An Integrative Approach to Healthy Social-Ecological System to Support Increased Resilience of Resource Management in Food-Producing Systems
Abstract
:1. Introduction
Literature Review
2. Materials and Methods
2.1. The Epidemiological Study
2.2. Input for Statistical Data
3. Results
3.1. Infections with Eustrongylides spp.
3.2. Economic Impact and Costs of Water-Borne Parasitic Zoonoses to Society
- Infections—
- Deaths (0.83)
- Infections—
- International travel-associated (0.93)
- Infections—
- Incidence rate † (1)
- Infections—
- Hospitalizations (0.98)
- International travel-associated—
- Hospitalizations (0.86)
- Incidence rate †—
- Deaths (0.85)
- Zoonoses: Death (LF = 0.87), Pathogen (LF = 0.78), and Travel (LF = 0.929). These most important items were analyzed as sub-criteria for Zoonoses, and they have a high influence because have LF > 0.6.
- Impact: Hospital (LF = 0.983) and Outbreak (LF = 0.38). The main cost to the society caused by Zoonoses was determined by hospitalization. The outbreak-associated also added supplementary costs.
3.3. Collinearity Statistics VIF
4. Discussion
4.1. Health Economics
4.2. Using the SESH Approach to Implement One Health
5. Conclusions
6. Limitations and Suggestions for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Holling, C.S. Engineering resilience versus ecological resilience, National Academy of Engineering. In Engineering within Ecological Constraints; The National Academies Press: Washington, DC, USA, 1996; pp. 31–43. [Google Scholar]
- Berkes, F.; Folke, C. Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Walker, B.H.; Salt, D. Resilience Thinking: Sustaining People and Ecosystems in a Changing World; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Available online: https://wwwn.cdc.gov/FoodNetFast/PathogenSurveillance/AnnualSummary (accessed on 28 October 2022).
- Ettekal, A.; Mahoney, J. Ecological Systems Theory. In The SAGE Encyclopedia of Out-of-School Learning; Peppler, K., Ed.; SAGE: Newbury Park, CA, USA, 2017. [Google Scholar] [CrossRef]
- Capobianco, A. Environmental Considerations in Competition Enforcement—Note by South Africa. OECD Unclassified DAF/COMP/WD 2021; Directorate for Financial and Entreprise Affairs Competition Committee: Paris, France, 2021; Volume 53. [Google Scholar]
- Krasny, M.; Lundholm, C.; Plummer, R. Resilience in social-ecological systems: The roles of learning and education. Environ. Educ. Res. 2010, 16, 6. [Google Scholar] [CrossRef]
- Kadykalo, A.N.; Beaudoin, C.; Hackenburg, D.M.; Young, N.; Cooke, S.J. Social–ecological systems approaches are essential for understanding and responding to the complex impacts of COVID-19 on people and the environment. PLOS Sustain. Transform. 2022, 1, e0000006. [Google Scholar] [CrossRef]
- Fabinyi, M.; Evans, L.; Foale, S.J. Social-ecological systems, social diversity, and power: Insights from anthropology and political ecology. Ecol. Soc. 2014, 19, 28. [Google Scholar] [CrossRef] [Green Version]
- Blanar, C.A.; Munkittrick, K.R.; Houlahan, J.; Maclatchy, D.L.; Marcogliese, D.J. Pollution and parasitism in aquatic animals: A meta-analysis of effect size. Aquat. Toxicol. 2009, 93, 18–28. [Google Scholar] [CrossRef]
- Khan, R.A.; Thulin, J. Influence of pollution on parasites of aquatic animals. Adv Parasitol. 1991, 30, 201–238. [Google Scholar] [CrossRef]
- Cunningham, A.A.; Daszak, P.; Wood, J.L. One health, emerging infectious diseases and wildlife: Two decades of progress? Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160167. [Google Scholar] [CrossRef] [Green Version]
- Waters, A. People are to blame for COVID-19. Vet. Rec. 2020, 186, 467. [Google Scholar] [CrossRef]
- De Garine-Wichatitsky, M.; Binot, A.; Ward, J.; Caron, A.; Perrotton, A.; Ross, H.; Tran, Q.H.; Valls-Fox, H.; Gordon, I.J.; Promburom, P.; et al. “Health in” and “Health of” Social-Ecological Systems: A Practical Framework for the Management of Healthy and Resilient Agricultural and Natural Ecosystems. Front. Public Health 2021, 8, 616328. [Google Scholar] [CrossRef]
- UN. 2015. Available online: https://sdgs.un.org/goals (accessed on 9 November 2022).
