models under the RCP4. 5 Scenario in China. Adv. Meteorol. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Liu, J.; Kubota, J.; Chen, L. Effects of Land-Use Changes on Hydrological Processes in the Middle Basin of the Heihe River, Northwest China. Hydrol. Process. 2007, 21, 1370–1382. [Google Scholar] [CrossRef]
- Blöschl, G.; Ardoin-Bardin, S.; Bonell, M.; Dorninger, M.; Goodrich, D.; Gutknecht, D.; Matamoros, D.; Merz, B.; Shand, P.; Szolgay, J. At What Scales Do Climate Variability and Land Cover Change Impact on Flooding and Low Flows? Hydrol. Process. 2007, 21, 1241–1247. [Google Scholar] [CrossRef]
- Fredj, E.; Silver, M.; Givati, A. An Integrated Simulation and Distribution System for Early Flood Warning. Int. J. Comput. Inf. Technol. 2015, 4, 517–526. [Google Scholar]
- Kidane, Y.; Stahlmann, R.; Beierkuhnlein, C. Vegetation Dynamics, and Land Use and Land Cover Change in the Bale Mountains, Ethiopia. Environ. Monit. Assess. 2012, 184, 7473–7489. [Google Scholar] [CrossRef]
- Rozenstein, O.; Karnieli, A. Comparison of Methods for Land-Use Classification Incorporating Remote Sensing and GIS Inputs. Appl. Geogr. 2011, 31, 533–544. [Google Scholar] [CrossRef]
- Ghaffari, G.; Keesstra, S.; Ghodousi, J.; Ahmadi, H. SWAT-Simulated Hydrological Impact of Land-Use Change in the Zanjanrood Basin, Northwest Iran. Hydrol. Process. Int. J. 2010, 24, 892–903. [Google Scholar] [CrossRef]
- He, H.; Zhou, J.; Zhang, W. Modelling the Impacts of Environmental Changes on Hydrological Regimes in the Hei River Watershed, China. Glob. Planet. Chang. 2008, 61, 175–193. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Zhang, X.; Zheng, F. Impacts of Land Use Change and Climate Variability on Hydrology in an Agricultural Catchment on the Loess Plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; Le Bissonnais, Y.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S. Modeling Response of Soil Erosion and Runoff to Changes in Precipitation and Cover. Catena 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Ouyang, W.; Skidmore, A.K.; Hao, F.; Wang, T. Soil Erosion Dynamics Response to Landscape Pattern. Sci. Total Environ. 2010, 408, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Nut, N.; Mihara, M.; Jeong, J.; Ngo, B.; Sigua, G.; Prasad, P.V.V.; Reyes, M.R. Land Use and Land Cover Changes and Its Impact on Soil Erosion in Stung Sangkae Catchment of Cambodia. Sustainability 2021, 13, 9276. [Google Scholar] [CrossRef]
- Choi, W.; Deal, B.M. Assessing Hydrological Impact of Potential Land Use Change through Hydrological and Land Use Change Modeling for the Kishwaukee River Basin (USA). J. Environ. Manag. 2008, 88, 1119–1130. [Google Scholar] [CrossRef]
- Kliot, N. Man’s Impact on River Basins: An Israeli Case Study. Appl. Geogr. 1986, 6, 163–178. [Google Scholar] [CrossRef]
- Issa, O.M.; Valentin, C.; Rajot, J.-L.; Cerdan, O.; Desprats, J.-F.; Bouchet, T. Runoff Generation Fostered by Physical and Biological Crusts in Semi-Arid Sandy Soils. Geoderma 2011, 167, 22–29. [Google Scholar] [CrossRef]
- Zhang, Y.; Shuster, W. Impacts of Spatial Distribution of Impervious Areas on Runoff Response of Hillslope Catchments: Simulation Study. J. Hydrol. Eng. 2014, 19, 1089–1100. [Google Scholar] [CrossRef]
- O’Connell, P.E.; Ewen, J.; O’Donnell, G.; Quinn, P. Is There a Link between Agricultural Land-Use Management and Flooding? Hydrol. Earth Syst. Sci. 2007, 11, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Slocum, T.; McMaster, R.; Kessler, F.; Howard, H. Thematic Cartography and Geographic Visualization; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2009; ISBN 978-0-13-229834-6. [Google Scholar]
- Bogardi, J.J.; Leentvaar, J.; Nachtnebel, H.P. GWSP River Basins and Change; UNESCO, Brahmer, G., Braun, M., Bremicker, M., Buiteveld, H., Busch, N., Engel, H., Hammer, M., Hodel, H., Junod, P., Eds.; UNESCO: Delft, The Netherlands, 2012. [Google Scholar]
