Cyclic and Post-Cyclic Behaviors of Stabilized Sand-Containing Soft Soil in Coastal Areas
Abstract
:1. Introduction
2. Laboratory Test Program
2.1. Materials and Test Device
2.2. Test Procedures and Experimental Scheme
3. Cyclic Behavior of Stabilized Sand-Containing Soft Soil
3.1. Influence of Sand Content on Stiffness
3.2. Influence of Cement Content on Stiffness
3.3. Influence of Confining Pressure on Stiffness
3.4. Influence of Repeated Cyclic Stress Amplitude on Stiffness
4. Stiffness Evolution Index Model
4.1. Stiffness Evolution Index
4.2. Improved Yasuhara Model
4.3. Model Calibration
5. Post-Cyclic Behavior of Stabilized Sand-Containing Soft Soil
6. Conclusions
- When the number of loading cycles is 20, the stiffness decreases from 75 MPa to 50 MPa as the sand content increases from 10% to 30%. The inter-particle bonding strength is greater for the specimens with a high cement content.
- When the number of loading cycles is 2000, a 109% growth in stiffness can be found as the confining pressure increases from 50 kPa to 300 kPa. The improved model proposed in this paper can provide a good description of the stiffness evolution index.
- Due to stress history, the initial values of post-cyclic axial strain are 0.67%, 0.29%, and 0.18%, corresponding to the cement contents of 6%, 9%, and 12%. When the confining pressure is 50 kPa, the post-cyclic initial tangent modulus is approximately 3.5 times that of the initial tangent modulus of PCMLT.
- The cyclic and post-cyclic behavior of soft soil can be characterized by stiffness and pore pressure. Unfortunately, the experimental data of pore pressure was not recorded due to the failure of the pore pressure sensor. This paper investigated the evolution law of stiffness, and future extensions of the current work will analyze the evolution law of pore pressure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Ecology and Environment of People’s Republic of China. Available online: https://www.mee.gov.cn/hjzl/ (accessed on 6 November 2022).
- Borrelli, P.; Robinson, D.; Panagos, P.; Lugato, E.; Yang, J.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land Use and Climate Change Impacts on Global Soil Erosion by Water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Gao, X.; Feng, X.; Chen, D. Research on the Application of Foamed Lightweight Concrete (FLC) in the Construction of Highway Soft Soil Foundation Engineering with Buried High-Pressure Gas Pipes. Appl. Sci. 2022, 12, 10119. [Google Scholar] [CrossRef]
- Gu, S.; Liu, W.; Ge, M. Failure and Remediation of an Embankment on Rigid Column-Improved Soft Soil: Case Study. Adv. Civ. Eng. 2020, 2020, 2637651. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Y.; Kim, C.; Meng, Y.; Garg, A.; Garg, A.; Fang, K. Effectiveness of CFG Pile-Slab Structure on Soft Soil for Supporting High-Speed Railway Embankment. Soils Found. 2018, 58, 1458–1475. [Google Scholar] [CrossRef]
