Exogenously Applied Sulphur Improves Growth, Photosynthetic Efficiency, Enzymatic Activities, Mineral Nutrient Contents, Yield and Quality of Brassica juncea L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Design of Experiment and Preparation of Treatment
2.3. Growth Characteristics
2.4. Physio-Biochemical Parameters
2.4.1. Chlorophyll Content
2.4.2. Gas Exchange Parameters
2.4.3. Relative Water Content (RWC)
2.4.4. Carbonic Anhydrase Activity (CA)
2.4.5. Nitrate Reductase Activity (NR)
2.4.6. Leaf Nitrogen, Phosphorus and Potassium Contents
2.5. Microscopical Studies
2.5.1. Scanning Electron Microscopy (SEM)
2.5.2. Confocal Scanning Microscopy
2.6. Yield and Quality Characteristics
2.7. Gas Chromatography-Mass Spectroscopy
2.8. Statistical Analysis
3. Results
3.1. Growth Characteristics
3.2. Physio-Biochemical Parameters
3.2.1. Chlorophyll Content
3.2.2. Gas Exchange Parameters
3.2.3. Relative Water Content
3.2.4. Carbonic Anhydrase and Nitrate Reductase Activities
3.2.5. Mineral Nutrient Contents
3.3. Yield and Quality Parameters
3.4. Microscopical Studies
3.4.1. Scanning Electron Microscopy
3.4.2. Confocal Scanning Microscopy
3.5. GC-MS Analysis of Oil
4. Discussion
4.1. Growth and Biomass of Plants
4.2. Photosynthesis and Other Parameters
4.3. Mineral Nutrient Contents
4.4. Microscopical Studies
4.5. Yield and Quality Attributes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, S.H.; Islam, S.; Mohammad, F. Sulphur as a dynamic mineral element for plants: A review. J. Soil Sci. Plant Nutr. 2022, 22, 2118–2143. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Mohammad, F.; Khan, M.M.A.; Al-Whaibi, M.H. Cumulative effect of nitrogen and sulphur on Brassica juncea L. genotypes under NaCl stress. Protoplasma 2012, 249, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.R.; Nazir, F.; Asgher, M.; Per, T.S.; Khan, N.A. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J. Plant Physiol. 2015, 173, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Fatma, M.; Asgher, M.; Masood, A.; Khan, N.A. Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environ. Exp. Bot. 2014, 107, 55–63. [Google Scholar] [CrossRef]
- Meena, R.S.; Kumar, S.; Bohra, J.S.; Lal, R.; Yadav, G.S.; Pandey, A. Response of alley cropping-grown sesame to lime and sulphur on yield and available nutrient status in an acidic soil of Eastern India. Energy Ecol. Environ. 2019, 4, 65–74. [Google Scholar] [CrossRef]
- Bano, K.; Kumar, B.; Alyemeni, M.N.; Ahmad, P. Protective mechanisms of sulfur against arsenic phytotoxicity in Brassica napus by regulating thiol biosynthesis, sulfur-assimilation, photosynthesis, and antioxidant response. Plant Physiol. Biochem. 2022, 188, 1–11. [Google Scholar] [CrossRef]
- Narayan, O.P.; Kumar, P.; Yadav, B.; Dua, M.; Johri, A.K. Sulfur nutrition and its role in plant growth and development. Plant Signal. Behav. 2022, 2030082. [Google Scholar] [CrossRef]
- Islam, S.; Mohammad, F. Modulation of growth, photosynthetic efficiency, leaf biochemistry, cell viability and yield of Indian mustard by the application of trehalose. Sci. Hortic. 2021, 290, 110527. [Google Scholar] [CrossRef]
- Ahmad, P.; Ahanger, M.A.; Alyemeni, M.N.; Wijaya, L.; Egamberdieva, D.; Bhardwaj, R.; Ashraf, M. Zinc application mitigates the adverse effects of NaCl stress on mustard [Brassica juncea (L.) Czern & Coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content. J. Plant Interact. 2017, 12, 429–437. [Google Scholar]
- Islam, S.; Parrey, Z.A.; Shah, S.H.; Mohammad, F. Glycine betaine mediated changes in growth, photosynthetic efficiency, antioxidant system, yield and quality of mustard. Sci. Hortic. 2021, 285, 110170. [Google Scholar] [CrossRef]
