Accumulative Strain of Sand-Containing Soft Soil Reinforced by Cement and Sodium Silicate under Traffic Loading
Abstract
:1. Introduction
2. Laboratory Test Program
2.1. Materials and Test Device
2.2. Specimen Preparation and Experimental Scheme
3. Results and Discussion
3.1. Influence of Sand Content on Accumulative Strain
3.2. Influence of Cement Content on Accumulative Strain
3.3. Influence of Confining Pressure on Accumulative Strain
3.4. Influence of Repeated Cyclic Stress Amplitude on Accumulative Strain
3.5. Influence of Curing Time on Accumulative Strain
4. Accumulative Strain Model
4.1. Improved Barksdale Model
4.2. Model Calibration
5. Conclusions
- (1)
- For a given number of loading cycles, the accumulative strain of the specimen with a low sand content (10%) is about half of that of the specimen with a high sand content (35%). When cement content is greater than 12%, the accumulative strain changes slightly with the increasing cement content. It becomes clear that for a given number of loading cycles, the accumulative strain of the specimen with larger confining pressures is smaller.
- (2)
- When the number of loading cycles is equal to 2000, the accumulative strain increases from 0.25% to 1.01%, which means a 300 percent growth as the repeated cyclic stress amplitude increases from 0.124 kN to 0.25 kN. It is obvious that when the curing time is greater than 7 d, the accumulative strain exhibits an almost decreasing trend linearly with increasing curing time.
- (3)
- The accumulative strain model is proposed based on experiment data. The calculated results of the accumulative strain model agree reasonably well with experimental data. Hence, the accumulative strain model can better describe the characteristic of accumulative strain.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Zhao, J.; Wang, Y.; Yi, N.; Cui, C. Strength Performance and Microstructure of Calcium Sulfoaluminate Cement-Stabilized Soft Soil. Sustainability 2021, 13, 2295. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Yang, G.; Pu, C.; Jin, J. Field Test on Deformation Characteristics of Pile-Supported Reinforced Embankment in Soft Soil Foundation. Sustainability 2022, 14, 7805. [Google Scholar] [CrossRef]
- Dai, C.X.; Zhang, Q.F.; He, S.H.; Zhang, A.; Shan, H.F.; Xia, T.D. Variation in Micro-Pores during Dynamic Consolidation and Compression of Soft Marine Soil. J. Mar. Sci. Eng. 2021, 9, 750. [Google Scholar] [CrossRef]
- Azijul, I.M.; Sahadat, H.M.; Fahim, B.F.; Prabesh, B. Numerical Study of Recycled-Plastic-Pin- and Geosynthetic-Platform-Supported Embankment over Soft Soil. Transport. Res. Rec. 2022, 2676, 159–171. [Google Scholar]
- Oliveira, P.J.V.; Santos, S.L.; Correia, A.A.S.; Lemos, L.J.L. Numerical Prediction of the Creep Behaviour of an Embankment Built on Soft Soils Subjected to Preloading. Comput. Geotech. 2019, 114, 103140. [Google Scholar] [CrossRef]
- Ghosh, B.; Fatahi, B.; Khabbaz, H.; Khabbaz, H.; Yin, J.H. Analytical Study for Double-Layer Geosynthetic Reinforced Load Transfer Platform on Column Improved Soft Soil. Geotext. Geomembr. 2017, 45, 508–536. [Google Scholar] [CrossRef] [Green Version]