- Duan, W.; Liu, S.; Cai, G. Evaluation of Engineering Characteristics of Lian-Yan Railway Soft Soil Based on CPTU Data—A Case Study. Proc. Eng. 2017, 189, 33–39. [Google Scholar] [CrossRef]
- Wang, F.; Shao, J.; Li, W.; Wang, Y.; Wang, L.; Liu, H. Study on the Effect of Pile Foundation Reinforcement of Embankment on Slope of Soft Soil. Sustainability 2022, 14, 14359. [Google Scholar] [CrossRef]
- Wang, A.; Zhan, Q.; Dong, W.; Gu, W.; Zhou, J.; Pan, Z. Influence of Recycled Fine Aggregate Content on Properties of Soft Soil Solidified by Industrial Waste Residue. Materials 2022, 15, 7580. [Google Scholar] [CrossRef]
- Elsawy, M.B.D.; Alsharekh, M.F.; Shaban, M. Modeling Undrained Shear Strength of Sensitive Alluvial Soft Clay Using Machine Learning Approach. Appl. Sci. 2022, 12, 10177. [Google Scholar] [CrossRef]
- Li, P.-Y.; Dou, H.-Q.; Wang, H.; Nie, W.-F.; Chen, F.-Q. Stability Analysis of Pile-Supported Embankments over Soft Clay Considering Soil Failure between Piles Based on Upper Bound Theorem. Sustainability 2022, 14, 11652. [Google Scholar] [CrossRef]
- Wang, X.; Cui, J.; Zhu, C.Q.; Wu, Y.; Wang, X.Z. Experimental Study of the Mechanical Behavior of Calcareous Sand under Repeated Loading-Unloading. Bull. Eng. Geol. Environ. 2021, 80, 3097–3113. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Liao, C.; Cui, J.; Shen, J.H.; Wang, X.Z.; Zhu, C.Q. Particle Breakage Mechanism and Particle Shape Evolution of Calcareous Sand under Impact Loading. Bull. Eng. Geol. Environ. 2022, 81, 372. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y.X.; Lu, Y.; Cui, J.; Wang, X.Z.; Zhu, C.Q. Strength and Dilatancy of Coral Sand in the South China Sea. Bull. Eng. Geol. Environ. 2021, 80, 8279–8299. [Google Scholar] [CrossRef]
- Wang, X.; Cui, J.; Wu, Y.; Zhu, C.Q.; Wang, X.Z. Mechanical Properties of Calcareous Silts in A Hydraulic Fill Island-Reef. Mar. Georesour. Geotec. 2020, 39, 1–14. [Google Scholar] [CrossRef]
- Liu, C.; Lv, Y.; Yu, X.; Wu, X. Effects of Freeze-Thaw Cycles on the Unconfined Compressive Strength of Straw Fiber-Reinforced Soil. Geotext. Geomembr. 2020, 48, 581–590. [Google Scholar] [CrossRef]
- Anggraini, V.; Asadi, A.; Huat, B.B.K.; Nahazanan, H. Effects of Coir Fibers on Tensile and Compressive Strength of Lime Treated Soft Soil. Measurement 2015, 59, 372–381. [Google Scholar] [CrossRef]
- Silveira, M.R.; Lodi, P.C.; Correia, N.S.; Rodrigues, R.A.; Giacheti, H.L. Effect of Recycled Polyethylene Terephthalate Strips on the Mechanical Properties of Cement-Treated Lateritic Sandy Soil. Sustainability 2020, 12, 9801. [Google Scholar] [CrossRef]
- Wu, J.; Liu, L.; Deng, Y.; Zhang, G.; Zhou, A.; Wang, Q. Distinguishing the Effects of Cementation versus Density on the Mechanical Behavior of Cement-Based Stabilized Clays. Constr. Build. Mater. 2021, 271, 121571. [Google Scholar] [CrossRef]
- Li, Q.; Cui, K.; Jing, X.; Li, P.; Dong, H. Influence of Stress History on the Cyclic Behavior of Compacted Soils in the Frozen State: Deviator Stress History. Soil Dyn. Earthq. Eng. 2022, 153, 107074. [Google Scholar] [CrossRef]
