Modeling the Level of Drinking Water Clarity in Surabaya City Drinking Water Regional Company Using Combined Estimation of Multivariable Fourier Series and Kernel
Abstract
:1. Introduction
2. Materials and Techniques
3. Results and Discussion
3.1. Mixed Kernel Model and Multivariable Fourier Series in Semiparametric Regression
3.2. Smoothing Parameter Selection
4. Modeling Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Notations
Symbol | Meaning |
Response variable to i | |
The predictor variable to p on the parametric component x for the i-th subject. the ith predictor variable on the kth parametric component The p-th predictor variable on the parametric component for the i-th subject | |
The predictor variable to k on the nonparametric component t for the i-th subject. | |
The predictor variable to r on the nonparametric component z for the i-th subject. | |
, | Fourier Series parameters |
Parametric component parameter vector/regression coefficient vector | |
Parametric function for parametric components | |
Kernel functions for nonparametric components | |
Fourier Series functions for nonparametric components | |
Random error vector with | |
Error variance | |
Bandwidth | |
Vector containing the parameters of the Fourier Series measuring (S + 2) × 1. | |
The matrix containing the coefficients of the multivariable Fourier Series of n × (S + 2). | |
Smoothing parameter | |
Oscillation parameters | |
Sum square error | |
Sum square total | |
The invers of matrix | |
Kernel function | |
The trace of matrix | |
Matrix D* | |
Expectation | |
Generalized cross validation | |
Identity matrix | |
S | Oscillation of a Fourier Series function |
Coefficient of determination | |
The matrix containing the coefficients of the multivariable Fourier Series of n × r(S + 2). | |
Multivariable Fourier Series parameter matrices of size (S + 2) × 1 | |
Goodness of fit component function semiparametric regression mixed with Kernel and Fourier Series | |
Penalty component function mixed semiparametric regression Kernel and Fourier Series | |
The integral of a function L | |
The integral of a function M | |
Matrix containing Kernel weights of size n × n. | |
Matrix containing multivariable Fourier Series coefficients of size . | |
Matrix containing matrices P. | |
Parametric component predictor variable matrix of size | |
Matrix containing univariable Fourier Series coefficients of size . | |
j-th smoothing parameter | |
Vector containing parameter estimates of parametric components | |
Parameter vector containing parameter estimates of parametric and nonparametric components | |
Coefficient of determination | |
Real number | |
Norm/vector length |
References
- The Regulation of the Minister of Health of the Republic of Indonesia no. 416/Menkes/per/IX/1990. 1990. Available online: https://baristandsamarinda.kemenperin.go.id/download/PerMenKes416(1990)-Syarat&Pengawasan_Kualitas_Air.pdf (accessed on 17 May 2022).
- Okumura, H.; Naito, K. Non-parametric Kernel Regression for Multinomial Data. J. Multivar. Anal. 2006, 97, 2009–2022. [Google Scholar] [CrossRef] [Green Version]
- Nadaraya, E.A.; Watson, G.S. On Estimating Regression. Theory Probab. Its Appl. 1964, 9, 141–142. [Google Scholar] [CrossRef]
- Eubank, R.L. Spline Smoothing and Nonparametric Regression; Mercel Dekker: New York, NY, USA, 1988. [Google Scholar]
- Wood, S.N. On Confidence Intervals for Generalized Additive Models Based on Penalized Regression Spline. Aust. N. Z. J. Stat. 2006, 48, 445–464. [Google Scholar] [CrossRef]
- Iqbal, A.; Abd Hamid, N.N.; Ismail, A.I.M.; Abbas, M. Galerkin approximation with quintic B-spline as basis and weight functions for solving second order coupled nonlinear Schrödinger equations. Math. Comput. Simul. 2021, 187, 1–16. [Google Scholar] [CrossRef]
- Kim, T.W.; Kvasov, B. A shape-preserving approximation by weighted cubic splines. J. Comput. Appl. Math. 2012, 236, 4383–4397. [Google Scholar] [CrossRef] [Green Version]
- Ruppert, D. Selecting the number of knots for penalized splines. J. Comput. Graph. Stat. 2002, 11, 735–757. [Google Scholar] [CrossRef]
- Wahba, G. Spline Models for Observasion Data; SIAM: Philadelphia, PA, USA, 1990. [Google Scholar]