- Cristelo, N.; Cunha, V.; Gomes, A.T.; Araújo, N.; Miranda, T.; Lopes, M.L. Influence of Fiber Reinforcement on the Post-Cracking Behaviour of a Cement-Stabilised Sandy-Clay Subjected to Indirect Tensile Stress. Constr. Build. Mater. 2017, 138, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, J.; Li, Z. Shear Behaviour of a Geogrid-Reinforced Coarse-Grained Soil Based on Large-Scale Triaxial Tests. Geotext. Geomembr. 2014, 42, 312–328. [Google Scholar] [CrossRef]
- Liang, S.; Chen, J.; Guo, M.; Feng, D.; Liu, L.; Qi, T. Utilization of Pretreated Municipal Solid Waste Incineration Fly Ash for Cement-Stabilized Soil. Waste Manag. 2020, 105, 425–432. [Google Scholar] [CrossRef]
- Chowdary, V.B.; Ramanamurty, V.; Pillai, R.J. Experimental Evaluation of Strength and Durability Characteristics of Geopolymer Stabilised Soft Soil for Deep Mixing Applications. Innov. Infrastruct. Solut. 2021, 6, 40. [Google Scholar] [CrossRef]
- Chen, R.; Zhu, Y.; Lai, H.P.; Bao, W.X. Stabilization of Soft Soil Using Low-Carbon Alkali-Activated Binder. Environ. Earth Sci. 2020, 79, 510. [Google Scholar] [CrossRef]
- Liu, J.; Hou, T.; Luo, Y.; Cui, Y. Experimental Study on Unconsolidated Undrained Shear Strength Characteristics of Synthetic Cotton Fiber Reinforced Soil. Geotech. Geol. Eng. 2020, 38, 1773–1783. [Google Scholar] [CrossRef]
- Anggraini, V.; Asadi, A.; Huat, B.B.K.; Nahazanan, H. Effects of Coir Fibers on Tensile and Compressive Strength of Lime Treated Soft Soil. Measurement 2015, 59, 372–381. [Google Scholar] [CrossRef]
- Liu, C.; Lv, Y.; Yu, X.; Wu, X. Effects of Freeze-Thaw Cycles on the Unconfined Compressive Strength of Straw Fiber-Reinforced Soil. Geotext. Geomembr. 2020, 48, 581–590. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Niu, B. Assessment of the Mechanical Properties of Sisal Fiber-Reinforced Silty Clay Using Triaxial Shear Tests. Sci. World J. 2014, 2014, 436231. [Google Scholar] [CrossRef] [Green Version]
- Abdi, M.R.; Arjomand, M.A. Pullout Tests Conducted on Clay Reinforced with Geogrid Encapsulated in Thin Layers of Sand. Geotext. Geomembr. 2011, 29, 588–595. [Google Scholar] [CrossRef]
- Tang, C.; Shi, B.; Cui, Y.; Liu, C.; Gu, K. Desiccation Cracking Behavior of Polypropylene Fiber-Reinforced Clayey Soil. Can. Geotech. J. 2012, 49, 1088–1101. [Google Scholar] [CrossRef]
- Ekinci, A.; Abki, A.; Mirzababaei, M. Parameters Controlling Strength, Stiffness and Durability of a Fiber-Reinforced Clay. Int. J. Geosynth. Ground Eng. 2022, 8, 6. [Google Scholar] [CrossRef]
- Gao, L.; Hu, G.; Xu, N.; Fu, J.; Xiang, C.; Yang, C. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil. Adv. Mater. Sci. Eng. 2015, 2015, 561293. [Google Scholar] [CrossRef] [Green Version]
- Sukontasukkul, P.; Jamsawang, P. Use of Steel and Polypropylene Fibers to Improve Flexural Performance of Deep Soil-Cement Column. Constr. Build. Mater. 2012, 29, 201–205. [Google Scholar] [CrossRef]
- Zhou, N.; Ouyang, S.; Cheng, Q.; Ju, F. Experimental Study on Mechanical Behavior of a New Backfilling Material: Cement-Treated Marine Clay. Adv. Mater. Sci. Eng. 2019, 2019, 1261694. [Google Scholar] [CrossRef]