- Sharma, R.; Bhardwaj, R.; Thukral, A.K.; Al-Huqail, A.A.; Siddiqui, M.H.; Ahmad, P. Oxidative stress mitigation and initiation of antioxidant and osmoprotectant responses mediated by ascorbic acid in Brassica juncea L. subjected to copper (II) stress. Ecotoxicol. Environ. Saf. 2019, 182, 109436. [Google Scholar] [CrossRef]
- Kohli, S.K.; Bali, S.; Tejpal, R.; Bhalla, V.; Verma, V.; Bhardwaj, R.; Ahmad, P. In-situ localization and biochemical analysis of bio-molecules reveals Pb-stress amelioration in Brassica juncea L. by co-application of 24-Epibrassinolide and Salicylic Acid. Sci. Rep. 2019, 9, 3524. [Google Scholar] [CrossRef] [Green Version]
- Poisson, E.; Trouverie, J.; Brunel-Muguet, S.; Akmouche, Y.; Pontet, C.; Pinochet, X.; Avice, J.C. Seed yield components and seed quality of oilseed rape are impacted by sulfur fertilization and its interactions with nitrogen fertilization. Front. Plant Sci. 2019, 10, 458. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.H.; Islam, S.; Parrey, Z.A.; Mohammad, F. Role of exogenously applied plant growth regulators in growth and development of edible oilseed crops under variable environmental conditions: A review. J Soil Sci. Plant Nutr. 2021, 21, 3284–3308. [Google Scholar] [CrossRef]
- Reddi, M.V.; Reddy, P.S. Commercial crops (oilseed crops). In Handbook of Agriculture, 5th ed.; Directorate of Information and Publications of Agriculture, Indian Council of Agricultural Research, Krishi Anusandhan Bhavan: New Delhi, India, 2003; pp. 921–1048s. [Google Scholar]
- Zhang, X.; Kang, J.; Pang, H.; Niu, L.; Lv, J. Sulfur mediated improved thiol metabolism, antioxidant enzymes system and reduced chromium accumulation in oilseed rape (Brassica napus L.) shoots. Environ. Sci. Pollut. Res. 2018, 25, 35492–35500. [Google Scholar] [CrossRef]
- Jones, M.M.; Turner, N.C. Osmotic adjustment in leaves of sorghum in response to water deficits. Plant Physiol. 1978, 61, 122–126. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, R.S.; Randhawa, N.S. Evaluation of a rapid test for the hidden hunger of zinc in plants. Plant Soil 1974, 40, 445–451. [Google Scholar] [CrossRef]
- Jaworski, E.G. Nitrate reductase assay in intact plant tissues. Biochem. Biophys. Res. Commun. 1971, 43, 1274–1279. [Google Scholar] [CrossRef]
- Lindner, R.C. Rapid analytical methods for some of the more common inorganic constituents of plant tissues. Plant Physiol. 1944, 19, 76. [Google Scholar] [CrossRef] [Green Version]
- Fiske, C.H.; Subbarow, Y. The colorimetric determination of phosphorus. Biochem. J. 1925, 66, 375–400. [Google Scholar] [CrossRef]
- Hald, P.M. The flame photometer for the measurement of sodium and potassium in biological materials. J. Biochem. 1946, 163, 499–510. [Google Scholar] [CrossRef]
- Raza, M.A.; Feng, L.Y.; Manaf, A.; Wasaya, A.; Ansar, M.; Hussain, A.; Yang, W. Sulphur application increases seed yield and oil content in sesame seeds under rainfed conditions. Field Crops Res. 2018, 218, 51–58. [Google Scholar] [CrossRef]
- Sikorska, A.; Gugała, M.; Zarzecka, K. The response of different kinds of rapeseed cultivars to foliar application of nitrogen, sulphur and boron. Sci. Rep. 2021, 11, 21102. [Google Scholar] [CrossRef]
- Scherer, H.W. Sulphur in crop production. Eur. J. Agron. 2001, 14, 81–111. [Google Scholar] [CrossRef]
- Dileep, D.; Singh, V.; Tiwari, D.; George, G.S.; Swathi, P. Effect of variety and sulphur on growth and yield of groundnut (Arachis hypogaea L.). Biol. Forum Int. J. 2021, 13, 475–478. [Google Scholar]
- Kaur, M.; Kumar, S.; Kaur, A. Effect of foliar application of nitrogen, phosphorus and sulphur on growth and yield of Gobhi Sarson (Brassica napus L.) in central Punjab. J. Oilseed Brassica 2019, 10, 47–50. [Google Scholar]
- Ur Rehman, H.; Iqbal, Q.; Farooq, M.; Wahid, A.; Afzal, I.; Basra, S.M. Sulphur application improves the growth, seed yield and oil quality of canola. Acta Physiol. Plant. 2013, 35, 2999–3006. [Google Scholar] [CrossRef]
