The Material Flow and Stability Performance of the Anaerobic Digestion of Pig Manure after (Hyper)-Thermophilic Hydrolysis Is Introduced: A Comparison with a Single-Stage Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Operation of Single-Stage and Two-Stage Reactors
2.2. Analytic Methods
2.3. Calculations
2.4. Statistical Analysis
3. Results and Discussion
3.1. Methane Production Performance
3.2. Decomposition Performance and Mass Balance
3.3. Characterization of COD Flow in the Three Systems
3.4. Stability Performance in the Three Processes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | anaerobic digestion |
COD | chemical oxygen demand |
CSTRs | continuous stirred-tank reactors |
HPLC | high performance liquid chromatography |
HRT | hydraulic retention time |
LA | lactic acid |
PCOD | particle chemical oxygen demand |
SCOD | soluble chemical oxygen demand |
TCOD | total chemical oxygen demand |
TS | total solids |
TVFA | total volatile fatty acid |
VFA | volatile fatty acids |
VS | volatile solids |
References
- Hu, Y.; Kumar, M.; Wang, Z.; Zhan, X.; Stengel, D.B. Filamentous microalgae as an advantageous co-substrate for enhanced methane production and digestate dewaterability in anaerobic co-digestion of pig manure. Waste Manag. 2021, 119, 399–407. [Google Scholar] [CrossRef]
- Deng, L.; Chen, C.; Zheng, D.; Yang, H.; Liu, Y.; Chen, Z. Effect of temperature on continuous dry fermentation of swine manure. J. Environ. Manag. 2016, 177, 247–252. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Gan, R.; Jia, H.; Yong, X.; Yong, Y.-C.; Wu, X.; Wei, P.; Zhou, J. Enhanced biogas production from swine manure anaerobic digestion via in-situ formed graphene in electromethanogenesis system. Chem. Eng. J. 2020, 389, 124510. [Google Scholar] [CrossRef]
- Qin, Y.; Higashimori, A.; Wu, L.-J.; Hojo, T.; Kubota, K.; Li, Y.-Y. Phase separation and microbial distribution in the hyperthermophilic-mesophilic-type temperature-phased anaerobic digestion (TPAD) of waste activated sludge (WAS). Bioresour. Technol. 2017, 245, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.-M.; Taherzadeh, M.J.; Lin, M.; Jiang, M.-m.; Qiao, W.; Dong, R.-j. Upgrading the anaerobic membrane bioreactor treatment of chicken manure by introducing in-situ ammonia stripping and hyper-thermophilic pretreatment. Bioresour. Technol. 2020, 310, 123470. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Ren, L.; Mdondo Wandera, S.; Liu, Y.; Dong, R.; Qiao, W. Enhancing pathogen inactivation in pig manure by introducing thermophilic and hyperthermophilic hygienization in a two-stage anaerobic digestion process. Waste Manag. 2022, 144, 123–131. [Google Scholar] [CrossRef]
- Wu, J.; Hu, Y.Y.; Wang, S.F.; Cao, Z.P.; Li, H.Z.; Fu, X.M.; Wang, K.J.; Zuo, J.E. Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis. Waste Manag. 2017, 62, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-J.; Qin, Y.; Hojo, T.; Li, Y.-Y. Upgrading of anaerobic digestion of waste activated sludge by temperature-phased process with recycle. Energy 2015, 87, 381–389. [Google Scholar] [CrossRef]
