Optimal Scheduling of Distributed Energy System for Home Energy Management System Based on Dynamic Coyote Search Algorithm
Abstract
:1. Introduction
2. System Model Description
3. Proposed Optimization Scheduling Model
3.1. Problem Formulation
3.2. Dynamic Coyote Search Algorithm (DCSA)
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, J.; Li, P. Energy-sharing method of smart buildings with distributed photovoltaic systems in area. Energy Rep. 2022, 8, 622–627. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, H.; Meng, J.; Long, Y.; Zhou, X.; Li, Z.; Wang, Y.; Liang, Y. Carbon foot-print in building distributed energy system: An optimization-based feasibility analysis for potential emission reduction. J. Clean. Prod. 2019, 239, 117990. [Google Scholar] [CrossRef]
- Liu, Z.; Fan, G.; Sun, D.; Wu, D.; Guo, J.; Zhang, S.; Yang, X.; Lin, X.; Ai, L. A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly ze-ro-energy communities and buildings. Energy 2022, 239, 122577. [Google Scholar] [CrossRef]
- Levorato, M.; Figueiredo, R.; Frota, Y. Robust microgrid energy trading and scheduling under budgeted uncertainty. Expert Syst. Appl. 2022, 203, 117471. [Google Scholar] [CrossRef]
- Delfino, F.; Ferro, G.; Minciardi, R.; Robba, M.; Rossi, M.; Rossi, M. Identification and opti-mal control of an electrical storage system for microgrids with renewables. Sustain. Energy Grids Netw. 2019, 17, 100183. [Google Scholar] [CrossRef]
- Mishra, R.; Chaulya, S.; Prasad, G.; Mandal, S.; Banerjee, G. Design of a low cost, smart and stand-alone PV cold storage system using a domestic split air conditioner. J. Stored Prod. Res. 2020, 89, 101720. [Google Scholar] [CrossRef]
- Qi, N.; Cheng, L.; Xu, H.; Wu, K.; Li, X.; Wang, Y.; Liu, R. Smart meter data-driven evaluation of operational demand response potential of residential air conditioning loads. Appl. Energy 2020, 279, 115708. [Google Scholar] [CrossRef]
- Shabgard, H.; Song, L.; Zhu, W. Heat transfer and exergy analysis of a novel solar-powered integrated heating, cooling, and hot water system with latent heat thermal energy storage. Energy Convers. Manag. 2018, 175, 121–131. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; d’Accadia, M.D.; Vicidomini, M. A novel smart energy net-work paradigm integrating combined heat and power, photovoltaic and electric vehicles. Energy Convers. Manag. 2022, 260, 115599. [Google Scholar] [CrossRef]
- Abdalla, A.N.; Nazir, M.S.; Tiezhu, Z.; Bajaj, M.; Sanjeevikumar, P.; Yao, L. Optimized Economic Operation of Microgrid: Combined Cooling and Heating Power and Hybrid Energy Storage Systems. J. Energy Resour. Technol. 2021, 143, 070906. [Google Scholar] [CrossRef]
- Nazir, M.S.; Abdalla, A.N.; Wang, Y.; Chu, Z.; Jie, J.; Tian, P.; Jiang, M.; Khan, I.; Sanjeevikumar, P.; Tang, Y. Optimization configuration of energy storage capacity based on the microgrid reliable output power. J. Energy Storage 2020, 32, 101866. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, C. Design optimization of office building envelope based on quantum genetic algorithm for energy conservation. J. Build. Eng. 2020, 35, 102048. [Google Scholar] [CrossRef]