- Yu, J.; Sun, M.; He, S.; Huang, X.; Wu, X.; Liu, L. Accumulative Deformation Characteristics and Microstructure of Saturated Soft Clay under Cross-River Subway Loading. Materials 2021, 14, 537. [Google Scholar] [CrossRef]
- Kong, B.; Dai, C.-X.; Hu, H.; Xia, J.; He, S.-H. The Fractal Characteristics of Soft Soil under Cyclic Loading Based on SEM. Fractal Fract. 2022, 6, 423. [Google Scholar] [CrossRef]
- Kaya, Z.; Erken, A. Cyclic and Post-Cyclic Monotonic Behavior of Adapazari Soils. Soil Dyn. Earthq. Eng. 2015, 77, 83–96. [Google Scholar] [CrossRef]
- Wang, S.Y.; Luna, R.; Onyejekwe, S. Effect of Initial Consolidation Condition on Postcyclic Undrained Monotonic Shear Behavior of Mississippi River Valley Silt. J. Geotech. Geoenviron. 2016, 142, 04015075. [Google Scholar] [CrossRef]
- Noorzad, R.; Shakeri, M. Effect of Silt on Post-Cyclic Shear Strength of Sand. Soil Dyn. Earthq. Eng. 2017, 97, 133–142. [Google Scholar] [CrossRef]
- Wang, S.Y.; Luna, R.; Zhao, H.H. Cyclic and Post-Cyclic Shear Behavior of Low-Plasticity Silt with Varying Clay Content. Soil Dyn. Earthq. Eng. 2015, 75, 115–120. [Google Scholar] [CrossRef]
- Dahl, K.; DeJong, J.; Boulanger, R.; Pyke, R.; Wahl, D. Characterization of an Alluvial Silt and Clay Deposit for Monotonic, Cyclic, and Post-Cyclic Behavior. Can. Geotech. J. 2014, 51, 432–440. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, Z.; Liu, Z.; Nie, G. Post-Cyclic Drained Shear Behaviour of Fujian Sand under Various Loading Conditions. J. Mar. Sci. Eng. 2022, 10, 1499. [Google Scholar] [CrossRef]
- Soroush, A.; Soltani-Jigheh, H. Pre- and Post-Cyclic Behavior of Mixed Clayey Soils. Can. Geotech. J. 2009, 46, 115–128. [Google Scholar] [CrossRef]
- Paramasivam, B.; Banerjee, S. Factors Affecting Post-Cyclic Undrained Shear Strength of Marine Clay. Geotech. Geol. Eng. 2017, 35, 1783–1791. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, J.; Huang, J.; Feng, L.; Yu, S.; Li, J.; Ma, C. Post-Cyclic Mechanical Behaviors of Undisturbed Soft Clay with Different Degrees of Reconsolidation. Appl. Sci. 2021, 11, 7612. [Google Scholar] [CrossRef]
- Huang, J.; Chen, J.; Ke, W.; Zhong, Y.; Lu, Y.; Yi, S. Post-Cyclic Mechanical Behaviors of Laterite Clay with Different Cyclic Confining Pressures and Degrees of Reconsolidation. Soil Dyn. Earthq. Eng. 2021, 151, 106986. [Google Scholar] [CrossRef]
- Lei, J.; Wang, T.; Zhang, B.; Li, F.; Liu, C. Cyclic and Post-Cyclic Characteristics of Marine Silty Clay under the Multistage Cycling-Reconsolidation Conditions. Ocean. Eng. 2022, 258, 111803. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, D.; Chen, J.; Yu, S.; Huang, J.; Fu, X.; Ma, C. Post-cyclic strength behaviors of undisturbed soft soils with different degrees of reconsolidation. Chin. J. Geotech. Eng. 2021, 43, 189–192. [Google Scholar]
