Lactic Acid Production by Fermentation of Biomass: Recent Achievements and Perspectives
Abstract
:1. Introduction
2. Method of Bibliometric Analysis for Research Tendencies
3. Biomass for Lactic Acid Fermentation
3.1. Lignocellulosic Biomass
3.2. Food Waste
3.3. Microalgae
4. Microorganism for Lactic Acid Fermentation
4.1. Bacteria
4.2. Fungi
4.3. Genetically Engineered Microorganisms
5. Fermentation Modes
5.1. Non-Sterilized Open Fermentation and Conventional Sterile Closed Fermentation
5.2. Simultaneous Saccharification Fermentation and Separate Hydrolysis and Fermentation
5.3. Batch, Fed-Batch, Semi-Continuous, and Continuous Fermentation
5.4. High-Cell Density Cultivation
6. Extractive Fermentation of Lactic Acid
6.1. Combination of Lactic Acid Fermentation and Electrodialysis
6.2. Combination of Lactic Acid Fermentation and Absorption
6.3. Combination of Lactic Acid Fermentation and Extraction
7. Perspectives
7.1. Screen for Excellent Strains and Development of New Fermentation Processes
7.2. Extension of High Value-Added Products
7.3. Multiproduct Cogeneration based on Biorefinery Model
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parajuli, R.; Knudsen, M.T.; Birkved, M.; Djomo, S.N.; Corona, A.; Dalgaard, T. Environmental Impacts of Producing Bioethanol and Biobased Lactic Acid from Standalone and Integrated Biorefineries Using a Consequential and an Attributional Life Cycle Assessment Approach. Sci. Total Environ. 2017, 598, 497–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasmi, M.; Hamdi, M.; Trabelsi, I. Processed Milk Waste Recycling via Thermal Pretreatment and Lactic Acid Bacteria Fermentation. Environ. Sci. Pollut. Res. 2017, 24, 13604–13613. [Google Scholar] [CrossRef] [PubMed]
- Masmoudi, F.; Bessadok, A.; Dammak, M.; Jaziri, M.; Ammar, E. Biodegradable Packaging Materials Conception Based on Starch and Polylactic Acid (PLA) Reinforced with Cellulose. Environ. Sci. Pollut. Res. 2016, 23, 20904–20914. [Google Scholar] [CrossRef] [PubMed]
- Sintim, H.Y.; Bary, A.I.; Hayes, D.G.; English, M.E.; Schaeffer, S.M.; Miles, C.A.; Zelenyuk, A.; Suski, K.; Flury, M. Release of Micro- and Nanoparticles from Biodegradable Plastic during in Situ Composting. Sci. Total Environ. 2019, 675, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Ingrao, C.; Tricase, C.; Cholewa-Wójcik, A.; Kawecka, A.; Rana, R.; Siracusa, V. Polylactic Acid Trays for Fresh-Food Packaging: A Carbon Footprint Assessment. Sci. Total Environ. 2015, 537, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Lactic Acid Production from Lignocellulose-Derived Sugars Using Lactic Acid Bacteria: Overview and Limits. J. Biotechnol. 2011, 156, 286–301. [Google Scholar] [CrossRef]
- Ramírez-López, C.A.; Ochoa-Gómez, J.R.; Gil-Río, S.; Gómez-Jiménez-Aberasturi, O.; Torrecilla-Soria, J. Chemicals from Biomass: Synthesis of Lactic Acid by Alkaline Hydrothermal Conversion of Sorbitol. J. Chem. Technol. Biotechnol. 2011, 86, 867–874. [Google Scholar] [CrossRef]
- Okano, K.; Tanaka, T.; Ogino, C.; Fukuda, H.; Kondo, A. Biotechnological Production of Enantiomeric Pure Lactic Acid from Renewable Resources: Recent Achievements, Perspectives, and Limits. Appl. Microbiol. Biotechnol. 2010, 85, 413–423. [Google Scholar] [CrossRef]
- Fu, H.-Z.; Chuang, K.-Y.; Wang, M.-H.; Ho, Y.-S. Characteristics of Research in China Assessed with Essential Science Indicators. Scientometrics 2011, 88, 841–862. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, J.; Ho, Y.-S. Assessment of World Aerosol Research Trends by Bibliometric Analysis. Scientometrics 2008, 77, 113–130. [Google Scholar] [CrossRef]