- Waraich, E.A.; Hussain, A.; Ahmad, Z.; Ahmad, M.; Barutçular, C. Foliar application of sulfur improved growth, yield and physiological attributes of canola (Brassica napus L.) under heat stress conditions. J. Plant Nutr. 2022, 45, 369–379. [Google Scholar] [CrossRef]
- Ali, M.M.; Waleed Shafique, M.; Gull, S.; Afzal Naveed, W.; Javed, T.; Yousef, A.F.; Mauro, R.P. Alleviation of Heat Stress in Tomato by Exogenous Application of Sulfur. Horticulturae 2021, 7, 21. [Google Scholar] [CrossRef]
- Hussain, S.J.; Masood, A.; Anjum, N.A.; Khan, N.A. Sulfur-mediated control of salinity impact on photosynthesis and growth in mungbean cultivars screened for salt tolerance involves glutathione and proline metabolism, and glucose sensitivity. Acta Physiol. Plant. 2019, 41, 129. [Google Scholar] [CrossRef]
- Kumawat, R.N.; Rathore, P.S.; Nathawat, N.S.; Mahatma, M. Effect of sulfur and iron on enzymatic activity and chlorophyll content of mungbean. J. Plant Nutr. 2006, 29, 1451–1467. [Google Scholar] [CrossRef]
- Skudra, I.; Ruza, A. Effect of nitrogen and sulphur fertilization on chlorophyll content in winter wheat. Rural Sustain. Res. 2017, 37, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Anjum, N.A.; Umar, S.; Ahmad, A.; Iqbal, M.; Khan, N.A. Sulphur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione. Plant Growth Regul. 2008, 54, 271–279. [Google Scholar] [CrossRef]
- Heikal, Y.M.; El-Esawi, M.A.; Galilah, D.A. Morpho-anatomical, biochemical and molecular genetic responses of canola (Brassica napus L.) to sulphur application. Environ. Exp. Bot. 2022, 194, 104739. [Google Scholar] [CrossRef]
- Liu, J.; Hou, H.; Zhao, L.; Sun, Z.; Li, H. Protective effect of foliar application of sulfur on photosynthesis and antioxidative defense system of rice under the stress of Cd. Sci. Total Environ. 2020, 710, 136230. [Google Scholar] [CrossRef]
- Namvar, A.; Khandan, T. Inoculation of rapeseed under different rates of inorganic nitrogen and sulfur fertilizer: Impact on water relations, cell membrane stability, chlorophyll content and yield. Arch. Agron. Soil Sci. 2015, 61, 1137–1149. [Google Scholar] [CrossRef]
- Rehman, H.U.; Alharby, H.F.; Al-Zahrani, H.S.; Bamagoos, A.A.; Alsulami, N.B.; Alabdallah, N.M.; Wakeel, A. Enriching Urea with Nitrogen Inhibitors Improves Growth, N Uptake and Seed Yield in Quinoa (Chenopodium quinoa Willd) Affecting Photochemical Efficiency and Nitrate Reductase Activity. Plants 2022, 11, 371. [Google Scholar] [CrossRef]
- DiMario, R.J.; Giuliani, R.; Ubierna, N.; Slack, A.D.; Cousins, A.B.; Studer, A.J. Lack of leaf carbonic anhydrase activity eliminates the C4 carbon-concentrating mechanism requiring direct diffusion of CO2 into bundle sheath cells. Plant Cell Environ. 2022, 45, 1382–1397. [Google Scholar] [CrossRef]
- Jamal, A.; Fazli, I.S.; Ahmad, S.; Kim, K.T.; Oh, D.G.; Abdin, M.Z. Effect of sulfur on nitrate reductase and ATP sulfurylase activities in groundnut (Arachis hypogea L.). J. Plant Biol. 2006, 49, 513–517. [Google Scholar] [CrossRef]
- Kulczycki, G.; Sacała, E.; Chohura, P.; Załuska, J. Maize and Wheat Response to Drought Stress under Varied Sulphur Fertilisation. Agronomy 2022, 12, 1076. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Castellarín, J.M.; Miralles, D.J.; Pedrol, H.M. Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Res. 2009, 113, 170–177. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, R.Y.; Huang, X.Y.; Wang, Y. Sulfur Compounds in Regulation of Stomatal Movement. Front. Plant Sci. 2022, 495. [Google Scholar] [CrossRef] [PubMed]
- Jahan, B.; AlAjmi, M.F.; Rehman, M.T.; Khan, N.A. Treatment of nitric oxide supplemented with nitrogen and sulfur regulates photosynthetic performance and stomatal behavior in mustard under salt stress. Physiol. Plant 2020, 168, 490–510. [Google Scholar] [PubMed]