- Jana, A.; Stuedlein, W. Monotonic, Cyclic, and Postcyclic Responses of an Alluvial Plastic Silt Deposit. J. Geotech. Geoenviron. 2021, 147, 04020174. [Google Scholar] [CrossRef]
- Chitravel, S.; Otsubo, M.; Kuwano, R. Effects of Internal Erosion on the Cyclic and Post-Cyclic Mechanical Behaviours of Reconstituted Volcanic Ash. Soils Found. 2022, 62, 101111. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Z.; Chen, K.; Xia, L. Experimental Investigation and Mechanism of Fly Ash/Slag-Based Geopolymer-Stabilized Soft Soil. Appl. Sci. 2022, 12, 7438. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Oh, E.; Ong, D.E.L. Strength and Microstructural Assessment of Reconstituted and Stabilised Soft Soils with Varying Silt Contents. Geosciences 2021, 11, 302. [Google Scholar] [CrossRef]
- Kovačević, M.S.; Bačić, M.; Librić, L.; Gavin, K. Evaluation of Creep Behavior of Soft Soils by Utilizing Multisensor Data Combined with Machine Learning. Sensors 2022, 22, 2888. [Google Scholar] [CrossRef]
- Zhu, J.; Zhao, H.; Luo, Z.; Liu, H. Investigation of the Mechanical Behavior of Soft Clay under Combined Shield Construction and Ocean Waves. Ocean. Eng. 2020, 206, 107250. [Google Scholar]
- Kafodya, I.; Okonta, F. Cyclic and Post-Cyclic Shear Behaviours of Natural Fibre Reinforced Soil. Int. J. Geotech. Eng. 2019, 15, 1145–1154. [Google Scholar] [CrossRef]
- An, L.; Zhang, F.; Geng, Y.; Lin, B. Field Measurement of Dynamic Compressive Stress Response of Pavement-Subgrade Induced by Moving Heavy-Duty Trucks. Shock Vib. 2018, 2018, 1956906. [Google Scholar] [CrossRef] [Green Version]
- Dai, D.; Peng, J.; Bai, L.; Li, G.; Lin, H. The Effect of Superabsorbent Polymer on the Resilient and Plastic Strain Behavior of Cemented Soil under Traffic Load. Polymers 2022, 14, 929. [Google Scholar] [CrossRef] [PubMed]
- Jaffar, S.T.A.; Muneeb Abid, M.; Khan, S.Z.; Jafri, T.; Rehman, Z.U.; Tariq, M.A.U.R.; Ng, A.W.M. Evaluation of Conventional and Sustainable Modifiers to Improve the Stiffness Behavior of Weak Sub-Grade Soil. Sustainability 2022, 14, 2493. [Google Scholar] [CrossRef]
- Sukmak, P.; Sukmak, G.; Horpibulsuk, S.; Kassawat, S.; Suddeepong, A.; Arulrajah, A. Improved Mechanical Properties of Cement-Stabilized Soft Clay Using Garnet Residues and Tire-Derived Aggregates for Subgrade Applications. Sustainability 2021, 13, 11692. [Google Scholar] [CrossRef]
- Ho, T.O.; Chen, W.B.; Yin, J.H.; Amiri, O.; Wu, P.C.; Tsang, D.C.W. Stress-Strain Behaviour of Cement-Stabilized Hong Kong marine deposits. Constr. Build. Mater. 2021, 274, 122103. [Google Scholar] [CrossRef]
- Idriss, I.; Dobry, R.; Singh, R. Nonlinear Behavior of Soft Clays during Cyclic Loading. J. Geotech. Eng. Div. 1978, 104, 1427–1447. [Google Scholar] [CrossRef]
- Yasuhara, K.; Hyde, A.; Toyota, N. Cyclic Stiffness of Plastic Silt with an Initial Drained Shear Stress. In Pre-Failure Deformation Behaviour of Geomaterials; ICE Publishing: London, UK, 1998. [Google Scholar]