- Dye, C. Expanded health systems for sustainable development. Science 2018, 359, 1337–1339. [Google Scholar] [CrossRef]
- Narrod, C.; Zinsstag, J.; Tiongco, M. A one health framework for estimating the economic costs of zoonotic diseases on society. Ecohealth 2012, 9, 150–162. [Google Scholar] [CrossRef] [Green Version]
- Spalding, M.A.; Bancroft, G.T.; Forrester, D.J. The Epizootiology of Eustrongylidosis in Wading Birds (Ciconiiformes) in Florida. J. Wildl. Dis. 1993, 29, 237–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narr, L.L.; O’Donnell, J.G.; Libster, B.; Alessi, P.; Abraham, D. Eustrongylidosis a parasitic infection acquired by eating live minnow. J. Am. Osteopath. Assoc. 1996, 96, 400–402. [Google Scholar] [PubMed]
- Ljubojevic, D.; Novakov, N.; Djordjevic, V.; Radosavljevic, V.; Pelic, M.; Cirkovic, M. Potential Parasitic Hazards for Humans in Fish Meat. Procedia Food Sci. 2015, 5, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Eberhard, M.L.; Hurwitz, H.; Sun, A.M.; Coletta, D. Intestinal perforation caused by larval Eustrongylides (Nematoda: Dioctophymatoidae) in New Jersey. Am. J. Trop. Med. Hyg. 1989, 40, 648–650. [Google Scholar] [CrossRef] [PubMed]
- Eberhard, M.L.; Ruiz-Tiben, E. Cutaneous emergence of Eustrongylides in two persons from South Sudan. Am. J. Trop. Med. Hyg. 2014, 90, 315–317. [Google Scholar] [CrossRef] [Green Version]
- Shamsi, S. Seafood-Borne Parasitic Diseases: A “One-Health” Approach Is Needed. Fishes 2019, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- CDC MMWR. Epidemiologic Notes and Reports on Intestinal Perforation Caused by Larval Eustrongylides—Maryland. In Morbidity and Mortality Weekly Report; Center for Disease Control and Prevention U.S.A: Atlanta, GA, USA, 1982; Volume 31, pp. 383–384, 389. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/00001134.htm (accessed on 9 November 2022).
- Urdes, L.D. Fish Eustrongylidosis (Ph: Nematoda), a disease with potential socio-economic impact. In Proceedings of the “Deltas and Wetlands”, the 25th Scientific Symposium, Tulcea, Romania, 18–21 May 2017. [Google Scholar]
- Anderson, R.C. Order Strongylida (the bursate nematodes). In Nematode Parasites of Vertebrates: Their Development and Transmission; CABI Publishing: Wallingford, UK, 2000; pp. 41–230. [Google Scholar]
- Carlsson, M.; Karvemo, S.; Tudor, M.; Sloboda, M.; Mihalca, A.D.; Ghira, I.; Bel, L.; Modry, D. Monitoring a large population of dice snake at lake Sinoe in Dobrogea, Romania. Mertensiella 2011, 18, 237–244. [Google Scholar]
- Franson, J.C.; Custer, T.W. Prevalence of Eustrongylidosis in Wading Birds from Colonies in California, Texas and Rhode Island, United States of America. Colonial Waterbirds 1994, 17, 168–172. [Google Scholar] [CrossRef]
- Moravec, F. Parasitic Nematodes of Freshwater Fishes of Europe; Kluwer Academic-Springer: Amsterdam, The Netherlands, 1994; pp. 374–384. [Google Scholar]
- WoRMS 2021. Eustrongylides Jägerskiöld. 1909. Available online: https://www.marinespecies.org/aphia.php?p=taxdetails&id=22887 (accessed on 28 October 2022).