- Dar, R.A.; Mir, S.A.; Romshoo, S.A. Influence of Geomorphic and Anthropogenic Activities on Channel Morphology of River Jhelum in Kashmir Valley, NW Himalayas. Quat. Int. 2018, 507, 333–341. [Google Scholar] [CrossRef]
- Milliman, J.D.; Farnsworth, K.L.; Jones, P.D.; Xu, K.H.; Smith, L.C. Climatic and Anthropogenic Factors Affecting River Discharge to the Global Ocean, 1951–2000. Glob. Planet. Chang. 2008, 62, 187–194. [Google Scholar] [CrossRef]
- Tiwari, P.C. Land-Use Changes in Himalaya and Their Impact on the Plains Ecosystem: Need for Sustainable Land Use. Land Use Policy 2000, 17, 101–111. [Google Scholar] [CrossRef]
- Altaf, S.; Meraj, G.; Romshoo, S.A. Morphometry and Land Cover Based Multi-Criteria Analysis for Assessing the Soil Erosion Susceptibility of the Western Himalayan Watershed. Environ. Monit. Assess. 2014, 186, 8391–8412. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.F.; De Boer, D.H. Spatial Patterns and Variation of Suspended Sediment Yield in the Upper Indus River Basin, Northern Pakistan. J. Hydrol. 2007, 334, 368–387. [Google Scholar] [CrossRef]
- Sinha, R. The Great Avulsion of Kosi on 18 August 2008. Curr. Sci. 2009, 97, 429–433. [Google Scholar]
- Walling, D.E. The Changing Sediment Load of the Mekong River. Ambio 2008, 37, 150–157. [Google Scholar] [CrossRef]
- Bartarya, S.K.; Valdiya, K.S. Landslides and Erosion in the Catchment of the Gaula River, Kumaun Lesser Himalaya, India. Mt. Res. Dev. 1989, 9, 405–419. [Google Scholar] [CrossRef]
- Nasir Ahmad, N.S.B.; Firuza, M.; Muhammad Yusoff, S.; Gideon, D. A Systematic Review of Soil Erosion Control Practices on the Agricultural Land in Asia. Int. Soil Water Conserv. Res. 2020, 8, 103–115. [Google Scholar] [CrossRef]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R. Environmental and Economic Costs of Soil Erosion and Conservation Benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [Green Version]
- UNEPI. World Map on Status of Human-Induced Soil Degradation; Boom-Ruygrok: Harllem, The Netherlands, 1990. [Google Scholar]
- Jain, S.K.; Kumar, S.; Varghese, J. Estimation of Soil Erosion for a Himalayan Watershed Using GIS Technique. Water Resour. Manag. 2001, 15, 41–54. [Google Scholar] [CrossRef]
- Meraj, G.; Romshoo, S.A.; Ayoub, S.; Altaf, S. Geoinformatics Based Approach for Estimating the Sediment Yield of the Mountainous Watersheds in Kashmir Himalaya, India. Geocarto Int. 2018, 33, 1114–1138. [Google Scholar] [CrossRef]
- Omer, A.; Elagib, N.A.; Zhuguo, M.; Saleem, F.; Mohammed, A. Water Scarcity in the Yellow River Basin under Future Climate Change and Human Activities. Sci. Total Environ. 2020, 749, 141446. [Google Scholar] [CrossRef] [PubMed]
- Romshoo, S.A.; Bashir, J.; Rashid, I. Twenty-First Century-End Climate Scenario of Jammu and Kashmir Himalaya, India, Using Ensemble Climate Models. Clim. Chang. 2020, 162, 1473–1491. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Gan, T.Y. Urbanization and Climate Change Implications in Flood Risk Management: Developing an Efficient Decision Support System for Flood Susceptibility Mapping. Sci. Total Environ. 2018, 636, 152–167. [Google Scholar] [CrossRef]
- Remondi, F.; Burlando, P.; Vollmer, D. Exploring the Hydrological Impact of Increasing Urbanisation on a Tropical River Catchment of the Metropolitan Jakarta, Indonesia. Sustain. Cities Soc. 2016, 20, 210–221. [Google Scholar] [CrossRef]
- Azimi Sardari, M.R.; Bazrafshan, O.; Panagopoulos, T.; Sardooi, E.R. Modeling the Impact of Climate Change and Land Use Change Scenarios on Soil Erosion at the Minab Dam Watershed. Sustainability 2019, 11, 3353. [Google Scholar] [CrossRef] [Green Version]
- Pall, P.; Patricola, C.M.; Wehner, M.F.; Stone, D.A.; Paciorek, C.J.; Collins, W.D. Diagnosing Conditional Anthropogenic Contributions to Heavy Colorado Rainfall in September 2013. Weather Clim. Extrem. 2017, 17, 1–6. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015.
