Growth Trends and Heterogeneity of Total Factor Productivity in Nine Pan-PRD Provinces in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. DEA-Malmquist Index Model
2.2. Data Sources and Data Processing
2.2.1. Output Indicators and Data Description
2.2.2. Input Indicators and Data Description
2.3. Convergence Test Model
2.3.1. Intra-Regional σ Convergence Test
2.3.2. Intra-Regional β-Convergence Test
3. Analysis of Results
3.1. Analysis of TFP Growth Trend in Nine Pan-PRD Provinces: Time Dimension
3.2. Heterogeneity Analysis of TFP Growth in Nine Pan-PRD Provinces: Spatial Dimension
3.2.1. Inter-Provincial Spatial Heterogeneity
3.2.2. Spatial Heterogeneity of Internal Blocks
3.3. Heterogeneity Analysis of TFP Growth in Nine Pan-PRD Provinces: Industrial Dimension
3.4. Heterogeneity Analysis of TFP Growth in Nine Pan-PRD Provinces: The City Dimension
3.5. Convergence Test Based on Time Series
3.5.1. Intra-Regional σ Convergence Test
3.5.2. Intra-Regional Absolute β Convergence Test
3.6. Robustness Analysis
4. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.-S.; Gui, B.-W. Total Factor Productivity Analysis in China: A Review and Application of Malmquist Index Method. Quant. Econ. Tech. Econ. Res. 2008, 6, 111–122. [Google Scholar] [CrossRef]
- Guo, X.-M.; Chen, B.-Y.; Kun, W.; Li, J.-L. Measurement of total factor productivity and international comparison. Stat. Decis. Mak. 2022, 4, 146–149. [Google Scholar] [CrossRef]
- Zhang, S.-T.; Li, X.-Z. Estimation and analysis of total factor productivity in China’s Yangtze River Delta region. Manag. World 2005, 11, 59–66. [Google Scholar] [CrossRef]
- Zhang, Z.-S.; Jin, M.-W. An Examination of Total Factor Productivity Measurement and Heterogeneity in Six Central Provinces. Stat. Decis. Mak. 2022, 4, 128–132. Available online: https://kns.cnki.net/kcms/detail/42.1009.c.20220426.1748.002.html (accessed on 29 April 2022).
- Xiang, Y.-H.; Lv, H.-P.; Jin, X.-R. Study on the efficiency and total factor productivity of China’s regional economy for high-quality development. Sustainability 2018, 10, 111. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Yong, L.-L.; De, Y.-X.; Wu, Y.-Q.; Cheng, J.-H. Spatial-Temporal Evolution of Total Factor Productivity in Logistics Industry of the Yangtze River Economic Belt, China. Sustainability 2022, 14, 2740. [Google Scholar] [CrossRef]
- Shen, N. An empirical study of regional spatial differences in total factor productivity in China’s manufacturing industry. China Soft Sci. 2006, 6, 101–110. [Google Scholar] [CrossRef]
- Gao, M.-F.; Zheng, J. Total Factor Productivity Measurement in Chinese Agriculture and its Spatial and Temporal Differences-A Re-Examination Based on Carbon Sink Perspective. Ecol. Econ. 2021, 12, 98–104. [Google Scholar]
- Tian, P.; Wang, Z.-B. A study on regional differences in total factor productivity and influencing factors in China’s tertiary industry. J. Quant. Econ. 2019, 3, 100–120. [Google Scholar]
- Bao, Y.-W.; Ding, J.T. Measurement, decomposition and convergence analysis of total factor productivity in Hubei cities. Stat. Decis. Mak. 2021, 20, 124–127. [Google Scholar] [CrossRef]