- Nisa, K.; Budiantara, I.N.; Tuty, A. Multivariable Semiparametric Regression Model with Combined Estimator of Fourier Series and Kernel. IOP Conf. Ser. Earth Environ. Sci. 2017, 58, 012028. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, P.K.; Zhao, P.L. Semiparametric Inference in a Partial Linear Model. Ann. Stat. 1997, 1, 244–262. [Google Scholar] [CrossRef]
- Smith, M.; Kohan, R.; Mathur, S.K. Bayesian Semiparametric Regression: An Exposition and Application to Print Advertising Data. J. Bus. Res. 2000, 49, 229–244. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Paige, R.L.; Sun, S.; Yan, K. Variance Reduction for Kernel Estimations in Clustered/Longitudinal Data Analysis. J. Stat. Plan. Inference 2010, 140, 1389–1397. [Google Scholar] [CrossRef]
- Manzana, S.; Zerom, D. Kernel Estimation of a Partially Linear Additive Model. Stat. Probab. Lett. 2005, 72, 313–322. [Google Scholar] [CrossRef]
- Amato, U.; Antoniadis, A.; De Feis, I. Fourier Series Approximation of Separable Models. J. Comput. Appl. Math. 2002, 146, 459–479. [Google Scholar] [CrossRef] [Green Version]
- Morton, J.; Silverberg, L. Fourier Series of Half-Range Functions by Smooth Extension. Appl. Math. Model. 2009, 33, 812–821. [Google Scholar] [CrossRef]
- Mardianto, M.F.F.; Kartiko, S.H.; Utami, H. Forecasting Trend-Seasonal Data Using Nonparametric Regression with Kernel and Fourier Series Approach. In Proceedings of the Third International Conference on Computing, Mathematics and Statistics (ICMS2017); Springer: Singapore, 2019; pp. 343–349. [Google Scholar]
- Nisa, K. Semiparametrik Regression Model with Combined Estimator of Truncated Spline and Fourier Series (Case Study: Life Expectancy of East Java Province). Master’s Thesis, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, 2017. Available online: https://core.ac.uk/download/pdf/291461498.pdf (accessed on 27 June 2022).
- Pane, R.; Budiantara, I.N.; Zain, I.; Otok, B.W. Parametric and Nonparametric Estimators in Fourier Series Semiparametric Regression and Their Characteristics. Appl. Math. Sci. 2014, 8, 5053–5064. [Google Scholar] [CrossRef]
- Hardle, W. Applied Nonparametric Regression; Humboldt Universität zu Berlin: Berlin, Germany, 1994. [Google Scholar]
- Bilodeau, M. Fourier Smoother and Additive Models. Can. J. Stat. 1992, 3, 257–269. [Google Scholar] [CrossRef]
- Kayri, M.; Zirhoglu, G. Kernel Smoothing Function and Choosing Bandwidth for Nonparametric Regression Techniques. Ozean J. Appl. Sci. 2009, 2, 49–60. [Google Scholar]
- Lin, Y.; Zhang, H.H. Component Selection and Smoothing in Multivariate Nonparametric Regression. Ann. Stat. 2006, 34, 2272–2297. [Google Scholar] [CrossRef]
- Hefni, E. Water Quality Review: For Management of Aquatic Resources and Environment; Kanisius: Yogyakarta, Indonesia, 2003. [Google Scholar]
- Sutrisno, T. Clean Water Supply Technology; PT Rineka Cipta: Jakarta, Indonesia, 2004. [Google Scholar]
- Aydin, D.; Memmedli, M.; Omay, R.E. Smoothing Parameter Selection for Nonparametric Regression Using Smoothing Spline. Eur. J. Pure Appl. Math. 2013, 6, 222–238. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ampa, A.T.; Budiantara, I.N.; Zain, I. Modeling the Level of Drinking Water Clarity in Surabaya City Drinking Water Regional Company Using Combined Estimation of Multivariable Fourier Series and Kernel. Sustainability 2022, 14, 13663. https://doi.org/10.3390/su142013663
Ampa AT, Budiantara IN, Zain I. Modeling the Level of Drinking Water Clarity in Surabaya City Drinking Water Regional Company Using Combined Estimation of Multivariable Fourier Series and Kernel. Sustainability. 2022; 14(20):13663. https://doi.org/10.3390/su142013663
Chicago/Turabian StyleAmpa, Andi Tenri, I Nyoman Budiantara, and Ismaini Zain. 2022. "Modeling the Level of Drinking Water Clarity in Surabaya City Drinking Water Regional Company Using Combined Estimation of Multivariable Fourier Series and Kernel" Sustainability 14, no. 20: 13663. https://doi.org/10.3390/su142013663
APA StyleAmpa, A. T., Budiantara, I. N., & Zain, I. (2022). Modeling the Level of Drinking Water Clarity in Surabaya City Drinking Water Regional Company Using Combined Estimation of Multivariable Fourier Series and Kernel. Sustainability, 14(20), 13663. https://doi.org/10.3390/su142013663