- Rashid, M.; Lone, M.A.; Romshoo, S.A. Geospatial Tools for Assessing Land Degradation in Budgam District, Kashmir Himalaya, India. J. Earth Syst. Sci. 2011, 120, 423–433. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Altaf, S.; Amin, M.; Ameen, U. Sediment Yield Estimation for Developing Soil Conservation Strategies in GIS Environment for the Mountainous Marusudar Catchment, Chenab Basin, J&K, India. J. Himal. Ecol. Sustain. Dev. 2017, 12, 16–32. [Google Scholar]
- Sorooshian, S.; Gupta, V.K. Model Calibration. Comput. Model. Watershed Hydrol. 1995, 1, 23–68. [Google Scholar]
- Raza, M.; Ahmad, A.; Mohammad, A. The Valley of Kashmir a Geographical Interpretations; The Land; Vikas Publishing House: New Delhi, India, 1978; Volume 1. [Google Scholar]
- Dad, J.M.; Muslim, M.; Rashid, I.; Reshi, Z. Time Series Analysis of Climate Variability and Trends in Kashmir Himalaya. Ecol. Indic. 2021, 126, 107690. [Google Scholar] [CrossRef]
- Dar, R.A.; Chandra, R.; Romshoo, S.A.; Lone, M.A.; Ahmad, S.M. Isotopic and Micromorphological Studies of Late Quaternary Loess–Paleosol Sequences of the Karewa Group: Inferences for Palaeoclimate of Kashmir Valley. Quat. Int. 2015, 371, 122–134. [Google Scholar] [CrossRef]
- Agrawal, D.P. Palaeoclimatic Data from Kashmir: A Synthesis and Some Correlations. Proc. Indian Natl. Sci. Acad. Part A Phys. Sci. 1988, 54, 333–342. [Google Scholar]
- Agrawal, D.P.; Dodia, R.; Kotlia, B.S.; Razdan, H.; Sahni, A. The Plio-Pleistocene Geologic and Climatic Record of the Kashmir Valley, India: A Review and New Data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1989, 73, 267–286. [Google Scholar] [CrossRef]
- Qadri, H.; Dar, I. A preliminary study on the changing patterns of temperature and precipitation of srinagar, kashmir, india. Int. Res. J. Mod. Eng. Technol. Sci. 2021, 2, 2582–5208. [Google Scholar]
- Zaz, S.N.; Romshoo, S.A. Recent Variation In Temperature Trends In Kashmir Valley (India). J. Himal. Ecol. Sustain. Dev. 2013, 8, 42–63. [Google Scholar]
- FAO. Soil Map of the World: Revised Legend; ISRIC: Wageningen, The Netherlands, 1988; p. 60. [Google Scholar]
- Rasool, R.; Fayaz, A.; Shafiq, M.U.; Singh, H.; Ahmed, P. Land Use Land Cover Change in Kashmir Himalaya: Linking Remote Sensing with an Indicator Based DPSIR Approach. Ecol. Indic. 2021, 125, 107447. [Google Scholar] [CrossRef]
- Semmens, D.J.; Goodrich, D.C.; Unkrich, C.L.; Smith, R.E.; Woolhiser, D.A.; Miller, S.N. KINEROS2 and the AGWA Modeling Framework. In Hydrological Modelling in Arid and Semi-Arid Areas; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Woolhiser, D.A.; Smith, R.E.; Goodrich, D.C. KINEROS: A Kinematic Runoff and Erosion Model: Documentation and User Manual; US Dept. of Agriculture, Agricultural Research Service: Washington, DC, USA, 1990. [Google Scholar]
- Smith, R.E.; Goodrich, D.C.; Unkrich, C.L. Simulation of Selected Events on the Catsop Catchment by KINEROS2: A Report for the GCTE Conference on Catchment Scale Erosion Models. Catena 1999, 37, 457–475. [Google Scholar] [CrossRef]