- Bouchekara, H.R.E.H.; Shahriar, M.S.; Irshad, U.B.; Aban, Y.A.S.; Mahmud, M.A.P.; Javaid, M.S.; Ramli, M.A.M.; Farjana, S.H. Optimal sizing of hybrid photovoltaic/diesel/battery nanogrid using a parallel multiobjec-tive PSO-based approach: Application to desert camping in Hafr Al-Batin city in Saudi Arabia. Energy Rep. 2021, 7, 4360–4375. [Google Scholar] [CrossRef]
- Abdalla, N.A.; Ju, Y.; Nazir, M.S.; Tao, H. A Robust Economic Framework for Integrated Energy Systems Based on Hybrid Shuffled Frog-Leaping and Local Search Algorithm. Sustainability 2022, 14, 10660. [Google Scholar] [CrossRef]
- Nazir, M.S.; Abdalla, A.N.; Zhao, H.; Chu, Z.; Nazir, H.M.J.; Bhutta, M.S.; Javed, M.S.; Sanjeevikumar, P. Optimized economic operation of energy storage integration using improved gravitational search algorithm and dual stage optimization. J. Energy Storage 2022, 50, 104591. [Google Scholar] [CrossRef]
- Pierezan, J.; Coelho, L.D.S. Coyote Optimization Algorithm: A New Metaheuristic for Global Optimization Problems. In 2018 IEEE Congress on Evolutionary Computation (CEC); IEEE: Piscataway Township, NJ, USA, 2018; pp. 1–8. [Google Scholar]
- Barbosa, V.; Nogueira, T.; Carati, E.; Felgueiras, C. Supercapacitor in battery charges of photovoltaic panel: Analysis of the technical feasibility. Energy Procedia 2018, 153, 80–85. [Google Scholar] [CrossRef]
Kwall | Swall | Kwin | Swin |
---|---|---|---|
0.908 W(m2·K)−1 | 3550 m2 | 2.750 W(m2·K)−1 | 650 m2 |
Period | Electricity Purchase ($) | Electricity ($) | Time |
---|---|---|---|
Peak time | 1.34 | 1.24 | 11:00—13:45, 18:00—19:45 |
Valley time | 0.31 | 0.21 | 23:00—8:45 |
Normal | 0.81 | 0.71 | others |
Parameter | Value |
---|---|
ηMT | 0.3 |
λMT | 1.5 |
ηHE | 0.8 |
COPAR | 1.2 |
SOCmin/SOCmax | 0.1/0.95 |
0.11 $/(kW·h) | |
0.025 $/(kW·h) | |
0.03 $/(kW·h) | |
0.02 $/(kW·h) |
Cost | Mode 1 | Mode 2 |
---|---|---|
Gas cost (USD) | 63.43 | 61.02 |
Electricity cost (USD) | 26.93 | 34.14 |
Electricity sales revenue (USD) | 3.42 | 1.562 |
Operation and maintenance cost (USD) | 11.73 | 12.37 |
Environmental cost (USD) | 12.26 | 13.36 |
total cost (USD) | 117.76 | 122.45 |
Method | Energy Purchase Price ($) | Time (s) | |
---|---|---|---|
Mode 1 | Mode 2 | ||
DCSA | 105.62 | 109.63 | 113.64 |
COA | 108.21 | 116.26 | 115.73 |
PSO | 109.32 | 117.82 | 116.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Dong, Y.; Fu, X.; Zhang, Y.; Du, J. Optimal Scheduling of Distributed Energy System for Home Energy Management System Based on Dynamic Coyote Search Algorithm. Sustainability 2022, 14, 14732. https://doi.org/10.3390/su142214732
Li C, Dong Y, Fu X, Zhang Y, Du J. Optimal Scheduling of Distributed Energy System for Home Energy Management System Based on Dynamic Coyote Search Algorithm. Sustainability. 2022; 14(22):14732. https://doi.org/10.3390/su142214732
Chicago/Turabian StyleLi, Chunbo, Yuwei Dong, Xuelong Fu, Yalan Zhang, and Juan Du. 2022. "Optimal Scheduling of Distributed Energy System for Home Energy Management System Based on Dynamic Coyote Search Algorithm" Sustainability 14, no. 22: 14732. https://doi.org/10.3390/su142214732
APA StyleLi, C., Dong, Y., Fu, X., Zhang, Y., & Du, J. (2022). Optimal Scheduling of Distributed Energy System for Home Energy Management System Based on Dynamic Coyote Search Algorithm. Sustainability, 14(22), 14732. https://doi.org/10.3390/su142214732