- Fatahi, B.; Khabbaz, H.; Fatahi, B. Mechanical Characteristics of Soft Clay Treated with Fiber and Cement. Geosynth. Int. 2012, 19, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Horpibulsuk, S.; Rachan, R.; Suddeepong, A. Assessment of Strength Development in Blended Cement Admixed Bangkok Clay. Constr. Build. Mater. 2011, 25, 1521–1531. [Google Scholar] [CrossRef]
- Furlan, A.P.; Razakamanantsoa, A.; Ranaivomanana, H.; Amiri, O.; Levacher, D.; Deneele, D. Effect of Fly Ash on Microstructural and Resistance Characteristics of Dredged Sediment Stabilized with Lime and Cement. Constr. Build. Mater. 2021, 272, 121637. [Google Scholar] [CrossRef]
- Jayalin, D.; Vellingiri, N.; Raman, S.J. Experimental Research on Durability Properties of High Volume Fly Ash Concrete with Polypropylene Fibre. IJITEE 2019, 8, 1039–1042. [Google Scholar]
- Jamsawang, P.; Voottipruex, P.; Horpibulsuk, S. Flexural Strength Characteristics of Compacted Cement-Polypropylene Fiber Sand. J. Mater. Civ. Eng. 2015, 27, 04014243. [Google Scholar] [CrossRef]
- Yang, Q.; Ren, Y.; Niu, J.; Cheng, K.; Hu, Y.; Wang, Y. Characteristics of Soft Marine Clay under Cyclic Loading: A Review. Bull. Eng. Geol. Environ. 2018, 77, 1027–1046. [Google Scholar] [CrossRef]
- Silveira, M.R.; Lodi, P.C.; Correia, N.S.; Rodrigues, R.A.; Giacheti, H.L. Effect of Recycled Polyethylene Terephthalate Strips on the Mechanical Properties of Cement-Treated Lateritic Sandy Soil. Sustainability 2020, 12, 9801. [Google Scholar] [CrossRef]
- Ho, T.O.; Chen, W.B.; Yin, J.H.; Amiri, O.; Wu, P.C.; Tsang, D.C.W. Stress-Strain Behaviour of Cement-Stabilized Hong Kong marine deposits. Constr. Build. Mater. 2021, 274, 122103. [Google Scholar] [CrossRef]
- Wu, J.; Liu, L.; Deng, Y.; Zhang, G.; Zhou, A.; Wang, Q. Distinguishing the Effects of Cementation versus Density on the Mechanical Behavior of Cement-Based Stabilized Clays. Constr. Build. Mater. 2021, 271, 121571. [Google Scholar] [CrossRef]
- Eskisar, T.; Altun, S.; Kalipcilar, I. Assessment of Strength Development and Freeze-Thaw Performance of Cement Treated Clays at Different Water Contents. Cold. Reg. Sci. Technol. 2015, 111, 50–59. [Google Scholar] [CrossRef]
- Tang, C.; Shi, B.; Gao, W.; Chen, F.; Cai, Y. Strength and Mechanical Behavior of Short Polypropylene Fiber Reinforced and Cement Stabilized Clayey Soil. Geotext. Geomembr. 2007, 25, 194–202. [Google Scholar] [CrossRef]
- Cristelo, N.; Glendinning, S.; Fernandes, L.; Pinto, A.T. Effects of Alkaline-Activated Fly Ash and Portland Cement on Soft Soil Stabilisation. Acta. Geotech. 2013, 8, 395–405. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, A.M.; Cui, Y.J.; Delage, P.; Barnichon, J.D.; Ye, W.M. The Effects of Technological Voids on the Hydro-Mechanical Behavior of Compacted Bentonite-Sand Mixture. Soils Found. 2013, 53, 232–245. [Google Scholar] [CrossRef]
- Li, T.; Tang, X. Influences of Low Fines Content and Fines Mixing Ratio on the Undrained Static Shear Strength of Sand-Silt-Clay Mixtures. Earthq. Eng. Eng. Vib. 2019, 18, 487–496. [Google Scholar] [CrossRef]