- Saran, S.; Sterk, G.; Aggarwal, S.P.; Dadhwal, V.K. Coupling Remote Sensing and GIS with KINEROS2 Model for Spatially Distributed Runoff Modeling in a Himalayan Watershed. J. Indian Soc. Remote Sens. 2021, 49, 1121–1139. [Google Scholar] [CrossRef]
- Hernandez, M.; Miller, S.N.; Goodrich, D.C.; Goff, B.F.; Kepner, W.G.; Edmonds, C.M.; Bruce Jones, K. Modeling Runoff Response to Land Cover and Rainfall Spatial Variability in Semi-Arid Watersheds. In Monitoring Ecological Condition in the Western United States; Springer: Berlin/Heidelberg, Germany, 2000; pp. 285–298. [Google Scholar]
- Ziegler, A.D.; Giambelluca, T.W. Simulation of Runoff and Erosion on Mountainous Roads in Northern Thailand: A First Look. IAHS Publ. Ser. Proc. Rep. Intern Assoc. Hydrol. Sci. 1997, 245, 21–29. [Google Scholar]
- Martínez-Carreras, N.; Soler, M.; Hernández, E.; Gallart, F. Simulating Badland Erosion with KINEROS2 in a Small Mediterranean Mountain Basin (Vallcebre, Eastern Pyrenees). Catena 2007, 71, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Kenneth, G. Renard Erosion Research and Mathematical Modelling. Toy ed 1977, 31–44. Available online: https://catalogue.nla.gov.au/Record/2496368 (accessed on 23 July 2022).
- Parlange, J.-Y.; Lisle, I.; Braddock, R.D.; Smith, R.E. The Three-Parameter Infiltration Equation. Soil Sci. 1982, 133, 337–341. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Yousuf, A.; Altaf, S.; Amin, M. Evaluation of Various DEMs for Quantifying Soil Erosion Under Changing Land Use and Land Cover in the Himalaya. Front. Earth Sci. 2021, 9, 782128. [Google Scholar]
- Jia, X.; Richards, J.A. Remote Sensing Digital Image Analysis; Springer-Verlag Berlin Heidelberg: New York, NY, USA, 2006; ISBN 978-3-540-25128-6. [Google Scholar]
- Sanchez, P.A.; Ahamed, S.; Carré, F.; Hartemink, A.E.; Hempel, J.; Huising, J.; Lagacherie, P.; McBratney, A.B.; McKenzie, N.J.; de Lourdes Mendonça-Santos, M.; et al. Digital Soil Map of the World. Science 2009, 325, 680–681. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A. ESA CCI Soil Moisture for Improved Earth System Understanding: State-of-the Art and Future Directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Z. Using Satellite Imagery and GIS for Land-use and Land-cover Change Mapping in an Estuarine Watershed. Int. J. Remote Sens. 2005, 26, 5275–5296. [Google Scholar] [CrossRef]
- Roy, P.; Roy, A.; Joshi, P.; Kale, M.; Srivastava, V.; Srivastava, S.; Dwevidi, R.; Joshi, C.; Behera, M.; Meiyappan, P.; et al. Development of Decadal (1985–1995–2005) Land Use and Land Cover Database for India. Remote Sens. 2015, 7, 2401–2430. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.; Hardy, E.; Roac, J.; Witmer, R. A Land Use and Land Cover Classification System for Use with Remote Sensing Data; US Government Printing Office: Washington, DC, USA, 1976; Volume 964.