- Bhattacharya, S.C.; Abdul Salam, P.; Runqing, H.; Somashekar, H.I.; Racelis, D.A.; Rathnasiri, P.G.; Yingyuad, R. An Assessment of the Potential for Non-Plantation Biomass Resources in Selected Asian Countries for 2010. Biomass and Bioenergy 2005, 29, 153–166. [Google Scholar] [CrossRef]
- Hwangbo, M.; Tran, J.L.; Chu, K.-H. Effective One-Step Saccharification of Lignocellulosic Biomass Using Magnetite-Biocatalysts Containing Saccharifying Enzymes. Sci. Total Environ. 2019, 647, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Guan, R.; Li, X.; Wachemo, A.C.; Yuan, H.; Liu, Y.; Zou, D.; Zuo, X.; Gu, J. Enhancing Anaerobic Digestion Performance and Degradation of Lignocellulosic Components of Rice Straw by Combined Biological and Chemical Pretreatment. Sci. Total Environ. 2018, 637–638, 9–17. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; Wang, S.; Sun, X.; Ma, H.; Tushiro, Y. Effects of Pretreatment on the Microbial Community and L-Lactic Acid Production in Vinasse Fermentation. J. Biotechnol. 2013, 164, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, M.; Liu, J.; Wang, Q.; Wang, C.; Yin, Z.; Wu, C. Lactic Acid Production from Sophora Flavescens Residues Pretreated with Sodium Hydroxide: Reutilization of the Pretreated Liquor during Fermentation. Bioresour. Technol. 2017, 241, 915–921. [Google Scholar] [CrossRef]
- Garde, A.; Jonsson, G.; Schmidt, A.S.; Ahring, B.K. Lactic Acid Production from Wheat Straw Hemicellulose Hydrolysate by Lactobacillus Pentosus and Lactobacillus Brevis. Bioresour. Technol. 2002, 81, 217–223. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Tashiro, Y.; Zendo, T.; Hanada, K.; Shibata, K.; Sonomoto, K. Efficient homofermentative L-(+)-lactic acid production from xylose by a novel lactic acid bacterium, Enterococcus mundtii QU 25. Appl. Environ. Microbiol. 2011, 77, 1892–1895. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A Comprehensive Review on Food Waste Anaerobic Digestion: Research Updates and Tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef]
- Zhang, S.; Ren, Y.; Ma, X.; Guan, W.; Gao, M.; Li, Y.Y.; Wang, Q.; Wu, C. Effect of Zero-Valent Iron Addition on the Biogas Fermentation of Food Waste after Anaerobic Preservation. J. Environ. Chem. Eng. 2021, 9, 106013. [Google Scholar] [CrossRef]
- Ma, X.; Gao, M.; Liu, S.; Li, Y.; Sun, X.; Wang, Q. An Innovative Approach for Reducing the Water and Alkali Consumption in the Lactic Acid Fermentation via the Reuse of Pretreated Liquid. Bioresour. Technol. 2022, 352, 127108. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wang, Q.H.; Zhi Ma, H.; Yin, W. Lactic Acid Fermentation of Food Waste Using Integrated Glucoamylase Production. J. Chem. Technol. Biotechnol. 2009, 84, 139–143. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wang, Q.H.; Liu, Y.Y.; Ma, H.Z. On-Site Production of Crude Glucoamylase for Kitchen Waste Hydrolysis. Waste Manag. Res. 2009, 28, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Dasan, Y.K.; Lam, M.K.; Yusup, S.; Lim, J.W.; Lee, K.T. Life Cycle Evaluation of Microalgae Biofuels Production: Effect of Cultivation System on Energy, Carbon Emission and Cost Balance Analysis. Sci. Total Environ. 2019, 688, 112–128. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.M.; Kim, J.S.; Hwang, H.J.; Park, M.S.; Choi, G.J.; Choi, Y.H.; Jang, K.S.; Kim, J.C. Production of L-Lactic Acid from a Green Microalga, Hydrodictyon Reticulum, by Lactobacillus Paracasei LA104 Isolated from the Traditional Korean Food, Makgeolli. Bioresour. Technol. 2012, 110, 552–559. [Google Scholar] [CrossRef]