- Jin, F.; Zhang, Q. A discussion on the change of TFP at urban and county level in China: 2007–2010. Res. Quant. Econ. Technol. Econ. 2013, 9, 55–71. [Google Scholar]
- Xiao, L.-X. Estimation and Decomposition of the Total Factor Productivity of China-Feasibility Discussion and Application of DEA-Malmquist Method. J. Guizhou Univ. Financ. Econ. 2013, 1, 32–39. [Google Scholar]
- Wang, J.-Y. Estimation of education level of workers in three industries in China since 1978. Popul. Stud. 2002, 5, 70–76. [Google Scholar]
- Hu, F. Human capital and economic growth: An empirical analysis. Econ. Sci. 2003, 1, 54–60. [Google Scholar] [CrossRef]
- Wang, X.-H.; Pan, Z.-G. Construction and application of a model for measuring the efficiency of technical progress. Oper. Res. Manag. 2012, 4, 219–226. [Google Scholar]
- Zhu, Y.; Xiong, S.-M. An empirical study on the effect of technological progress and industrial structure change on employment in China. Quant. Econ. Tech. Econ. Res. 2009, 5, 107–119. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, S.-H. Total factor productivity changes in China: 1952–1998. World Econ. J. 2003, 3, 17–24. [Google Scholar]
- Xu, X.-X.; Zhou, J.-M.; Shu, Y. Estimation of capital stock in three industries in China’s provinces and regions. Stat. Res. 2007, 5, 6–13. [Google Scholar] [CrossRef]
- Song, Z.-L.; Liao, Z.-D. Re-estimation of inter-provincial three industries stock in China: 1978–2011. J. Guizhou Univ. Financ. Econ. 2014, 3, 8–16. [Google Scholar]
- Young, A. Gold into Base Metals: Productivity Growth in The People’s Republic of China during the Reform Period. J. Political Econ. 2003, 111, 1226–1261. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wu, G.-Y.; Zhang, J.-P. Estimation of China’s Provincial Capital Stock Series, Paper Presented at Productivity and Efficiency Workshop. Tsinghua Univ. 2007, 1, 13–14. [Google Scholar]
- Zhang, J.-H.; Wang, P. Total factor productivity in China: A re-estimation based on capital depreciation rates by province. Manag. World 2012, 10, 18–30. [Google Scholar] [CrossRef]
- Jia, R.-S.; Zhang, S.-C. Interprovincial capital stock and returns in China. Stat. Res. 2014, 11, 35–42. [Google Scholar]
- Barro, R.J.; Sala-I-Martin, X. Convergence across U.S. States and Regions. Brook. Pap. Econ. Act. 1991, 22, 107–158. [Google Scholar] [CrossRef] [Green Version]
- Shen, D.-H.; Liu, J.-Y.; Cui, Z.-X. Total factor productivity measurement and regional convergence test in China’s manufacturing industry. Stat. Decis. Mak. 2021, 1, 47–52. [Google Scholar] [CrossRef]
- Guo, Q.-W.; Zhao, Z.-Y.; Jia, J.-X. The Analysis of Provincal Total Productivity in China. World Econ. 2005, 5, 46–53. [Google Scholar]
- Zhang, J.; Sheng, K.-R.; Wang, C.-Y. Spatial-Temporal Dynamics and Underlying Factors of TFP Caross the World. Glob. City Study 2021, 4, 34–47. [Google Scholar]