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0-429-05272-9. [Google Scholar]
- Miller, S.N.; Semmens, D.J.; Goodrich, D.C.; Hernandez, M.; Miller, R.C.; Kepner, W.G.; Guertin, D.P. The Automated Geospatial Watershed Assessment Tool. Environ. Model. Softw. 2007, 22, 365–377. [Google Scholar] [CrossRef]
- Daggupati, P.; Yen, H.; White, M.J.; Srinivasan, R.; Arnold, J.G.; Keitzer, C.S.; Sowa, S.P. Impact of Model Development, Calibration and Validation Decisions on Hydrological Simulations in West Lake Erie Basin. Hydrol. Process. 2015, 29, 5307–5320. [Google Scholar] [CrossRef]
- Tajbakhsh, S.M.; Memarian, H.; Sobhani, M.; Aghakhani Afshar, A.H. Kinematic Runoff and Erosion Model Efficiency Assessment for Hydrological Simulation of Semi-Arid Watersheds. Global J. Environ. Sci. Manag. 2018, 4, 127–140. [Google Scholar] [CrossRef]
- Al-Qurashi, A.; McIntyre, N.; Wheater, H.; Unkrich, C. Application of the Kineros2 Rainfall–Runoff Model to an Arid Catchment in Oman. J. Hydrol. 2008, 355, 91–105. [Google Scholar] [CrossRef]
- Yatheendradas, S.; Wagener, T.; Gupta, H.; Unkrich, C.; Goodrich, D.; Schaffner, M.; Stewart, A. Understanding Uncertainty in Distributed Flash Flood Forecasting for Semiarid Regions. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Ghosh, S.P. Carrying Capacity of Indian Horticulture. Curr. Sci. 2012, 102, 889–893. [Google Scholar]
- Recanatesi, F.; Petroselli, A.; Ripa, M.N.; Leone, A. Assessment of Stormwater Runoff Management Practices and BMPs under Soil Sealing: A Study Case in a Peri-Urban Watershed of the Metropolitan Area of Rome (Italy). J. Environ. Manag. 2017, 201, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Qazi, N.Q.; Bruijnzeel, L.A.; Rai, S.P.; Ghimire, C.P. Impact of Forest Degradation on Streamflow Regime and Runoff Response to Rainfall in the Garhwal Himalaya, Northwest India. Hydrol. Sci. J. 2017, 62, 1114–1130. [Google Scholar] [CrossRef]
- Gelagay, H.S.; Minale, A.S. Soil Loss Estimation Using GIS and Remote Sensing Techniques: A Case of Koga Watershed, Northwestern Ethiopia. Int. Soil Water Conserv. Res. 2016, 4, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Romshoo, S.A.; Rashid, I.; Altaf, S.; Dar, G.H. Jammu and Kashmir State: An Overview. In Biodiversity of the Himalaya: Jammu and Kashmir State; Springer: Singapore, 2020; pp. 129–166. ISBN 978-981-329-173-7. [Google Scholar]
- Du, S.; Shi, P.; Van Rompaey, A.; Wen, J. Quantifying the Impact of Impervious Surface Location on Flood Peak Discharge in Urban Areas. Nat. Hazards 2015, 76, 1457–1471. [Google Scholar] [CrossRef]
- Gilroy, K.L.; McCuen, R.H. A Nonstationary Flood Frequency Analysis Method to Adjust for Future Climate Change and Urbanization. J. Hydrol. 2012, 414, 40–48. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Yu, B.; Klik, A.; Jae Lim, K.; Yang, J.E.; Ni, J.; Miao, C.; Chattopadhyay, N.; et al. Global Rainfall Erosivity Assessment Based on High-Temporal Resolution Rainfall Records. Sci. Rep. 2017, 7, 4175. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Wan, L.; Cui, M.; Wu, B.; Zhou, J. Influence of Canopy Interception and Rainfall Kinetic Energy on Soil Erosion under Forests. Forests 2019, 10, 509. [Google Scholar] [CrossRef] [Green Version]
- Altaf, F.; Meraj, G.; Romshoo, S.A. Morphometric Analysis to Infer Hydrological Behaviour of Lidder Watershed, Western Himalaya, India. Geogr. J. 2013, 2013, 178021. [Google Scholar] [CrossRef]