- Watabe, Y.; Yamada, K.; Saitoh, K. Hydraulic Conductivity and Compressibility of Mixtures of Nagoya Clay with Sand or Bentonite. Geotechnique 2011, 61, 211–219. [Google Scholar] [CrossRef]
- Karakan, E.; Shimobe, S.; Sezer, A. Effect of Clay Fraction and Mineralogy on Fall Cone Results of Clay-Sand Mixtures. Eng. Geol. 2020, 279, 105887. [Google Scholar] [CrossRef]
- Yu, J.; Sun, M.; He, S.; Huang, X.; Wu, X.; Liu, L. Accumulative Deformation Characteristics and Microstructure of Saturated Soft Clay under Cross-River Subway Loading. Materials 2021, 14, 537. [Google Scholar] [CrossRef]
- Kong, B.; Dai, C.X.; Hu, H.; Xia, J.; He, S.H. The Fractal Characteristics of Soft Soil under Cyclic Loading Based on SEM. Fractal Fract. 2022, 6, 423. [Google Scholar] [CrossRef]
- An, L.; Zhang, F.; Geng, Y.; Lin, B. Field Measurement of Dynamic Compressive Stress Response of Pavement-Subgrade Induced by Moving Heavy-Duty Trucks. Shock Vib. 2018, 2018, 1956906. [Google Scholar] [CrossRef] [Green Version]
- Dai, D.; Peng, J.; Bai, L.; Li, G.; Lin, H. The Effect of Superabsorbent Polymer on the Resilient and Plastic Strain Behavior of Cemented Soil under Traffic Load. Polymers 2022, 14, 929. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wang, J.; Cai, Y.; Liu, H.; Gao, Y.; Sun, H. Undrained Deformation Behavior of Saturated Soft Clay under Long-Term Cyclic Loading. Soil Dyn. Earthq. Eng. 2013, 50, 28–37. [Google Scholar] [CrossRef]
- Jaffar, S.T.A.; Muneeb Abid, M.; Khan, S.Z.; Jafri, T.; Rehman, Z.U.; Tariq, M.A.U.R.; Ng, A.W.M. Evaluation of Conventional and Sustainable Modifiers to Improve the Stiffness Behavior of Weak Sub-Grade Soil. Sustainability 2022, 14, 2493. [Google Scholar] [CrossRef]
- Yang, J.; Cui, Z. Influences of Train Speed on Permanent Deformation of Saturated Soft Soil under Partial Drainage Conditions. Soil Dyn. Earthq. Eng. 2020, 133, 106120. [Google Scholar] [CrossRef]
- Sun, L. Strain Accumulation in Soft Marine Clay due to One-Way Cyclic Load with Variable Confining Pressure. Adv. Civ. Eng. 2021, 2021, 6624270. [Google Scholar] [CrossRef]
- Barksdale, R.D. Laboratory evaluation of rutting in base course materials. In Proceedings of the 3rd International Conference on the Structural Design of Asphalt Pavement, London, UK, 11–15 September 1972. [Google Scholar]
- Ling, X.Z.; Li, P.; Zhang, F.; Zhao, Y.Y.; Li, Y.; An, L. Permanent Deformation Characteristics of Coarse Grained Subgrade Soils under Train-Induced Repeated Load. Adv. Mater. Sci. Eng. 2018, 2017, 6241479. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Wang, X.; Qiao, R.; Ma, B.; Shao, Z.; Sun, W.; Wang, H. A Prediction Model of Permanent Strain of Unbound Gravel Materials Based on Performance of Single-Size Gravels Under Repeated Loads. Constr. Build. Mater. 2020, 246, 118492. [Google Scholar] [CrossRef]
Moisture Content (%) | Dry Density (g/cm3) | Liquid Limit (%) | Plastic Limit (%) |
---|---|---|---|
43.51 | 1.26 | 41.3 | 26.8 |
Setting Time (min) | Flexural Strength (MPa) | Compressive Strength (MPa) | |||
---|---|---|---|---|---|
Initial Set | Final Set | 3 d | 7 d | 3 d | 28 d |
180 | 240 | 4 | 7 | 18 | 38 |