- Yu, H.; Liu, Y.; Zhao, J.; Li, G. Urban Total Factor Productivity: Does Urban Spatial Structure Matter in China? Sustainability 2020, 12, 214. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.-W.; Jia, J.-X. Estimating Total Factor Productivity in China. Econ. Res. 2005, 6, 51–60. [Google Scholar]
- Li, P.; Zhong, X.-Y.; Wang, H.-W.; Zheng, S.-L. Productivity change and source of economic growth in China: 1978–2010. Res. Quant. Econ. Technol. Econ. 2013, 1, 3–21. [Google Scholar]
- Deng, Y.-Y.; Chen, S. Regional Total Factor Productivity in China Growth Rate Decomposition and Resource Allocation Efficiency Study. Stat. Decis. Mak. 2022, 13, 117–122. [Google Scholar] [CrossRef]
- Zhang, H.-R.; Yi, B.-Z. Technological Progress, Structural Adjustment and Employment Growth–An Empirical Study Based on Spatial Panel Model. Econ. Surv. 2011, 5, 14–17. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, G.-Y.; Zhang, J.-P. Estimation of inter-provincial physical capital stock in China: 1952–2000. Econ. Res. 2004, 10, 35–44. [Google Scholar]
- Sun, H.; Zhi, D.-L. Estimation of capital stock and typical facts for Chinese provinces: 1978–2008. J. Financ. Econ. 2010, 3, 103–116. [Google Scholar]
- Xu, H.; Wang, Y. A study of total factor productivity growth trends and heterogeneity in Hubei Province. Stat. Decis. Mak. 2021, 9, 119–122. [Google Scholar] [CrossRef]
- Peng, G.-H. The Disparity of Income, TFP and the Convergence Hypothesis in Chinese Provinces. Econ. Res. 2005, 9, 19–29. [Google Scholar]
Province | 2003–2010 Year | 2011–2020 Year | Province | 2003–2010 Year | 2011–2020 Year |
---|---|---|---|---|---|
Fujian | 5.7 | 4.0 | Guizhou | 5.7 | 2.9 |
Jiangxi | 6.0 | 3.3 | Yunnan | 6.0 | 4.2 |
Hunan | 5.9 | 5.0 | Sichuan | 5.8 | 4.2 |
Guangdong | 10.8 | 9.2 | Hainan | 8.2 | 5.5 |
Guangxi | 6.0 | 3.6 |
Indicator Classification | Indicator Name | Evaluation Indicator | Unit |
---|---|---|---|
Input Indicators | Labor input x1 | 1. Provincial: The average number of years of education of employed persons. | million people year |
2. Industry: The average value of the number of employed persons in the three industries of the province at the end of the year in the two adjacent years. 3. City: The average value of the number of employed persons in a city at the end of the year for the two adjacent years. | million people | ||
Capital stock x2 | The perpetual inventory method was used to measure the physical capital stock of the nine provinces, industries and cities. | RMB billion | |
Output Indicators | Gross domestic product y | Real GDP of each province, industry, and city for each calendar year (expressed in constant 2003 prices) | RMB billion |
Province | TFP | TC | TEC | PEC | SEC | GDP Growth Rate (%) | TFP Contribution Rate (%) |
---|---|---|---|---|---|---|---|
Fujian | 1.077 | 1.061 | 1.012 | 1.008 | 1.004 | 11.48 | 67.07 |
Jiangxi | 1.081 | 1.065 | 1.015 | 1.015 | 1.000 | 10.73 | 75.49 |
Guangdong | 1.054 | 1.054 | 1.000 | 1.000 | 1.000 | 9.60 | 56.25 |
Guangxi | 1.055 | 1.060 | 0.995 | 0.996 | 0.998 | 9.25 | 59.46 |
Hunan | 1.065 | 1.057 | 1.007 | 1.008 | 0.999 | 10.66 | 60.98 |
Guizhou | 1.080 | 1.062 | 1.017 | 1.018 | 0.998 | 11.25 | 71.11 |