- Bhat, S.; Romshoo, S.A. Digital Elevation Model Based Watershed Characteristics of Upper Watersheds of Jhelum Basin. J. Appl. Hydrol. 2009, 21, 23–34. [Google Scholar]
- de Dieu Nambajimana, J.; He, X.; Zhou, J.; Justine, M.F.; Li, J.; Khurram, D.; Mind’je, R.; Nsabimana, G. Land Use Change Impacts on Water Erosion in Rwanda. Sustainability 2020, 12, 50. [Google Scholar] [CrossRef] [Green Version]
- Petit, C.C.; Lambin, E.F. Long-Term Land-Cover Changes in the Belgian Ardennes (1775–1929): Model-Based Reconstruction vs. Historical Maps. Glob. Chang. Biol. 2002, 8, 616–630. [Google Scholar] [CrossRef]
- Tullos, D.; Byron, E.; Galloway, G.; Obeysekera, J.; Prakash, O.; Sun, Y.-H. Review of Challenges of and Practices for Sustainable Management of Mountain Flood Hazards. Nat. Hazards 2016, 83, 1763–1797. [Google Scholar] [CrossRef]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The Flood Pulse Concept in River-Floodplain Systems. Can. Spec. Publ. Fish. Aquat. Sci. 1989, 106, 110–127. [Google Scholar]
- Sparks, R.E. Need for Ecosystem Management of Large Rivers and Their Floodplains. BioScience 1995, 45, 168–182. [Google Scholar] [CrossRef]
- Bhatt, C.M.; Rao, G.S.; Farooq, M.; Manjusree, P.; Shukla, A.; Sharma, S.; Kulkarni, S.S.; Begum, A.; Bhanumurthy, V.; Diwakar, P.G. Satellite-Based Assessment of the Catastrophic Jhelum Floods of September 2014, Jammu & Kashmir, India. Geomat. Nat. Hazards Risk 2017, 8, 309–327. [Google Scholar]
- Lu, Q.; Gao, Z.; Ning, J.; Bi, X.; Wang, Q. Impact of Progressive Urbanization and Changing Cropping Systems on Soil Erosion and Net Primary Production. Ecol. Eng. 2015, 75, 187–194. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Xiao, Y.; Rao, E.-M.; Jiang, L.; Xiao, Y.; Ouyang, Z.-Y. An Assessment of the Impact of Urbanization on Soil Erosion in Inner Mongolia. Int. J. Environ. Res. Public Health 2018, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-S.; Julien, P.Y. Soil Erosion Modeling Using RUSLE and GIS on the IMHA Watershed. Water Eng. Res. 2006, 7, 29–41. [Google Scholar]
- Habersack, H.; Liébault, F.; Comiti, F. Sediment Dynamics in Alpine Basins. Geomorphology 2017, 291, 1–3. [Google Scholar] [CrossRef]
- O’Brien, G.C.; Dickens, C.; Baker, C.; Stassen, R.; van Weert, F. Sustainable Floodplains: Linking E-Flows to Floodplain Management, Ecosystems, and Livelihoods in the Sahel of North Africa. Sustainability 2020, 12, 10578. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Ali, N.; Rashid, I. Geoinformatics for Characterizing and Understanding the Spatio-Temporal Dynamics (1969 to 2008) of Hokersar Wetland in Kashmir Himalayas. Int. J. Phys. Sci. 2011, 6, 1026–1038. [Google Scholar]
Plane Parameters | Parameters Definitions | Channel Parameters | Parameter Definitions |
---|---|---|---|
Length | Length (m) | Upstream | Upstream Identifier(s) to ten upstream contributing elements |
Width | Width (m) | Lateral | Identifier(s) of up to two plane elements contributing lateral inflow |
Slope | Slope (rise/run) | Length | Length (m) |
Manning | Roughness coefficient (sm−1/3) | Width | Bottom Width (m) |
K | Saturated hydraulic conductivity (mm/h) | Slope | Bottom Slope (rise/run) |
G | Mean capillary drive, mm | Manning | Roughness coefficient (sm−1rs) |
Porosity | Porosity | SAT | Initial degree of soil saturation |
ROCK | Volumetric rock fraction | SS1, SS2 | Bank side slopes-right or left |
DIST | Pore size distribution index | Kfs | Saturated hydraulic conductivity (mm/h) |
CV | Coefficient of variation of K | G | Mean capillary drive, mm |