- Liu, X.; Pan, S.; Yuan, S.; Chen, K.; Ma, J.; Chen, Y. Study on Stiffness Softening and Attenuation Characteristics of Compacted Red Mudstone. J. Railway. Sci. Eng. 2022, 19, 2629–2636. [Google Scholar]
- Zhong, Z.; Zou, H.; Hu, X.; Liu, X. Experimental Study on Stiffness Softening of Soil-Rock Mixture Backfill under Metro Train Cyclic Load. Adv. Mater. Sci. Eng. 2021, 2021, 3024490. [Google Scholar] [CrossRef]
Sample Number | Confining Pressure (kPa) | Repeated Load (kN) | Cement Content (%) | Sand Content (%) |
---|---|---|---|---|
B1 | 50 | |||
B2 | 100 | 0.124 | 9 | 10 |
B3 | 200 | |||
B4 | 300 | |||
B5 | 0.124 | |||
B6 | 0.15 | |||
B7 | 100 | 0.19 | 9 | 10 |
B8 | 0.22 | |||
B9 | 0.25 | |||
B10 | 3 | |||
B11 | 6 | |||
B12 | 100 | 0.124 | 9 | 10 |
B13 | 12 | |||
B14 | 15 | |||
B15 | 10 | |||
B16 | 15 | |||
B17 | 100 | 0.124 | 9 | 20 |
B18 | 25 | |||
B19 | 30 |
Sample Number | A | B | C | RMSE | COD |
---|---|---|---|---|---|
B1 | −0.60984 | 0.23102 | −0.031 | 0.083 | 0.9872 |
B2 | −0.48438 | 0.15495 | −0.02027 | 0.077 | 0.9952 |
B3 | −0.31035 | 0.12027 | −0.01895 | 0.073 | 0.9959 |
B4 | −0.36049 | 0.09568 | −0.01245 | 0.047 | 0.9854 |
B5 | −0.16659 | 0.05002 | −0.00629 | 0.024 | 0.9899 |
B6 | −0.48438 | 0.15495 | −0.02027 | 0.077 | 0.9952 |
B7 | −0.1504 | 0.04653 | −0.00964 | 0.089 | 0.9973 |
B8 | −0.17694 | 0.05002 | −0.01087 | 0.111 | 0.9950 |
B9 | −0.31741 | 0.10916 | −0.01691 | 0.091 | 0.9974 |
B10 | −0.6842 | 0.20732 | −0.04084 | 0.366 | 0.9854 |
B11 | −0.17829 | −0.00929 | 0.00287 | 0.057 | 0.9961 |
B12 | −0.16659 | 0.05002 | −0.00629 | 0.024 | 0.9899 |
B13 | −0.22015 | 0.11079 | −0.01741 | 0.048 | 0.9604 |
B14 | −0.21336 | 0.07157 | −0.00922 | 0.030 | 0.9462 |
B15 | −0.16033 | 0.05404 | −0.00794 | 0.039 | 0.9925 |
B16 | −0.15402 | 0.06589 | −0.01003 | 0.036 | 0.9872 |
B17 | −0.10313 | 0.02511 | −0.00331 | 0.023 | 0.9924 |
B18 | −0.18677 | 0.05103 | −0.0066 | 0.036 | 0.9876 |
B19 | −0.1504 | 0.04653 | −0.00964 | 0.089 | 0.9973 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, L.; Zhao, X.; Li, D.; Yang, L.; Li, P.; Guo, L.; Wang, L. Cyclic and Post-Cyclic Behaviors of Stabilized Sand-Containing Soft Soil in Coastal Areas. Sustainability 2022, 14, 15017. https://doi.org/10.3390/su142215017
An L, Zhao X, Li D, Yang L, Li P, Guo L, Wang L. Cyclic and Post-Cyclic Behaviors of Stabilized Sand-Containing Soft Soil in Coastal Areas. Sustainability. 2022; 14(22):15017. https://doi.org/10.3390/su142215017
Chicago/Turabian StyleAn, Lingshi, Xinxin Zhao, Dongwei Li, Liu Yang, Peng Li, Lei Guo, and Lina Wang. 2022. "Cyclic and Post-Cyclic Behaviors of Stabilized Sand-Containing Soft Soil in Coastal Areas" Sustainability 14, no. 22: 15017. https://doi.org/10.3390/su142215017
APA StyleAn, L., Zhao, X., Li, D., Yang, L., Li, P., Guo, L., & Wang, L. (2022). Cyclic and Post-Cyclic Behaviors of Stabilized Sand-Containing Soft Soil in Coastal Areas. Sustainability, 14(22), 15017. https://doi.org/10.3390/su142215017