- Lee, T.-M.; Tseng, Y.-F.; Cheng, C.-L.; Chen, Y.-C.; Lin, C.-S.; Su, H.-Y.; Chow, T.-J.; Chen, C.-Y.; Chang, J.-S. Characterization of a Heat-Tolerant Chlorella Sp. GD Mutant with Enhanced Photosynthetic CO2 Fixation Efficiency and Its Implication as Lactic Acid Fermentation Feedstock. Biotechnol. Biofuels 2017, 10, 214. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zhang, Z.; Lin, Y.; Zhao, S.; Mei, Y.; Liang, Y.; Peng, N. High-Titer Lactic Acid Production from NaOH-Pretreated Corn Stover by Bacillus Coagulans LA204 Using Fed-Batch Simultaneous Saccharification and Fermentation under Non-Sterile Condition. Bioresour. Technol. 2015, 182, 251–257. [Google Scholar] [CrossRef]
- Kuo, Y.C.; Yuan, S.F.; Wang, C.A.; Huang, Y.J.; Guo, G.L.; Hwang, W.S. Production of Optically Pure L-Lactic Acid from Lignocellulosic Hydrolysate by Using a Newly Isolated and d-Lactate Dehydrogenase Gene-Deficient Lactobacillus Paracasei Strain. Bioresour. Technol. 2015, 198, 651–657. [Google Scholar] [CrossRef]
- Meng, Y.; Xue, Y.; Yu, B.; Gao, C.; Ma, Y. Efficient Production of L-Lactic Acid with High Optical Purity by Alkaliphilic Bacillus Sp. WL-S20. Bioresour. Technol. 2012, 116, 334–339. [Google Scholar] [CrossRef]
- Smerilli, M.; Neureiter, M.; Wurz, S.; Haas, C.; Frühauf, S.; Fuchs, W. Direct Fermentation of Potato Starch and Potato Residues to Lactic Acid by Geobacillus Stearothermophilus under Non-Sterile Conditions. J. Chem. Technol. Biotechnol. 2015, 90, 648–657. [Google Scholar] [CrossRef] [Green Version]
- Kwan, T.H.; Hu, Y.; Lin, C.S.K. Valorisation of Food Waste via Fungal Hydrolysis and Lactic Acid Fermentation with Lactobacillus Casei Shirota. Bioresour. Technol. 2016, 217, 129–136. [Google Scholar] [CrossRef]
- Mazumdar, S.; Bang, J.; Oh, M.-K. L-Lactate Production from Seaweed Hydrolysate of Laminaria Japonica Using Metabolically Engineered Escherichia Coli. Appl. Biochem. Biotechnol. 2014, 172, 1938–1952. [Google Scholar] [CrossRef] [PubMed]
- Talukder, M.M.R.; Das, P.; Wu, J.C. Microalgae (Nannochloropsis Salina) Biomass to Lactic Acid and Lipid. Biochem. Eng. J. 2012, 68, 109–113. [Google Scholar] [CrossRef]
- Maas, R.H.W.; Bakker, R.R.; Jansen, M.L.A.; Visser, D.; de Jong, E.; Eggink, G.; Weusthuis, R.A. Lactic Acid Production from Lime-Treated Wheat Straw by Bacillus Coagulans: Neutralization of Acid by Fed-Batch Addition of Alkaline Substrate. Appl. Microbiol. Biotechnol. 2008, 78, 751–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, K.; Maeda, T.; You, H.; Shirai, Y. Open Fermentative Production of L-Lactic Acid with High Optical Purity by Thermophilic Bacillus Coagulans Using Excess Sludge as Nutrient. Bioresour. Technol. 2014, 151, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhao, X.; Chamu, J.; Shanmugam, K.T. Isolation, Characterization and Evolution of a New Thermophilic Bacillus Licheniformis for Lactic Acid Production in Mineral Salts Medium. Bioresour. Technol. 2011, 102, 8152–8158. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.A.; Ou, M.S.; Harbrucker, R.; Aldrich, H.C.; Buszko, M.L.; Ingram, L.O.; Shanmugam, K.T. Isolation and Characterization of Acid-Tolerant, Thermophilic Bacteria for Effective Fermentation of Biomass-Derived Sugars to Lactic Acid. Appl. Environ. Microbiol. 2006, 72, 3228–3235. [Google Scholar] [CrossRef] [Green Version]