- Xiao, B.; Qin, Y.; Zhang, W.; Wu, J.; Qiang, H.; Liu, J.; Li, Y.-Y. Temperature-phased anaerobic digestion of food waste: A comparison with single-stage digestions based on performance and energy balance. Bioresour. Technol. 2018, 249, 826–834. [Google Scholar] [CrossRef]
- Kuglarz, M.; Bohdziewicz, J. Mesophilic Anaerobic Digestion of Pig Manure for Biogas Production. Ecol. Chem. Eng. A 2010, 17, 1635–1643. [Google Scholar]
- Guo, J.; Cui, X.; Sun, H.; Zhao, Q.; Wen, X.; Pang, C.; Dong, R. Effect of glucose and cellulase addition on wet-storage of excessively wilted maize stover and biogas production. Bioresour. Technol. 2018, 259, 198–206. [Google Scholar] [CrossRef]
- Yin, D.-M.; Qiao, W.; Negri, C.; Adani, F.; Fan, R.; Dong, R.-J. Enhancing hyper-thermophilic hydrolysis pre-treatment of chicken manure for biogas production by in-situ gas phase ammonia stripping. Bioresour. Technol. 2019, 287, 121470. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Wu, Z.; Yao, J.; Wandera, S.M.; Algapani, D.E.; Dong, R.; Qiao, W. Enhancing the performance of thermophilic anaerobic digestion of food waste by introducing a hybrid anaerobic membrane bioreactor. Bioresour. Technol. 2021, 314, 125861. [Google Scholar] [CrossRef] [PubMed]
- Crutchik, D.; Franchi, O.; Caminos, L.; Jeison, D.; Belmonte, M.; Pedrouso, A.; Val del Rio, A.; Mosquera-Corral, A.; Campos, J. Polyhydroxyalkanoates (PHAs) production: A feasible economic option for the treatment of sewage sludge in municipal wastewater treatment plants? Water 2020, 12, 1118. [Google Scholar] [CrossRef]
- Ge, H.; Jensen, P.D.; Batstone, D.J. Temperature phased anaerobic digestion increases apparent hydrolysis rate for waste activated sludge. Water Res. 2011, 45, 1597–1606. [Google Scholar] [CrossRef] [PubMed]
- Duan, N.; Khoshnevisan, B.; Lin, C.; Liu, Z.; Liu, H. Life cycle assessment of anaerobic digestion of pig manure coupled with different digestate treatment technologies. Environ. Int. 2020, 137, 105522. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.H.; Angelidaki, I.; Ahring, B.K. Anaerobic Digestion of Swine Manure: Inhibition by Ammonia. Water Res. 1998, 32, 5–12. [Google Scholar] [CrossRef]
- Panichnumsin, P.; Nopharatana, A.; Ahring, B.; Chaiprasert, P. Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass Bioenergy 2010, 34, 1117–1124. [Google Scholar] [CrossRef]
- Møller, H.B.; Nielsen, A.M.; Nakakubo, R.; Olsen, H.J. Process performance of biogas digesters incorporating pre-separated manure. Livest. Sci. 2007, 112, 217–223. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Wu, J.; Li, H.Z.; Poncin, S.; Wang, K.J.; Zuo, J.E. Study of an enhanced dry anaerobic digestion of swine manure: Performance and microbial community property. Bioresour. Technol. 2019, 282, 353–360. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, Z.; Hu, Y.; He, F.; Yang, S. Thermal treatment’s enhancement on high solid anaerobic digestion: Effects of temperature and reaction time. Environ. Sci. Pollut. Res. 2021, 28, 59696–59704. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Qiao, W.; Wang, Y.; Zou, T.; Lin, M.; Dong, R. Balancing acidogenesis and methanogenesis metabolism in thermophilic anaerobic digestion of food waste under a high loading rate. Sci. Total Environ. 