The Hydrochemistry, Ionic Source, and Chemical Weathering of a Tributary in the Three Gorges Reservoir
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Sampling
2.3. Methodology
3. Results
3.1. Physical and Chemical Parameters
3.2. The Analysis of Riverine Main Ions
3.3. Correlation Analysis of Hydrochemical Parameters
4. Discussions
4.1. Spatial Differentiation of Hydrochemical Characteristics
4.1.1. Physical and Chemical Parameters Variation
4.1.2. Spatial Characteristics of Cations
4.1.3. Spatial Characteristics of Anions
4.2. Influence of Rock Weathering on Hydrochemistry
4.3. The Estimation of the Ion Sources
4.3.1. Atmospheric Input
4.3.2. Anthropogenic Input
4.3.3. Rock Weathering Sources
4.3.4. The Contribution Rates
4.4. Rock Weathering and CO2 Consumption
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moquet, J.-S.; Guyot, J.-L.; Crave, A.; Viers, J.; Filizola, N.; Martinez, J.-M.; Oliveira, T.C.; Sánchez, L.S.H.; Lagane, C.; Casimiro, W.S.L.; et al. Amazon River dissolved load: Temporal dynamics and annual budget from the Andes to the ocean. Environ. Sci. Pollut. Res. 2016, 23, 11405–11429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maavara, T.; Chen, Q.; Van Meter, K.; Brown, L.E.; Zhang, J.; Ni, J.; Zarfl, C. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 2020, 1, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Li, S.-L.; Liu, C.-Q.; Li, J.; Lang, Y.-C.; Ding, H.; Li, L.-B. Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China: Isotopic and chemical constraints. Chem. Geol. 2010, 277, 301–309. [Google Scholar] [CrossRef]
- Wu, W.-H.; Zheng, H.-B.; Yang, J.-D.; Luo, C.; Zhou, B. Chemical weathering, atmospheric CO2 consumption, and the controlling factors in a subtropical metamorphic-hosted watershed. Chem. Geol. 2013, 356, 141–150. [Google Scholar] [CrossRef]
- Jiang, L.-G.; Yao, Z.-J.; Liu, Z.-F.; Wang, R.; Wu, S.-S. Hydrochemistry and its controlling factors of rivers in the source region of the Yangtze River on the Tibetan Plateau. J. Geochem. Explor. 2015, 155, 76–83. [Google Scholar] [CrossRef]
- Chetelat, B.; Liu, C.-Q.; Zhao, Z.-Q.; Wang, Q.-L.; Li, S.-L.; Li, J.; Wang, B.-L. Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering. Geochim. Cosmochim. Acta 2008, 72, 4254–4277. [Google Scholar] [CrossRef]
- Wang, P.; Yu, J.-J.; Zhang, Y.-C.; Liu, C.-M. Groundwater recharge and hydrogeochemical evolution in the Ejina Basin, northwest China. J. Hydrol. 2013, 476, 72–86. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Meybeck, M. Total mineral dissolved transport by major world rivers. Hydrol. Sci. Bull. 1976, 20, 265–284. [Google Scholar] [CrossRef]
- Stallard, R.-F.; Edmond, J.-M. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. J. Geophys. Res. Ocean. 1983, 88, 9671–9688. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allègre, C. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Berner, R.A.; Berner, R.A. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 1991, 291, 339–376. [Google Scholar] [CrossRef]
- Amiotte Suchet, P.; Probst, J.L. Modelling of atmospheric CO2 consumption by chemical weathering of rocks: Application to the Garonne, Congo and Amazon basins. Chem. Geol. 1993, 107, 205–210. [Google Scholar] [CrossRef]
- Sun, P.; Ma, Z.; Zhang, Q.; Singh, V.-P.; Xu, C.-Y. Modified drought severity index: Model improvement and its application in drought monitoring in China. J. Hydrol. 2022, 612, 128097. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Gao, B.; Xu, D.Y.; Peng, W.-Q.; Liu, X.-B.; Qu, X.-D.; Zhang, M. Hydrodynamic impact on trace metals in sediments in the cascade reservoirs, North China. Sci. Total Environ. 2020, 716, 136914. [Google Scholar] [CrossRef]