Yunnan | 1.068 | 1.058 | 1.010 | 1.009 | 1.000 | 4.57 | 148.80 |
Sichuan | 1.069 | 1.062 | 1.007 | 1.008 | 0.998 | 10.74 | 64.25 |
Hainan | 1.049 | 1.062 | 0.998 | 1.000 | 0.988 | 9.52 | 51.47 |
Average value | 1.066 | 1.060 | 1.006 | 1.007 | 0.998 | 9.76 | 67.62 |
Eastern Provinces | 1.060 | 59 | 1.006 | 1.003 | 0.997 | 10.20 | 58.26 |
Provinces in the Central Region | 1.073 | 1.061 | 1.079 | 1.012 | 0.999 | 10.70 | 65.31 |
Provinces in Western Region | 1.068 | 1.061 | 1.011 | 1.015 | 0.999 | 8.95 | 94.72 |
Indicator | TFP | TC | TEC | PEC | SEC |
---|---|---|---|---|---|
Maximum value | 1.081 | 1.065 | 1.017 | 1.018 | 1.004 |
Minimum value | 1.049 | 1.054 | 0.988 | 0.996 | 0.988 |
Average value | 1.066 | 1.060 | 1.006 | 1.007 | 0.998 |
Number of provinces with improved efficiency | 9 | 9 | 7 | 8 | 4 |
Percentage of provinces with improved efficiency | 100% | 100% | 77.78% | 88.89% | 44.44% |
Industry | TFP | TC | TEC | PEC | SEC | GDP Growth Rate (%) | TFP Contribution Rate (%) |
---|---|---|---|---|---|---|---|
Primary Industry | 1.046 | 1.046 | 1.000 | 1.003 | 0.996 | 4.35 | 105.84 |
Secondary Industry | 1.065 | 1.075 | 0.990 | 0.993 | 0.997 | 11.49 | 56.57 |
Tertiary Industry | 1.079 | 1.057 | 1.021 | 1.017 | 1.004 | 10.45 | 70.81 |
Average | 1.063 | 1.059 | 1.020 | 1.004 | 0.999 | 8.76 | 77.74 |
Province | City | TFP | Province | City | TFP | Province | City | TFP |
---|---|---|---|---|---|---|---|---|
Fujian | Fuzhou | 1.058 | Guangdong | Guangzhou | 1.059 | Guangxi | Nanning | 1.055 |
Xiamen | 1.058 | Shaoguan | 1.059 | Liuzhou | 1.063 | |||
Ptoan | 1.066 | Shenzhen | 1.037 | Guilin | 1.057 | |||
Sanming | 1.068 | Zhuhai | 1.068 | Wuzhou | 1.083 | |||
Quanzhou | 1.085 | Shantou | 1.058 | Beihai | 1.117 | |||
Zhangzhou | 1.065 | Foshan | 1.046 | Fangchenggang | 1.104 | |||
Nanping | 1.042 | Jiangmen | 1.068 | Qinzhou | 1.085 | |||
Ningde | 1.062 | Zhanjiang | 1.068 | Guigang | 1.07 | |||
Longyan | 1.071 | Maoming | 1.062 | Yulin | 1.068 | |||
Chengdu | Chengdu | 1.042 | Zhaoqing | 1.063 | Baise | 1.078 | ||
Zigong | 1.082 | Huizhou | 1.068 | Hezhou | 1.067 | |||
Panzhihua | 1.05 | Meizhou | 1.075 | Hechi | 1.032 | |||
Luzhou | 1.086 | Shanwei | 1.076 | Laibin | 1.055 | |||
Deyang | 1.077 | Heyuan | 1.119 | Chongzuo | 1.066 | |||
Mianyang | 1.087 | Yangjiang | 1.05 | Nanchang | 1.062 | |||
Guangyuan | 1.075 | Qingyuan | 1.066 | Jingdezhen | 1.082 | |||
Suining | 1.06 | Dongguan | 0.99 | Pingxiang | 1.087 | |||
Neijiang | 1.078 | Zhongshan | 1.024 | Jiangxi | Jiujiang | 1.085 | ||
Leshan | 1.108 | Chaozhou | 1.127 | Xinyu | 1.105 | |||
Nanchong | 1.064 | Jieyang | 1.094 | Yingtan | 1.035 | |||
Meishan | 1.061 | Yunfu | 1.059 | Ganzhou | 1.047 | |||
Yibin | 1.053 | Hunan | Changsha | 1.077 | Jian | 1.08 | ||
Guangan | 1.048 | Zhuzhou | 1.082 | Yichun | 1.073 | |||
Dazhou | 1.03 | Xiangtan | 1.082 | Fuzhou | 1.056 | |||
Yaan | 1.075 | Hengyang | 1.113 | Shangrao | 1.038 | |||
Bazhong | 1.045 | Shaoyang | 1.071 | Yunnan | Kunming | 1.072 | ||
Ziyang | 1.080 | Yueyang | 1.093 | Qujing | 1.055 | |||
Guizhou | Guiyang | 1.081 | Changde | 1.064 | Yuxi | 1.041 | ||