- Hangan, M. Contributii la Studiul Epizootologic al Parazitozelor la Unele Specii de Pesti din Delta Dunarii. Ph.D. Thesis, University of Agricultural Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania, 2008. [Google Scholar]
- Guardone, L.; Ricci, E.; Susini, F.; Polsinelli, E.; Guglielmone, G.; Armani, A. First detection of Eustrongylides excisus (Nematoda: Dioctophymatidae) in big-scale sand smelt (Atherina boyeri) from the lake Massaciuccoli (Northwest Tuscany, Italy): Implications for public health and seafood quality. Food Control 2021, 120, 107517. [Google Scholar] [CrossRef]
- Xiong, F.; Li, W.X.; Wu, S.G.; Zou, H.; Wang, G.T. Molecular Phylogeny and Host Specificity of the Larval Eustrongylides (Nematoda: Dioctophmidae) from freshwater fish in China. J. Parasitol. 2013, 99, 137–144. [Google Scholar] [CrossRef]
- Urdes, L.D.; Hangan, M.; Petrica, V. Eustrongylides’ Autumnal Distribution and its Pathogenicity in Razelm, Dranov and Murighiol Lakes’ Fish. Anim. Sci. Ser. 2008, 51, 1181–1185. [Google Scholar]
- Urdes, L.; Diaconescu, C.; Vlase, G.; Ianitchi, D.; Diaconescu, S.; Hangan, M. Research on the Interrelationship Between Some Species of Freshwater Fish and Helminthic Larvae within Aquatic Ecosystems Polluted with Heavy Metals. Anim. Sci. Biotechnol. 2010, 43, 72–75. [Google Scholar]
- Urdes, L.D. Alcivar-Warren Acacia—A comparative study on metals and parasites in shellfish. J. Shellfish. Res. 2022, 40, 565–588. [Google Scholar] [CrossRef]
- Urdes, L.; Diaconescu, C.; Hangan, M.; Vlase, G. Structured survey on Eustrongylides sp., (Ph Nematoda) within a polluted aquatic ecosystem. Zootechny 2010, 53, 449–453. [Google Scholar]
- Olteanu, G.; Panaitescu, D.; Gherman, I.; Zgardan, E.; Apatenko, V.; Fazakas, B.; Balcescu-Codreanu, D.; Teodorescu, I.; Iacobiciu, I.; Talambuta, I.; et al. Poliparazitismul la Om, Animale, Plante şi Mediu; Ceres: Bucharest, Romania, 2001; pp. 41–348. [Google Scholar]
- Vaumourin, E.; Vourch, G.; Gasqui, P.; Vayssier-Taussat, M. The importance of multiparasitism: Examining the consequences of co-infections for human and animal health. Parasites Vectors 2015, 8, 545. [Google Scholar] [CrossRef] [Green Version]
- Steinmann, P.; Utzinger, J.; Du, Z.-W.; Zhou, X.-N. Multiparasitism a neglected reality on global, regional and local scale. Adv. Parasitol. 2010, 73, 21–50. [Google Scholar] [CrossRef]
- Ibiwoye, T.I.I.; Sule, A.M.; Okomoda, J.K.; Agbontale, J.J. Investigation of nematode Eustrongylides larvae infections in mudfish Clarias gariepinus and C. anguillaris from Bida floodplain of Nigeria . J. Appl. Sci. Environ. Manag. 2005, 8, 520–529. [Google Scholar]
- Williams, M.; Hernandez-Jover, M.; Shamsi, S. Parasites of zoonotic interest in selected edible freshwater fish imported to Australia. Food Waterborne Parasitol. 2021, 26, e00138. [Google Scholar] [CrossRef]
- Adeyemo, O.K.; Foyle, L. Public Health, Zoonoses, and Seafood Safety. In Fundamentals of Aquatic Veterinary Medicine; Wiley-Blackwell: Hoboken, NJ, USA, 2021; pp. 181–204. ISBN 978-1-119-61270-4. [Google Scholar]
- Franco-García, M.; Carpio Aguilar, J.-C.; Bressers, H.T. Towards Zero Waste—Circular Economy Boost, Waste to Resources; Springer International: London, UK, 2019. [Google Scholar]
- Bucea-Manea-Țoniş, R.; Šević, A.; Ilić, M.P.; Bucea-Manea-Țoniş, R.; Popović Šević, N.; Mihoreanu, L. Untapped Aspects of Innovation and Competition within a European Resilient Circular Economy. A Dual Comparative Study. Sustainability 2021, 13, 8290. [Google Scholar] [CrossRef]
- Cocioarta, A.B. Analiza Ecosistemelor Acvatice ale Principalelor Lacuri din Delta Dunării în Vederea Exploatării Pescărești. Ph.D. Thesis, University "Dunarea de Jos” of Galati, Galati, Romania, 2017. [Google Scholar]
- Bauer, O.N. The Key to the Parasites of Freshwater Fishes in the USSR; Izdatelstvo Akademii Nauk SSSR: Leningrad, Russia, 1987. [Google Scholar]
- World Health Organization (WHO). Available online: https://apps.who.int/nha/database/Select/Indicators/en (accessed on 28 October 2022).