- Zhou, Z.-W.; Zhou, Z.-F.; Xu, H.-Y.; Li, M.-W. The Hydrochemical and Isotopic Evolution of the Surface Water and Groundwater for Impoundment in the Xiluodu Reservoir, Jinsha River, China. Sustainability 2020, 12, 5805. [Google Scholar] [CrossRef]
- Chen, Q.-W.; Shi, W.-Q.; Huisman, J.; Maberly, S.C.; Zhang, J.-Y.; Yu, J.-H.; Yi, Q.-T. Hydropower reservoirs on the upper Mekong River modify nutrient bioavailability downstream. Natl. Sci. Rev. 2020, 7, 1449–1457. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Sun, F.-B.; Liu, W.-B. Characteristics of streamflow in the main stream of Changjiang River and the impact of the Three Gorges Dam. Catena 2020, 189, 104498. [Google Scholar] [CrossRef]
- Yang, L.-H.; Zeng, S.-D.; Xia, J.; Wang, Y.-L.; Huang, R.-Y.; Chen, M.-H. Effects of the Three Gorges Dam on the downstream streamflow based on a large-scale hydrological and hydrodynamics coupled model. J. Hydrol. Reg. Stud. 2022, 40, 101039. [Google Scholar] [CrossRef]
- Zhang, S.-J.; Tang, Q.; Bao, Y.-H.; He, X.-B.; Tian, F.-X.; Lü, F.-Y.; Wang, M.-F.; Anjum, R. Effects of seasonal water-level fluctuation on soil pore structure in the Three Gorges Reservoir, China. J. Mt. Sci. 2018, 15, 2192–2206. [Google Scholar] [CrossRef]
- Dai, H.-C.; Zheng, T.-G.; Liu, D.-F. Effects of Reservoir Impounding on Key Ecological Factors in the Three Gorges Region. Procedia Environ. Sci. 2010, 2, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Xiang, R.; Wang, L.-J.; Li, H.; Tian, Z.-B.; Zheng, B.-H. Water quality variation in tributaries of the Three Gorges Reservoir from 2000 to 2015. Water Res. 2021, 195, 116993. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.-Z.; Tao, Z.; Huang, X.-K.; Nan, L.; Yu, K.-F.; Wang, Z.-G. Chemical weathering and CO2 consumption in the Xijiang River basin, South China. Geomorphology 2009, 106, 324–332. [Google Scholar] [CrossRef]
- Stallard, R.F.; Edmond, J.M. Geochemistry of the Amazon: 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. J. Geophys. Res. Ocean. 1981, 86, 9844–9858. [Google Scholar] [CrossRef]
- Zhang, Q.-Z.; Tao, Z.; Ma, Z.-W.; Tang, W.-K.; Gao, Q.-Z.; Xu, P.; Lin, Y.-W. Riverine hydrochemistry and CO2 consumption in the tropic monsoon region: A case study in a granite-hosted basin, Hainan Island, China. Environ. Earth Sci. 2016, 75, 436. [Google Scholar] [CrossRef]
- Li, S.-Y.; Xu, Z.-F.; Wang, H.; Wang, J.-H.; Zhang, Q.-F. Geochemistry of the upper Han River basin, China: 3: Anthropogenic inputs and chemical weathering to the dissolved load. Chem. Geol. 2009, 264, 89–95. [Google Scholar] [CrossRef]
- Li, S.-Y.; Lu, X.-X.; Bush, R.T. Chemical weathering and CO2 consumption in the Lower Mekong River. Sci. Total Environ. 2014, 472, 162–177. [Google Scholar] [CrossRef]
- Han, G.-L.; Liu, C.-Q. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chem. Geol. 2004, 204, 1–21. [Google Scholar] [CrossRef]
- Li, Z.; Zhong, J.; Li, S.-L.; Lang, Y.-C.; Zhu, X.-T.; Chen, S. The effects of hydrological variations on chemical weathering: Evidences from temporal water chemistry, stable carbon and sulfur isotopes. Catena 2022, 214, 106301. [Google Scholar] [CrossRef]
- Moon, S.; Chamberlain, C.P.; Hilley, G.E. New estimates of silicate weathering rates and their uncertainties in global rivers. Geochim. Cosmochim. Acta 2014, 134, 257–274. [Google Scholar] [CrossRef]
- Wang, D.; Han, G.-L.; Li, B.-G.; Hu, M.-M.; Wang, Y.-C.; Liu, J.-K.; Li, X.-Q. Characteristics of Ions Composition and Chemical Weathering of Tributary in the Three Gorges Reservoir Region: The Perspective of Stratified Water Sample from Xiaojiang River. Water 2022, 14, 379. [Google Scholar] [CrossRef]