Liupanshui | 1.119 | Zhangjiajie | 1.072 | Baoshan | 1.078 | |||
Zunyi | 1.08 | Yiyang | 1.087 | Zhaotong | 1.074 | |||
Anshun | 1.05 | Chenzhou | 1.068 | Lijiang | 1.079 | |||
Hainan | Haikou | 1.044 | Yongzhou | 1.081 | Puer | 1.098 | ||
Sanya | 1.061 | Huaihua | 1.066 | Lincang | 1.061 | |||
Loudi | 1.082 | |||||||
mean | 1.069 |
TFP Interval | 2003–2004 Year | 2011–2010 Year | 2018–2019 Year | Number of Cities with Lower TFP As a Percentage |
---|---|---|---|---|
<1.0 | 4 cities, of which: Guangdong 3; Yunnan 1 | 6 cities, of which: Yunnan 2; Jiangxi 1: Guangxi 2; Hainan 2 | 16 cities, of which: Guangdong 2; Jiangxi 1; Guangxi 1; Hunan 4; Sichuan 7; Fujian 1 | Fujian: 6/9 Jiangxi: 5/11 Guangdong: 17/21 Guangxi: 8/14 Hunan: 9/13 Guizhou: 2/4 Yunnan: 4/8 Sichuan: 12/18 Hainan: 1/2 |
[1.0–1.057) | 24 cities, of which: Jiangxi 5; Guangdong 4; Guangxi 3; Hunan 3; Guizhou: 1; Yunnan 1; Sichuan 6; Hainan 1 | 27 cities, of which: Fujian 2; Jiangxi 3; Guangdong 10; Guangxi 5; Hunan 5; Sichuan 2 | 37 cities, of which: Fujian 5; Jiangxi 1; Guangdong 17; Guangxi 4; Hunan 5; Guizhou: 1; Yunnan 1; Sichuan 1; Hainan 1 | |
[1.057–1.076) | 11 cities, of which: Fujian 5; Jiangxi 1; Guangdong 1; Hunan 2; Sichuan 2 | 14 cities, of which: Fujian 2; Jiangxi 1; Guangdong 4; Guangxi 2; Hunan 3; Sichuan 2 | 13 cities, of which: Jiangxi 3; Guangdong 1; Guangxi 2; Hunan 2; Sichuan 3: Guizhou: 1; Hainan 1 | |
>1.076 | 61 cities, of which: Fujian 4; Jiangxi 5; Guangdong 13; Guangxi 11; Hunan 8; Guizhou: 3; Yunnan 6; Sichuan 10; Hainan 1 | 53 cities, of which: Fujian 5; Jiangxi 6; Guangdong 7; Guangxi 6; Hunan 5; Guizhou: 4; Yunnan 6; Sichuan 14 | 34 cities, of which: Fujian 3; Jiangxi 5; Guangdong 1; Guangxi 7; Hunan 4; Guizhou: 2; Yunnan 6; Sichuan 6 | |
TFP Mean | 1.090 | 1.075 | 1.049 |
β | a | R2 | F | |
---|---|---|---|---|
Provinces | −0.499 ** (−3.31) | 1.075 *** (196.64) | 0.4385 | 10.93 |
Cities | −0.7834 *** | 0.8449 *** | 0.3911 | 962.33 |
Depreciation Rate | TFP | TC | TEC | PEC | SEC |
---|---|---|---|---|---|
Depreciation rate of this article | 1.066 | 1.06 | 1.007 | 0.998 | 1.066 |
6.00% | 1.069 | 1.001 | 1.004 | 0.997 | 1.070 |
9.60% | 1.070 | 1.001 | 1.003 | 0.998 | 1.070 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Y.; Yan, S.; Zhu, S. Growth Trends and Heterogeneity of Total Factor Productivity in Nine Pan-PRD Provinces in China. Sustainability 2022, 14, 14154. https://doi.org/10.3390/su142114154
Ye Y, Yan S, Zhu S. Growth Trends and Heterogeneity of Total Factor Productivity in Nine Pan-PRD Provinces in China. Sustainability. 2022; 14(21):14154. https://doi.org/10.3390/su142114154
Chicago/Turabian StyleYe, Ying, Shiping Yan, and Shaoying Zhu. 2022. "Growth Trends and Heterogeneity of Total Factor Productivity in Nine Pan-PRD Provinces in China" Sustainability 14, no. 21: 14154. https://doi.org/10.3390/su142114154
APA StyleYe, Y., Yan, S., & Zhu, S. (2022). Growth Trends and Heterogeneity of Total Factor Productivity in Nine Pan-PRD Provinces in China. Sustainability, 14(21), 14154. https://doi.org/10.3390/su142114154