2022, 824, 153867. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Contreras, C.; Vidal, G. Methanogenic toxicity evaluation of chlortetracycline hydrochloride. Electron. J. Biotechnol. 2015, 18, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Cioabla, A.E.; Ionel, I.; Dumitrel, G.A.; Popescu, F. Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnol. Biofuels 2012, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, E.; Herrmann, C.; Maja, W.; Borja, R. Effect of organic loading rate on the anaerobic digestion of swine waste with biochar addition. Environ. Sci. Pollut. Res. Int. 2021, 28, 38455–38465. [Google Scholar] [CrossRef]
- Arras, W.; Hussain, A.; Hausler, R.; Guiot, S.R. Mesophilic, thermophilic and hyperthermophilic acidogenic fermentation of food waste in batch: Effect of inoculum source. Waste Manag. 2019, 87, 279–287. [Google Scholar] [CrossRef]
- Detman, A.; Mielecki, D.; Pleśniak, Ł.; Bucha, M.; Janiga, M.; Matyasik, I.; Chojnacka, A.; Jędrysek, M.-O.; Błaszczyk, M.K.; Sikora, A. Methane-yielding microbial communities processing lactate-rich substrates: A piece of the anaerobic digestion puzzle. Biotechnol. Biofuels 2018, 11, 116. [Google Scholar] [CrossRef]
- Fu, W.; Mathews, A.P. Lactic acid production from lactose by Lactobacillus plantarum: Kinetic model and effects of pH, substrate, and oxygen. Biochem. Eng. J. 1999, 3, 163–170. [Google Scholar] [CrossRef]
- Duong, T.H.; Grolle, K.; Nga, T.T.V.; Zeeman, G.; Temmink, H.; van Eekert, M. Protein hydrolysis and fermentation under methanogenic and acidifying conditions. Biotechnol. Biofuels 2019, 12, 254. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-J.; Li, X.-X.; Zhou, Q.; Yang, F.; Ren, R.-P.; Lyu, Y.-K. Towards the understanding of hyperthermophilic methanogenesis from waste activated sludge at 70 °C: Performance, stability, kinetic and microbial community analyses. Waste Manag. 2021, 125, 172–181. [Google Scholar] [CrossRef]
- Gadow, S.I.; Jiang, H.; Watanabe, R.; Li, Y.-Y. Effect of temperature and temperature shock on the stability of continuous cellulosic-hydrogen fermentation. Bioresour. Technol. 2013, 142, 304–311. [Google Scholar] [CrossRef]
Parameters | Single System | T55 + M37←55 System | H70 + M37←70 System | ||
---|---|---|---|---|---|
M37 | T55 | M37←55 | H70 | M37←70 | |
Temperature (°C) | 37 | 55 | 37 | 70 | 55 |
HRT (d) | 30 | 5 | 25 | 5 | 25 |
Total volume (L) | 6 | 6 | 6 | 6 | 6 |
Work volume (L) | 4 | 4 | 4 | 4 | 4 |
Daily feed input (mL) | 133 | 800 | 160 | 800 | 160 |
Daily feed output (mL) | 133 | 800 | 160 | 800 | 160 |
Performance | Unit | Single System | T55 + M37←55 System | H70 + M37←70 System | ||||
---|---|---|---|---|---|---|---|---|
M37 | T55 | M37←55 | Total | H70 | M37←70 | Total | ||
Volumetric biogas production rate | L/L/d | 1.22 | 0.32 | 1.57 | 1.36 | 0.07 | 1.71 | 1.44 |
CH4 | % | 65.7 | 36.6 | 64.9 | 63.7 | 0 | 59.9 | 59.4 |
CO2 | % | 30.3 | 51.0 | 32.5 | 33.5 | 28.6 | 39.1 | 39.1 |
Biogas yield | L/g-VSin | 0.456 | 0.021 | 0.567 | 0.499 | 0.004 | 0.523 | 0.521 |
Methane yield | L/g-VSin | 0.30 | 0.01 | 0.37 | 0.32 | 0 | 0.32 | 0.31 |