- Castillo Martinez, F.A.; Balciunas, E.M.; Salgado, J.M.; Domínguez González, J.M.; Converti, A.; Oliveira, R.P. de S. Lactic Acid Properties, Applications and Production: A Review. Trends Food Sci. Technol. 2013, 30, 70–83. [Google Scholar] [CrossRef]
- Guo, Y.; Yan, Q.; Jiang, Z.; Teng, C.; Wang, X. Efficient Production of Lactic Acid from Sucrose and Corncob Hydrolysate by a Newly Isolated Rhizopus Oryzae GY18. J. Ind. Microbiol. Biotechnol. 2010, 37, 1137–1143. [Google Scholar] [CrossRef]
- Ruengruglikit, C.; Hang, Y.D. L(+)-Lactic Acid Production from Corncobs by Rhizopus Oryzae NRRL-395. LWT - Food Sci. Technol. 2003, 36, 573–575. [Google Scholar] [CrossRef]
- Jin, B.; Huang, L.P.; Lant, P. Rhizopus Arrhizus – a Producer for Simultaneous Saccharification and Fermentation of Starch Waste Materials to l(+)-Lactic Acid. Biotechnol. Lett. 2003, 25, 1983–1987. [Google Scholar] [CrossRef]
- Trakarnpaiboon, S.; Srisuk, N.; Piyachomkwan, K.; Yang, S.-T.; Kitpreechavanich, V. L-Lactic Acid Production from Liquefied Cassava Starch by Thermotolerant Rhizopus Microsporus: Characterization and Optimization. Process Biochem. 2017, 63, 26–34. [Google Scholar] [CrossRef]
- Amrane, A. Effect of Inorganic Phosphate on Lactate Production by Lactobacillus Helveticus Grown on Supplemented Whey Permeate. J. Chem. Technol. Biotechnol. 2000, 75, 223–228. [Google Scholar] [CrossRef]
- Saito, K.; Hasa, Y.; Abe, H. Production of Lactic Acid from Xylose and Wheat Straw by Rhizopus Oryzae. J. Biosci. Bioeng. 2012, 114, 166–169. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Jin, B.; Kelly, J.M. Production of Lactic Acid from Renewable Materials by Rhizopus Fungi. Biochem. Eng. J. 2007, 35, 251–263. [Google Scholar] [CrossRef]
- Vodnar, D.C.; Dulf, F.V.; Pop, O.L.; Socaciu, C. L (+)-Lactic Acid Production by Pellet-Form Rhizopus Oryzae NRRL 395 on Biodiesel Crude Glycerol. Microb. Cell Fact. 2013, 12, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ishida, N.; Saitoh, S.; Tokuhiro, K.; Nagamori, E.; Matsuyama, T.; Kitamoto, K.; Takahashi, H. Efficient production of L-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene. Appl. Environ. Microbiol. 2005, 71, 1964–1970. [Google Scholar] [CrossRef] [Green Version]
- Osawa, F.; Fujii, T.; Nishida, T.; Tada, N.; Ohnishi, T.; Kobayashi, O.; Komeda, T.; Yoshida, S. Efficient Production of L-Lactic Acid by Crabtree-Negative Yeast Candida Boidinii. Yeast 2009, 26, 485–496. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, T.; Zhao, J.; Wang, J.; Yan, T.; Xu, L.; Liu, Z.; Garza, E.; Iverson, A.; Manow, R.; et al. Homofermentative Production of D-Lactic Acid from Sucrose by a Metabolically Engineered Escherichia Coli. Biotechnol. Lett. 2012, 34, 2069–2075. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, L.; Wang, Y.; Zhao, X.; Wang, J.; Garza, E.; Manow, R.; Zhou, S. Homofermentative Production of Optically Pure L-Lactic Acid from Xylose by Genetically Engineered Escherichia Coli B. Microb. Cell Fact. 2013, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Wakai, S.; Yoshie, T.; Asai-Nakashima, N.; Yamada, R.; Ogino, C.; Tsutsumi, H.; Hata, Y.; Kondo, A. L-Lactic Acid Production from Starch by Simultaneous Saccharification and Fermentation in a Genetically Engineered Aspergillus Oryzae Pure Culture. Bioresour. Technol. 2014, 173, 376–383. [Google Scholar] [CrossRef]