pH | ORP | DO | EC | RES | TDS | K+ | Na+ | Ca2+ | Mg2+ | Cl− | NO3− | SO42− | DSi | HCO3− | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | ||||||||||||||
ORP | −0.435 ** | 1 | |||||||||||||
DO | 0.757 ** | −0.383 ** | 1 | ||||||||||||
EC | 0.534 ** | −0.380 ** | 0.227 | 1 | |||||||||||
RES | −0.302 ** | 0.254 * | 0.088 | −0.853 ** | 1 | ||||||||||
TDS | 0.534 ** | −0.380 ** | 0.227 | 1.00 ** | −0.853 ** | 1 | |||||||||
K+ | −0.042 | −0.233 * | −0.248 * | 0.454 ** | −0.478 ** | 0.454 ** | 1 | ||||||||
Na+ | −0.662 ** | 0.416 ** | −0.721 ** | −0.445 ** | 0.178 | −0.445 ** | 0.149 | 1 | |||||||
Ca2+ | 0.594 ** | −0.367 ** | 0.340 ** | 0.964 ** | −0.790 ** | 0.964 ** | 0.308 ** | −0.571 ** | 1 | ||||||
Mg2+ | 0.430 ** | −0.275 * | 0.057 | 0.866 ** | −0.703 ** | 0.866 ** | 0.262 * | −0.347 ** | 0.858 ** | 1 | |||||
Cl− | −0.654 ** | 0.394 ** | −0.783 ** | −0.392 ** | 0.094 | −0.392 ** | 0.194 | 0.959 ** | −0.522 ** | −0.291 * | 1 | ||||
NO3− | −0.277 * | 0.027 | −0.094 | −0.091 | 0.070 | −0.091 | −0.198 | 0.093 | −0.118 | −0.071 | 0.093 | 1 | |||
SO42− | 0.121 | −0.271 | 0.125 | 0.514 ** | −0.281 | 0.514 ** | −0.115 | −0.248 | 0.369 * | −0.140 | −0.230 | 0.152 | 1 | ||
DSi | −0.159 | 0.086 | −0.324 ** | −0.032 | 0.058 | −0.032 | 0.118 | 0.082 | −0.061 | 0.127 | 0.067 | −0.190 | −0.118 | ||
HCO3− | 0.435 ** | −0.262 * | 0.372 ** | 0.590 ** | −0.611 ** | 0.590 ** | 0.314 ** | −0.376 ** | 0.626 ** | 0.248 * | −0.428 ** | −0.124 | 0.365 * | −0.153 | 1 |
Section | Atmospheric Input (%) | Agricultural Fertilization (%) | Domestic Water Discharge (%) | Silicate Weathering (%) | Carbonates Weathering (%) | |
---|---|---|---|---|---|---|
Lower Reservoir Area | Average | 4.66 | 4.68 | 23.11 | 20.12 | 47.47 |
Range | 4.57~4.79 | 3.87~5.41 | 21.28~24.29 | 18.68~21.37 | 46.11~50 | |
Standard Deviation | 0.07 | 0.48 | 0.84 | 0.90 | 1.10 | |
Huangjin Rive | Average | 4.32 | 1.46 | 6.66 | 16.73 | 70.86 |
Range | 2.67~8.27 | 0.16~4.50 | 2.57~21.93 | 10.64~33.18 | 49.45~81.11 | |
Standard Deviation | 1.11 | 1.24 | 4.32 | 4.96 | 8.54 | |
Sanhui River | Average | 3.81 | 0.98 | 4.73 | 11.21 | 79.46 |
Range | 1.57~8.34 | 0.02~4.37 | 0.08~21.38 | 2.42~31.51 | 50.38~95.83 | |
Standard Deviation | 1.69 | 1.09 | 5.15 | 7.27 | 12.54 | |
Baishi River | Average | 3.07 | 1.04 | 4.12 | 8.12 | 83.71 |
Range | 1.77~6.01 | 0.01~3% | 0.06~14.13 | 2.50~21.67 | 67.15~95.77 | |
Standard Deviation | 1.14 | 0.82 | 3.31 | 4.47 | 7.39 | |
The Basin | Average | 4.01 | 2.09 | 9.96 | 14.38 | 69.63 |
Deviation | 1.28 | 1.83 | 8.81 | 6.71 | 16.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Jin, K.; Dong, L.; Zhao, R.; Liu, W.; Lu, Y.; Gan, X.; Hu, Y.; Zhao, C. The Hydrochemistry, Ionic Source, and Chemical Weathering of a Tributary in the Three Gorges Reservoir. Sustainability 2022, 14, 15376. https://doi.org/10.3390/su142215376
Zhang Q, Jin K, Dong L, Zhao R, Liu W, Lu Y, Gan X, Hu Y, Zhao C. The Hydrochemistry, Ionic Source, and Chemical Weathering of a Tributary in the Three Gorges Reservoir. Sustainability. 2022; 14(22):15376. https://doi.org/10.3390/su142215376
Chicago/Turabian StyleZhang, Qianzhu, Ke Jin, Linyao Dong, Ruiyi Zhao, Wenxiang Liu, Yang Lu, Xiaoqing Gan, Yue Hu, and Cha Zhao. 2022. "The Hydrochemistry, Ionic Source, and Chemical Weathering of a Tributary in the Three Gorges Reservoir" Sustainability 14, no. 22: 15376. https://doi.org/10.3390/su142215376
APA StyleZhang, Q., Jin, K., Dong, L., Zhao, R., Liu, W., Lu, Y., Gan, X., Hu, Y., & Zhao, C. (2022). The Hydrochemistry, Ionic Source, and Chemical Weathering of a Tributary in the Three Gorges Reservoir. Sustainability, 14(22), 15376. https://doi.org/10.3390/su142215376