Process | T (°C) | HRT (d) | Operation Time (d) | Feeding TS (%) | Methane Yield (mL/g-VS) | References |
---|---|---|---|---|---|---|
Single CSTR | 37 | 15 | ~64 | / | 188 | [17] |
Single CSTR | 37 | 15 | 49 | 7.2 | 217 | [18] |
Single CSTR | 50~52 | 25.3 | 39/504 b | 6.6 | 267 | [19] |
21 | 54/504 b | 7.1 | 272 | |||
21 | 61/504 b | 7.2 | 320 | |||
Single CSTR | 37 | 30 | 91 | 10.6 | 293 | This study |
Single CSTR | 35 | 41 | ~67/~225 b | 23.6 | 199 | [20] |
Two-stage CSTRs | 70 a–35 | 3 + 29 | ~47/~225 b | 23.6 | 298 | |
70 a–35 | 3 + 41 | ~67/~225 b | 23.6 | 315 | ||
Thermal treatment + batch | 55–35 | 1 + 23 | 24 | 22.4–10 | 193 | [21] |
65–35 | 3 + 23 | 26 | 22.4–10 | 206 | ||
Two-stage CSTRs | 55–37 | 5 + 25 | 100 | 10.6 | 317 | This study |
Two-stage CSTRs | 70–37 | 5 + 25 | 100 | 10.6 | 313 |
Performance | Single System | T55 + M37←55 System | H70 + M37←70 System | ||||
---|---|---|---|---|---|---|---|
M37 | T55 | M37←55 | Total | H70 | M37←70 | Total | |
Hydrolysis | 49.7 | 14.5 | 55.3 | 56.3 | 12.8 | 53.3 | 55.4 |
Acidogenesis | 53.9 | 12.1 | 59.4 | 59.6 | 0.9 | 61.8 | 58.5 |
Acetogenesis | 57.5 | 5.0 | 65.7 | 62.6 | 0.6 | 65.1 | 61.8 |
Methanogenesis | 59.1 | 1.4 | 68.3 | 63.9 | 0.0 | 66.6 | 63.1 |
PM | M37 | T55 | M37←55 | H70 | M37←70 | |
---|---|---|---|---|---|---|
TVFA(mg-acetate/L) | 13.1 ± 1.1 | 0.4 ± 0.2 | 23.1 ± 1.8 | 0.6 ± 0.2 | 13.9 ± 2.0 | 0.4 ± 0.2 |
Acetic acid (g/L) | 4.24 ± 0.32 | 0.13 ± 0.02 | 7.89 ± 0.48 | 0.13 ± 0.02 | 4.82 ± 0.75 | 0.15 ± 0.04 |
Propionic acid (g/L) | 1.23 ± 0.17 | 0.09 ± 0.03 | 2.07 ± 0.44 | 0.09 ± 0.03 | 1.28 ± 0.17 | 0.09 ± 0.04 |
Butyric acid (g/L) | 1.86 ± 0.28 | 0.01 ± 0.03 | 3.54 ± 0.64 | 0.01 ± 0.03 | 1.83 ± 0.32 | 0.05 ± 0.04 |
Lactic acid (g/L) | / | / | 5.6 ± 0.4 | / | 13.0 ± 0.5 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, M.; Wang, A.; Qiao, W.; Wandera, S.M.; Zhang, J.; Dong, R. The Material Flow and Stability Performance of the Anaerobic Digestion of Pig Manure after (Hyper)-Thermophilic Hydrolysis Is Introduced: A Comparison with a Single-Stage Process. Sustainability 2022, 14, 15795. https://doi.org/10.3390/su142315795
Lin M, Wang A, Qiao W, Wandera SM, Zhang J, Dong R. The Material Flow and Stability Performance of the Anaerobic Digestion of Pig Manure after (Hyper)-Thermophilic Hydrolysis Is Introduced: A Comparison with a Single-Stage Process. Sustainability. 2022; 14(23):15795. https://doi.org/10.3390/su142315795
Chicago/Turabian StyleLin, Min, Aijie Wang, Wei Qiao, Simon M. Wandera, Jiahao Zhang, and Renjie Dong. 2022. "The Material Flow and Stability Performance of the Anaerobic Digestion of Pig Manure after (Hyper)-Thermophilic Hydrolysis Is Introduced: A Comparison with a Single-Stage Process" Sustainability 14, no. 23: 15795. https://doi.org/10.3390/su142315795
APA StyleLin, M., Wang, A., Qiao, W., Wandera, S. M., Zhang, J., & Dong, R. (2022). The Material Flow and Stability Performance of the Anaerobic Digestion of Pig Manure after (Hyper)-Thermophilic Hydrolysis Is Introduced: A Comparison with a Single-Stage Process. Sustainability, 14(23), 15795. https://doi.org/10.3390/su142315795