- Angermayr, S.A.; Paszota, M.; Hellingwerf, K.J. Engineering a Cyanobacterial Cell Factory for Production of Lactic Acid. Appl. Environ. Microbiol. 2012, 78, 7098–7106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Rahman, M.A.; Tashiro, Y.; Zendo, T.; Sakai, K.; Sonomoto, K. Enterococcus Faecium QU 50: A Novel Thermophilic Lactic Acid Bacterium for High-Yield l-Lactic Acid Production from Xylose. FEMS Microbiol. Lett. 2015, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, N.; Yu, M.; Wang, Q.; Song, N.; Che, S.; Wu, C.; Sun, X. Effect of Ethanol and Lactic Acid Pre-Fermentation on Putrefactive Bacteria Suppression, Hydrolysis, and Methanogenesis of Food Waste. Energy and Fuels 2016, 30, 2982–2989. [Google Scholar] [CrossRef]
- Sakai, K.; Ezaki, Y. Open L-Lactic Acid Fermentation of Food Refuse Using Thermophilic Bacillus Coagulans and Fluorescence in Situ Hybridization Analysis of Microflora. J. Biosci. Bioeng. 2006, 101, 457–463. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Q.H.; Chen, L.W.; Wang, X.Q.; Wang, J. Optimization of Lactic Acid Production from Food Waste by the Saccharification of Bacillus Subtili. Adv. Mater. Res. 2010, 113–116, 1080–1083. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, B.; Liu, B.; Yang, C.; Yu, B.; Li, Q.; Ma, C.; Xu, P.; Ma, Y. Efficient Production of L-Lactic Acid from Cassava Powder by Lactobacillus Rhamnosus. Bioresour. Technol. 2010, 101, 7895–7901. [Google Scholar] [CrossRef]
- Liang, S.; McDonald, A.G.; Coats, E.R. Lactic Acid Production from Potato Peel Waste by Anaerobic Sequencing Batch Fermentation Using Undefined Mixed Culture. Waste Manag. 2015, 45, 51–56. [Google Scholar] [CrossRef]
- Ding, S.; Tan, T. L-Lactic Acid Production by Lactobacillus Casei Fermentation Using Different Fed-Batch Feeding Strategies. Process Biochem. 2006, 41, 1451–1454. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, H.; Cai, D.; Wang, B.; Qin, P.; Wang, Z.; Tan, T. Improvement of L-Lactic Acid Productivity from Sweet Sorghum Juice by Repeated Batch Fermentation Coupled with Membrane Separation. Bioresour. Technol. 2016, 211, 291–297. [Google Scholar] [CrossRef]
- Tan, J.; Abdel-Rahman, M.A.; Numaguchi, M.; Tashiro, Y.; Zendo, T.; Sakai, K.; Sonomoto, K. Thermophilic Enterococcus Faecium QU 50 Enabled Open Repeated Batch Fermentation for L-Lactic Acid Production from Mixed Sugars without Carbon Catabolite Repression. RSC Adv. 2017, 7, 24233–24241. [Google Scholar] [CrossRef]
- Yamane, T.; Tanaka, R. Highly Accumulative Production of l(+)-Lactate from Glucose by Crystallization Fermentation with Immobilized Rhizopus Oryzae. J. Biosci. Bioeng. 2013, 115, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, M.A.; Xiao, Y.; Tashiro, Y.; Wang, Y.; Zendo, T.; Sakai, K.; Sonomoto, K. Fed-Batch Fermentation for Enhanced Lactic Acid Production from Glucose/Xylose Mixture without Carbon Catabolite Repression. J. Biosci. Bioeng. 2015, 119, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, M.A.; Tashiro, Y.; Zendo, T.; Sonomoto, K. Improved Lactic Acid Productivity by an Open Repeated Batch Fermentation System Using Enterococcus Mundtii QU 25. RSC Adv. 2013, 3, 8437–8445. [Google Scholar] [CrossRef]
- Ou, M.S.; Ingram, L.O.; Shanmugam, K.T. L(+)-Lactic Acid Production from Non-Food Carbohydrates by Thermotolerant Bacillus Coagulans. J. Ind. Microbiol. Biotechnol. 2011, 38, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Zhao, B.; Wang, X.; Wang, L.; Yu, B.; Ma, Y.; Ma, C.; Tang, H.; Sun, J.; Xu, P. Non-Sterilized Fermentative Production of Polymer-Grade L-Lactic Acid by a Newly Isolated Thermophilic Strain Bacillus Sp. 2–6. PLoS One 2009, 4, e4359. [Google Scholar] [CrossRef] [Green Version]