- Mondal, S.; Pramanik, K.; Panda, D.; Dutta, D.; Karmakar, S.; Bose, B. Sulfur in Seeds: An Overview. Plants 2022, 11, 450. [Google Scholar] [CrossRef]
- Aarabi, F.; Rakpenthai, A.; Barahimipour, R.; Gorka, M.; Alseekh, S.; Zhang, Y.; Hoefgen, R. Sulfur deficiency-induced genes affect seed protein accumulation and composition under sulfate deprivation. Plant Physiol. 2021, 187, 2419–2434. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, H.; Xue, Y.; Gao, Y.; Qian, X.; Dai, H.; Li, Z. Effect of sulfur fertilizer on summer maize grain yield and soil water utilization under different irrigation patterns from anthesis to maturity. Agric. Water Manag. 2021, 250, 106828. [Google Scholar] [CrossRef]
- Muscolo, A.; Marra, F.; Canino, F.; Maffia, A.; Mallamaci, C.; Russo, M. Growth, nutritional quality and antioxidant capacity of lettuce grown on two different soils with sulphur-based fertilizer, organic and chemical fertilizers. Sci. Hortic. 2022, 305, 111421. [Google Scholar] [CrossRef]
- Ray, K.; Sengupta, K.; Pal, A.K.; Banerjee, H. Effects of sulphur fertilization on yield, S uptake and quality of Indian mustard under varied irrigation regimes. Plant Soil Environ. 2015, 61, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Alam, P.; Kaur Kohli, S.; Al Balawi, T.; Altalayan, F.H.; Alam, P.; Ashraf, M.; Ahmad, P. Foliar application of 24-Epibrassinolide improves growth, ascorbate-glutathione cycle, and glyoxalase system in brown mustard (Brassica juncea (L.) Czern.) under cadmium toxicity. Plants 2020, 9, 1487. [Google Scholar] [CrossRef]
S. No. | Retention Time | Name of the Compound | Peak Area% | |
---|---|---|---|---|
0 (water) | 45 ppm S | |||
1 | 6.012 | Hexanal | 0.27 | 0.04 |
2 | 7.440 | 2-Propanol, 1,1’-oxybis | 0.46 | 0.12 |
3 | 13.754 | Phenol | 1.05 | 0.19 |
4 | 15.043 | 2-Pyrrolidinone, 1-methyl | 26.87 | 4.46 |
5 | 15.729 | Dodecane, 4,6-dimethyl | 0.42 | 0.34 |
6 | 17.575 | Tetradecane | 2.14 | 0.13 |
7 | 25.204 | Tridecane | 0.41 | 0.16 |
8 | 28.704 | Tetradecane | 2.14 | 1.60 |
9 | 31.479 | Decane, 1-iodo | 0.32 | 0.11 |
10 | 39.972 | Pentadecanoic acid | 0.34 | 0.41 |
11 | 40.637 | 2-Propanol, 1-chloro-, phosphate | 0.94 | 0.25 |
12 | 44.228 | Hexadecanoic acid, methyl ester | 1.95 | 0.77 |
13 | 45.282 | n-Hexadecanoic acid | 9.65 | 4.70 |
14 | 49.563 | 9,12-Octadecadienoic acid (Z, Z) | 0.61 | 3.03 |
15 | 49.733 | 9-Octadecenoic acid, 1,2,3-propanetriyl ester | 0.89 | 12.93 |
16 | 54.744 | 11-Dehydrocorticosterone | 4.30 | 13.69 |
17 | 56.859 | Tetrapentacontane | 3.76 | 16.85 |
18 | 59.630 | Bis (2-ethylhexyl) phthalate | 1.17 | 3.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.H.; Parrey, Z.A.; Islam, S.; Tyagi, A.; Ahmad, A.; Mohammad, F. Exogenously Applied Sulphur Improves Growth, Photosynthetic Efficiency, Enzymatic Activities, Mineral Nutrient Contents, Yield and Quality of Brassica juncea L. Sustainability 2022, 14, 14441. https://doi.org/10.3390/su142114441
Shah SH, Parrey ZA, Islam S, Tyagi A, Ahmad A, Mohammad F. Exogenously Applied Sulphur Improves Growth, Photosynthetic Efficiency, Enzymatic Activities, Mineral Nutrient Contents, Yield and Quality of Brassica juncea L. Sustainability. 2022; 14(21):14441. https://doi.org/10.3390/su142114441
Chicago/Turabian StyleShah, Sajad Hussain, Zubair Ahmad Parrey, Shaistul Islam, Anshika Tyagi, Ajaz Ahmad, and Firoz Mohammad. 2022. "Exogenously Applied Sulphur Improves Growth, Photosynthetic Efficiency, Enzymatic Activities, Mineral Nutrient Contents, Yield and Quality of Brassica juncea L." Sustainability 14, no. 21: 14441. https://doi.org/10.3390/su142114441
APA StyleShah, S. H., Parrey, Z. A., Islam, S., Tyagi, A., Ahmad, A., & Mohammad, F. (2022). Exogenously Applied Sulphur Improves Growth, Photosynthetic Efficiency, Enzymatic Activities, Mineral Nutrient Contents, Yield and Quality of Brassica juncea L. Sustainability, 14(21), 14441. https://doi.org/10.3390/su142114441