Sample Number | Confining Pressure (kPa) | Repeated Load (kN) | Curing Time (d) | Cement Content (%) | Sand Content (%) |
---|---|---|---|---|---|
B1 | 50 | 0.124 | 14 | 9 | 10 |
B2 | 100 | ||||
B3 | 150 | ||||
B4 | 200 | ||||
B5 | 250 | ||||
B6 | 300 | ||||
B7 | 100 | 0.124 | 14 | 9 | 10 |
B8 | 0.15 | ||||
B9 | 0.17 | ||||
B10 | 0.19 | ||||
B11 | 0.22 | ||||
B12 | 0.25 | ||||
B13 | 100 | 0.124 | 3 | 9 | 10 |
B14 | 7 | ||||
B15 | 10 | ||||
B16 | 14 | ||||
B17 | 28 | ||||
B18 | 100 | 0.124 | 14 | 3 | 10 |
B19 | 6 | ||||
B20 | 9 | ||||
B21 | 12 | ||||
B22 | 15 | ||||
B23 | 18 | ||||
B24 | 100 | 0.124 | 14 | 9 | 10 |
B25 | 15 | ||||
B26 | 20 | ||||
B27 | 25 | ||||
B28 | 30 | ||||
B29 | 35 |
Sample Number | A | B | C | R2 (COD) |
---|---|---|---|---|
B1 | 0.04685 | 0.15902 | −0.01141 | 0.9991 |
B2 | 0.01176 | 0.14408 | −0.01195 | 0.99974 |
B3 | 0.01787 | 0.07905 | −0.00144 | 0.99811 |
B4 | −0.00271 | 0.09322 | −0.00609 | 0.99952 |
B5 | −0.04251 | 0.10389 | −0.00647 | 0.99784 |
B6 | −0.01973 | 0.07951 | −0.00255 | 0.99947 |
B7 | −0.0027 | 0.11319 | −0.00992 | 0.99997 |
B8 | 0.01176 | 0.14408 | −0.01195 | 0.99974 |
B9 | −0.05754 | 0.18857 | −0.0146 | 0.99695 |
B10 | 0.04711 | 0.27178 | −0.02655 | 0.99897 |
B11 | −0.03231 | 0.36811 | −0.03576 | 0.99982 |
B12 | −0.06707 | 0.51091 | −0.05174 | 0.99951 |
B13 | 0.07531 | 0.16576 | −0.01174 | 0.99969 |
B14 | 0.03574 | 0.20807 | −0.01404 | 0.99943 |
B15 | −0.00615 | 0.2724 | −0.02026 | 0.99853 |
B16 | 0.04711 | 0.27178 | −0.02655 | 0.99897 |
B17 | −0.00267 | 0.51746 | −0.05656 | 0.99634 |
B18 | −0.24764 | 1.39872 | −0.16862 | 0.99838 |
B19 | −0.03237 | 0.30903 | −0.03391 | 0.99927 |
B20 | −0.0027 | 0.11319 | −0.00992 | 0.99997 |
B21 | −0.0012 | 0.05935 | −0.00305 | 0.99961 |
B22 | 0.00234 | 0.05959 | −0.00403 | 0.99938 |
B23 | −0.01169 | 0.07607 | −0.00794 | 0.99951 |
B24 | −0.05754 | 0.18857 | −0.0146 | 0.99695 |
B25 | −0.0269 | 0.18047 | −0.01232 | 0.99939 |
B26 | −0.04536 | 0.20584 | −0.01527 | 0.99858 |
B27 | −0.05266 | 0.19497 | −0.00844 | 0.99809 |
B28 | −0.03636 | 0.25439 | −0.01968 | 0.99931 |
B29 | −0.10788 | 0.37788 | −0.03025 | 0.99735 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, L.; Chen, J.; Li, D.; Li, P.; Guo, L.; Chen, G. Accumulative Strain of Sand-Containing Soft Soil Reinforced by Cement and Sodium Silicate under Traffic Loading. Sustainability 2022, 14, 14127. https://doi.org/10.3390/su142114127
An L, Chen J, Li D, Li P, Guo L, Chen G. Accumulative Strain of Sand-Containing Soft Soil Reinforced by Cement and Sodium Silicate under Traffic Loading. Sustainability. 2022; 14(21):14127. https://doi.org/10.3390/su142114127
Chicago/Turabian StyleAn, Lingshi, Junhao Chen, Dongwei Li, Peng Li, Lei Guo, and Guanren Chen. 2022. "Accumulative Strain of Sand-Containing Soft Soil Reinforced by Cement and Sodium Silicate under Traffic Loading" Sustainability 14, no. 21: 14127. https://doi.org/10.3390/su142114127
APA StyleAn, L., Chen, J., Li, D., Li, P., Guo, L., & Chen, G. (2022). Accumulative Strain of Sand-Containing Soft Soil Reinforced by Cement and Sodium Silicate under Traffic Loading. Sustainability, 14(21), 14127. https://doi.org/10.3390/su142114127