- Franken, T. Bipolar Membrane Technology and Its Applications. Membr. Technol. 2000, 2000, 8–11. [Google Scholar] [CrossRef]
- Min-tian, G.; Koide, M.; Gotou, R.; Takanashi, H.; Hirata, M.; Hano, T. Development of a Continuous Electrodialysis Fermentation System for Production of Lactic Acid by Lactobacillus Rhamnosus. Process Biochem. 2005, 40, 1033–1036. [Google Scholar] [CrossRef]
- Hábová, V.; Melzoch, K.; Rychtera, M.; Sekavová, B. Electrodialysis as a Useful Technique for Lactic Acid Separation from a Model Solution and a Fermentation Broth. Desalination 2004, 162, 361–372. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Q.; Li, Y.; Cao, D.; Sun, T. Flocculation of a Lactic Acid Fermentation Broth by Gelatin. Int. J. Environ. Pollut. 2013, 51, 255–268. [Google Scholar] [CrossRef]
- Song, M.; Jiao, P.; Qin, T.; Jiang, K.; Zhou, J.; Zhuang, W.; Chen, Y.; Liu, D.; Zhu, C.; Chen, X.; et al. Recovery of Lactic Acid from the Pretreated Fermentation Broth Based on a Novel Hyper-Cross-Linked Meso-Micropore Resin: Modeling. Bioresour. Technol. 2017, 241, 593–602. [Google Scholar] [CrossRef]
- Wang, C.; Li, Q.; Wang, D.; Xing, J. Improving the Lactic Acid Production of Actinobacillus Succinogenes by Using a Novel Fermentation and Separation Integration System. Process Biochem. 2014, 49, 1245–1250. [Google Scholar] [CrossRef]
- Aljundi, I.H.; Belovich, J.M.; Talu, O. Adsorption of Lactic Acid from Fermentation Broth and Aqueous Solutions on Zeolite Molecular Sieves. Chem. Eng. Sci. 2005, 60, 5004–5009. [Google Scholar] [CrossRef] [Green Version]
- Honda, H.; Toyama, Y.; Takahashi, H.; Nakazeko, T.; Kobayashi, T. Effective Lactic Acid Production by Two-Stage Extractive Fermentation. J. Ferment. Bioeng. 1995, 79, 589–593. [Google Scholar] [CrossRef]
- Hu, Y.; Kwan, T.H.; Daoud, W.A.; Lin, C.S.K. Continuous Ultrasonic-Mediated Solvent Extraction of Lactic Acid from Fermentation Broths. J. Clean. Prod. 2017, 145, 142–150. [Google Scholar] [CrossRef]
- Upadhyaya, B.P.; DeVeaux, L.C.; Christopher, L.P. Metabolic Engineering as a Tool for Enhanced Lactic Acid Production. Trends Biotechnol. 2014, 32, 637–644. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, D.; Chen, C.; Wang, Z.; Qin, P.; Tan, T. Efficient Magnesium Lactate Production with in Situ Product Removal by Crystallization. Bioresour. Technol. 2015, 198, 658–663. [Google Scholar] [CrossRef]
- Zhu, X.; Tao, Y.; Liang, C.; Li, X.; Wei, N.; Zhang, W.; Zhou, Y.; Yang, Y.; Bo, T. The Synthesis of N-Caproate from Lactate: A New Efficient Process for Medium-Chain Carboxylates Production. Sci. Rep. 2015, 5, 14360. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Zhou, Y.; Wang, Y.; Wu, T.; Li, X.; Li, D.; Tao, Y. Production of High-Concentration n-Caproic Acid from Lactate through Fermentation Using a Newly Isolated Ruminococcaceae Bacterium CPB6. Biotechnol. Biofuels 2017, 10, 102. [Google Scholar] [CrossRef] [Green Version]
- Le Lay, C.; Mounier, J.; Vasseur, V.; Weill, A.; Le Blay, G.; Barbier, G.; Coton, E. In Vitro and in Situ Screening of Lactic Acid Bacteria and Propionibacteria Antifungal Activities against Bakery Product Spoilage Molds. Food Control 2016, 60, 247–255. [Google Scholar] [CrossRef]
- Tang, Y.; Dou, X.; Jiang, J.; Lei, F.; Liu, Z. Yield-Determining Components in High-Solid Integrated First and Second Generation Bioethanol Production from Cassava Residues, Furfual Residues and Corn. RSC Adv. 2016, 6, 50373–50383. [Google Scholar] [CrossRef]
Author Keyword | 93–22 TP | R (%) | ||||||
---|---|---|---|---|---|---|---|---|