INTER | Interception depth (mm) | Porosity | Porosity |
CANOPY | Fraction of surface covered by intercepting cover | ROCK | Volumetric rock fraction |
FRACT | List of particle class fraction | DIST | Pore size distribution index |
SPLASH | Rain splash coefficient | COH | Soil cohesion coefficient |
COH | Soil cohesion coefficient | FRACT | List of particle class fractions |
TYPE | Simple or Compound |
S. No. | Parameters | Source | Year | Resolution | Sources |
---|---|---|---|---|---|
1. | Slope and Aspect | CARTO DEM | 2014 | 28 (m) | http://bhuvan.nrsc.gov.in (accessed on 20 August 2021) |
2. | Land Use Land Cover | Landsat | 1980, 2014, and 2020 | 60 (m) and 30 (m) | http://earthexplorer.usgs.gov (accessed on 20 August 2021) |
3. | Soil Database | Digital soil map of the world | 2013 | 1:5 Million | http://www.fao.org (accessed on 2 February 2022) |
4. | Precipitation | Average rainfall Depth | 3–6 September 2014 | Daily | Indian Metrological Department (IMD) |
5. | Soil Moisture | Volumetric soil moisture (%) | 3–6 September 2014 | Daily | https://climate.copernicus.eu/climate-data-store (accessed on 2 February 2022) |
6. | Discharge Data | Gauge recorder | 3–6 September 2014 | Daily | Irrigation and Flood Control (IFC) |
Land Use/Land Cover Type | 1980 (% Area) | 2014 (% Area) | 2020 (% Area) | 1980–2014 (% Change) | 2014–2020 (% Change) |
---|---|---|---|---|---|
Agriculture | 25.40 | 12.13 | 9.98 | −13.27 | −2.2 |
Barren | 0.68 | 1.21 | 1.26 | 0.53 | 0.1 |
Built-Up | 0.51 | 1.89 | 2.58 | 1.38 | 0.7 |
Degraded Forest | 6.11 | 8.99 | 9.67 | 2.88 | 0.7 |
Exposed Rock | 11.49 | 10.82 | 12.69 | −0.68 | 1.9 |
Forest | 31.99 | 27.85 | 26.79 | −4.14 | −1.1 |
Glacier | 0.28 | 1.14 | 1.10 | 0.86 | 0.0 |
Horticulture | 4.31 | 15.32 | 17.08 | 11.01 | 1.8 |
Pasture | 1.04 | 1.06 | 1.07 | 0.02 | 0.0 |
Plantation | 1.39 | 2.15 | 2.02 | 0.76 | −0.1 |
River Bed | 2.15 | 1.46 | 1.49 | −0.69 | 0.0 |
Scrub | 12.01 | 13.33 | 13.32 | 1.32 | 0.0 |
Snow | 1.57 | 1.80 | 0.19 | 0.23 | −1.6 |
Water | 1.07 | 0.86 | 0.76 | −0.21 | −0.1 |
Events | 3 September 2014 | 4 September 2014 | 5 September 2014 | 6 September 2014 |
---|---|---|---|---|
Rainfall Depth (mm) | 55.22 | 98.2 | 127.2 | 101.32 |
Initial Soil Moisture (%) | 79% | 88% | 72% | 89% |
Observed discharge | 66,082 | 98,257 | 107,647 | 115,218 |
Simulated discharge | 64,104 | 103,455 | 111,447 | 115,101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousuf, A.; Romshoo, S.A. Impact of Land System Changes and Extreme Precipitation on Peak Flood Discharge and Sediment Yield in the Upper Jhelum Basin, Kashmir Himalaya. Sustainability 2022, 14, 13602. https://doi.org/10.3390/su142013602
Yousuf A, Romshoo SA. Impact of Land System Changes and Extreme Precipitation on Peak Flood Discharge and Sediment Yield in the Upper Jhelum Basin, Kashmir Himalaya. Sustainability. 2022; 14(20):13602. https://doi.org/10.3390/su142013602
Chicago/Turabian StyleYousuf, Aazim, and Shakil Ahmad Romshoo. 2022. "Impact of Land System Changes and Extreme Precipitation on Peak Flood Discharge and Sediment Yield in the Upper Jhelum Basin, Kashmir Himalaya" Sustainability 14, no. 20: 13602. https://doi.org/10.3390/su142013602
APA StyleYousuf, A., & Romshoo, S. A. (2022). Impact of Land System Changes and Extreme Precipitation on Peak Flood Discharge and Sediment Yield in the Upper Jhelum Basin, Kashmir Himalaya. Sustainability, 14(20), 13602. https://doi.org/10.3390/su142013602