93–22 | 93–97 | 98–02 | 03–07 | 08–12 | 13–17 | 18–22 | ||
lactic acid | 1032 | 1 (12.47) | 1 (13.64) | 1 (11.56) | 1 (12.90) | 1 (12.79) | 1 (12.70) | 1 (12.16) |
poly(lactic acid) | 745 | 2 (9.00) | #N/A | #N/A | 7 (2.42) | 3 (7.43) | 2 (10.42) | 2 (11.72) |
fermentation | 548 | 3 (6.62) | 2 (9.09) | 3 (4.30) | 2 (10.32) | 2 (7.66) | 3 (6.26) | 4 (6.19) |
lactic acid bacteria | 491 | 4 (5.93) | 5 (3.18) | 2 (5.11) | 3 (7.90) | 3 (7.43) | 6 (4.62) | 3 (6.27) |
biodegradation | 332 | 5 (2.25) | 4 (2.73) | 4 (2.42) | 4 (3.87) | 6 (2.37) | 9 (2.29) | 6 (2.32) |
cellulose | 304 | 6 (2.27) | 3 (3.64) | 6 (1.34) | 5 (2.10) | 7 (2.30) | 5 (4.34) | 10 (2.27) |
composites | 273 | 7 (3.30) | #N/A | #N/A | 29 (0.97) | 8 (3.14) | 4 (4.90) | 7 (3.34) |
mechanical properties | 247 | 8 (2.98) | 122 (0.45) | #N/A | 10 (1.94) | 10 (2.45) | 7 (4.20) | 8 (3.10) |
biomass | 224 | 9 (2.71) | 36 (0.91) | #N/A | 8 (2.10) | 9 (2.76) | 8 (3.97) | 11 (2.43) |
ethanol | 183 | 10 (1.61) | 16 (1.36) | 221 (0.27) | 16 (1.29) | 5 (3.45) | 10 (1.73) | 16 (1.08) |
lignin | 174 | 11 (2.10) | #N/A | #N/A | 47 (0.81) | 16 (1.30) | 40 (0.70) | 5 (4.28) |
food waste | 149 | 12 (1.8) | #N/A | #N/A | 98 (0.48) | 11 (1.07) | 12 (1.68) | 9 (2.65) |
cellulose nanocrystals | 117 | 13 (1.41) | #N/A | #N/A | #N/A | 116 (0.38) | 11 (2.34) | 13 (1.71) |
anaerobic digestion | 114 | 14 (1.38) | 16 (1.36) | 86 (0.54) | 47 (0.81) | 46 (0.69) | 14 (1.59) | 14 (1.69) |
biorefinery | 107 | 15 (1.29) | #N/A | 221 (0.27) | 396 (0.16) | 116 (0.38) | 16 (1.49) | 12 (1.88) |
silage | 106 | 16 (1.28) | 7 (2.73) | 10 (2.15) | 8 (2.10) | 21 (1.07) | 23 (1.03) | 20 (1.19) |
glucose | 94 | 17 (1.14) | 8 (2.27) | 14 (1.61) | 29 (0.97) | 13 (1.45) | 17 (1.45) | 31 (0.75) |
microbial community | 92 | 19 (1.11) | #N/A | #N/A | 98 (0.48) | 114 (0.38) | 20 (1.07) | 15 (1.69) |
enzymatic hydrolysis | 86 | 20 (1.04) | #N/A | 221 (0.27) | 73 (0.65) | 26 (0.92) | 31 (0.79) | 18 (1.44) |
metabolic engineering | 79 | 21 (0.95) | 122 (0.45) | 221 (0.27) | 98 (0.48) | 23 (1.00) | 15 (1.59) | 30 (0.75) |
thermal properties | 78 | 22 (0.94) | #N/A | #N/A | 98 (0.48) | 44 (0.69) | 14 (1.73) | 28 (0.80) |
glycerol | 74 | 23 (0.89) | 122 (0.45) | 221 (0.27) | 162 (0.32) | 87 (0.46) | 20 (1.07) | 22 (1.13) |
rice straw | 70 | 24 (0.85) | 122 (0.45) | 221 (0.27) | 21 (1.13) | 19 (1.07) | 31 (0.79) | 25 (0.83) |
milk production | 70 | 24 (0.85) | 36 (0.91) | 20 (1.34) | 12 (1.61) | 17 (1.23) | 34 (0.75) | 48 (0.58) |
Bacillus coagulans | 69 | 26 (0.83) | #N/A | 221 (0.27) | 98 (0.48) | 44 (0.69) | 19 (1.21) | 25 (0.83) |
Saccharomyces cerevisiae | 64 | 27 (0.77) | 122 (0.45) | 40 (0.81) | 98 (0.48) | 18 (1.15) | 23 (1.03) | 55 (0.55) |
pretreatment | 62 | 28 (0.75) | #N/A | #N/A | 162 (0.32) | 65 (0.54) | 129 (0.33) | 20 (1.27) |
probiotics | 62 | 28 (0.75) | #N/A | 221 (0.27) | 73 (0.65) | 87 (0.46) | 39 (0.70) | 23 (1.00) |
rumen fermentation | 61 | 30 (0.74) | 122 (0.45) | 40 (0.81) | #N/A | 13 (1.45) | 34 (0.75) | 131 (0.33) |
microbial community | 92 | 19 (1.11) | #N/A | #N/A | 98 (0.48) | 114 (0.38) | 20 (1.07) | 15 (1.69) |
Scheme 1 | Microorganism | Concentration (g·L−1) | Yield (g·g−1) | Productivity (g·(L·h) −1) | Optical Purity | Explanation | Reference |
---|---|---|---|---|---|---|---|
corn stover | Bacillus coagulans LA204 | 97.59 | 0.68 | 1.63 | -- | 50 °C and pH 6.0 with 14.4% NaOH-pretreated | [26] |
rice straw | Lactobacillus paracasei 7BL | 99 | 0.96 | 3.23 | -- | fed-batch | [27] |
peanut meal | Bacillus sp. WL-S20 | 225 | -- | -- | 99.3% | multi-pulse fed-batch; NaOH as neutralizing agent | [28] |
Bacillus sp. WL-S20 | 180 | -- | -- | 98.6% | single-pulse fed-batch | ||
potato starch and potato residues | Geobacillus stearothermophilus DSM 494 | 37 | 0.74 | 1.85 | 98% | Batch; 60 °C under non-sterile | [29] |
food waste | Lactobacillus casei Shirota | 94.0 | 0.94 | 2.61 | -- | Batch; 37 °C and pH 6.0 with 10 M NaOH-pretreated | [30] |
bakery waste hydrolysate | 82.6 | 0.94 | 2.50 | -- | -- | ||
food waste powder hydrolysate | 90.1 | 0.92 | 2.50 | -- | -- | ||
brown seaweed (Laminaria japonica) | E. coli DSM05(pZAldh) | 37.7 | 0.8 | 0.51 | 80 | fed-batch | [31] |
Nannochloropsis salina | Lactobacillus pentosus ATCC-8041 | 23.0 | 0.93 | 0.45 | -- | acid (5% H2SO4) hydrolyzed at 120 °C for 1 h | [32] |
Producer Group | Microorganism | Substrate | Concentration (g·L−1) | Yield (g·g−1) | Productivity (g·(L·h)−1) | Optical Purity | Reference |
---|---|---|---|---|---|---|---|
Bacteria | Enterococcus faecium QU 50 | Xylose | 23.7 | 1.02 | 1.97 | >99.2 | [52] |
Escherichia coli WL204 | Xylose | 62 | 0.89 | 1.63 | 99.5 | [49] | |
Fungi | Rhizopus oryzae NLX-M-1 | XylooligosacharideWaste residue | 60.3 | 0.6 | 1 | -- | [49] |
R. oryzae NRRL 395 | crude glycerol | 48 | 3.72 | -- | -- | [45] | |
Cyanobacteria | Lactobacillus paracasei LA104 | Hydrodictyon reticulum | 37.1 | 0.46 | 1.03 | 95.7–98.0 | [24] |
Lactobacilus pentosus ATCC-8041 | Nannochloropsis salina | 23.0 | 0.93 | 0.45 | -- | [32] |
Fermentation Mode | Microorganism | Substrate | Concentration (g/L) | Yield (g/g) | Productivity (g/(L·h)) | Optical Purity | Reference |
---|---|---|---|---|---|---|---|
fed-batch | Enterococcus mundtii QU 25 | mixed glucose and xylose | 129 | 0.785 | 0.768 | -- | [62] |
batch | 67.2 | 0.909 | 1.12 | 99.5% | |||
Batch with cell immobilization | Rhizopus oryzae NBRC 5384 | glucose | 145 | 0.950 | 1.42 | -- | [61] |
Fed-batch with cell immobilization | 231 | 0.925 | 1.83 | -- | |||
batch | Enterococcus mundtii QU 25 | glucose | 82.4 | 0.858 | 2.0 | ≥99% | [63] |
open repeated batch or fed-batch | 81.6–84.5 | 0.761–0.83 | 13.6–14.08 | ≥99% | |||
open repeated fed-batch | 132 | 0.853 | 6.99 | ≥99% | |||
Batch | Bacillus coagulans strain 36D1 | Glucose | 103.6 | 0.93 | 0.71 | -- | [64] |
Open Batch | Bacillus sp. Na-2 | Glucose | 118 | 0.97 | 4.37 | 97.3% | [65] |
Fed-batch | B. coagulans strain 36D1 | Glucose | 182.3 | 0.92 | 0.84 | -- | [64] |
Open Fed-batch | Bacillus sp. Na-2 | Glucose | 182 | 0.96 | 2.88 | 99.4% | [65] |
High-cell-density fermentation | Lacticaseibacillus rhamnosus LA-04-1 | sweet sorghum juice | 60.25 | 0.954 | 17.55 | -- | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Wang, X.; Li, Y.; Li, Y.-Y.; Wang, Q. Lactic Acid Production by Fermentation of Biomass: Recent Achievements and Perspectives. Sustainability 2022, 14, 14434. https://doi.org/10.3390/su142114434
Ren Y, Wang X, Li Y, Li Y-Y, Wang Q. Lactic Acid Production by Fermentation of Biomass: Recent Achievements and Perspectives. Sustainability. 2022; 14(21):14434. https://doi.org/10.3390/su142114434
Chicago/Turabian StyleRen, Yuanyuan, Xiaona Wang, Yemei Li, Yu-You Li, and Qunhui Wang. 2022. "Lactic Acid Production by Fermentation of Biomass: Recent Achievements and Perspectives" Sustainability 14, no. 21: 14434. https://doi.org/10.3390/su142114434
APA StyleRen, Y., Wang, X., Li, Y., Li, Y. -Y., & Wang, Q. (2022). Lactic Acid Production by Fermentation of Biomass: Recent Achievements and Perspectives. Sustainability, 14(21), 14434. https://doi.org/10.3390/su142114434