- Urdes, L.; Hangan, M.; Diaconescu, C.; Marin, M.; Gîdea, M. A Case Report on fish Eustrongylidosis (Ph: Nematoda) in zander (Sander lucioperca). Anim. Sci. Ser. D 2017, LX, 372–374. [Google Scholar]
- Urdes, L.D.; Diaconescu, C.; Cojocaru, C.D.; Diaconescu, S. The frequency of fish-born parasitic zoonoses within the Romanian area of the black sea. In Proceedings of the EAFP Conference on Diseases of Fish and Shellfish, Split, Croatia, 12–16 September 2011; Volume 258. [Google Scholar]
- Forget, G.; Lebel, N. An ecosystem approach to human health. Int. J. Occup. Environ. Health 2001, 7, S1–S38. [Google Scholar]
- Bjelic-Cabrilo, I.; Novakov, N.; Cirkovic, M.; Kostic, D.; Popovic, E.; Aleksic, N.; Lujic, J. The first determination of Eustrongylides excisus Jägerskiöld, 1909 larvae (Nematoda: Dioctophymatidae) in the pike-perch Sander lucioperca in Vojvodina (Serbia). Helminthologia 2013, 50, 291–294. [Google Scholar] [CrossRef] [Green Version]
- FAO (Food and Agriculture Organization). The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2000. [Google Scholar]
- Speare, D.J. Aquatic Animal Health Code, 8th ed. Can. Vet. J. 2017, 47, 1. [Google Scholar]
- Adal, K. From Wisconsin to Nepal: Cryptosporidium, Cyclospora, and Microsporidia. Curr. Opin. Infect. Dis. 1994, 7, 609–615. [Google Scholar] [CrossRef]
- Gudergan, S.P.; Ringle, C.M.; Wend, S.; Will, A. Confirmatory Tetrad analysis in PLS path modeling. J. Bus. Res. 2008, 61, 1238–1249. [Google Scholar] [CrossRef]
- Vinzi, V.E.; Chin, W.W.; Henseler, J.; Wang, H. Handbook of Partial Least Squares; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.A. Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 3rd ed.; Sage: Thousand Oaks, CA, USA, 2022. [Google Scholar]
- Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions. J. R. Stat. Soc. 1974, 36, 111–147. [Google Scholar] [CrossRef]
- Lopez-Odar, D.; Alvarez-Risco, A.; Vara-Horna, A.; Chafloque-Cespedes, R.; Sekar, M.C. Validity and reliability of the questionnaire that evaluates factors associated with perceived environmental behavior and perceived ecological purchasing behavior in Peruvian consumers. Soc. Responsib. J. 2020, 16, 403–417. [Google Scholar] [CrossRef]
- Kenny, D.A.; Kaniskan, B.; McCoach, D.B. The Performance of RMSEA in Models with Small Degrees of Freedom. Sociol. Methods Res. 2015, 44, 486–507. [Google Scholar] [CrossRef]
- Henseler, J.; Dijkstra, T.K.; Sarstedt, M.; Ringle, C.M.; Diamantopoulos, A.; Straub, D.W.; Ketchen, D.J.; Hair, J.F.; Hult, G.T.M.; Calantone, R.J. Common Beliefs and Reality about Partial Least Squares: Comments on Rönkkö & Evermann. Organ. Res. Methods 2014, 17, 182–209. [Google Scholar]
- Hooper, D.; Coughlan, J.; Mullen, M.R. Structural Equation Modelling: Guidelines for Determining Model Fit. Electron. J. Bus. Res. Methods 2008, 6, 53–60. [Google Scholar]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 3. Boenningstedt SmartPLS GmbH. 2015. Available online: http://www.smartpls.com (accessed on 9 November 2022).
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.A. Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; Sage: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Sarstedt, M.; Hair, J.F.; Pick, M.; Liengaard, B.D.; Radomir, L.; Ringle, C.M. Progress in partial least squares structural equation modelling use in marketing research in the last decade. Psychol. Mark. 2022, 39, 1035–1064. [Google Scholar] [CrossRef]
- OATA. Biosecurity and the Ornamental Fish Industry, “Future Proofing the Industry”; OATA Ltd.: Wiltshire, UK, 2001. [Google Scholar]
- World Health Organization (WHO). Global Expenditure on Health: Public Spending on the Rise? World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- WHO. Commission on Macroeconomics and Health & World Health Organization. Macroeconomics and Health: Investing in Health for Economic Development: Executive Summary/Report of the Commission on Macroeconomics and Health; World Health Organization: Geneva, Switzerland, 2001; Available online: https://apps.who.int/iris/handle/10665/42463 (accessed on 9 November 2022).
- Garcia Pinillos, R.; Appleby, M.C.; Manteca, X.; Scott-Park, F.; Smith, C.; Velarde, A. One Welfare—A platform for improving human and animal welfare. Vet. Rec. 2016, 179, 412–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerner, H.; Berg, C. The concept of health in One Health and some practical implications for research and education: What is One Health? Infect. Ecol. Epidemiol. 2015, 5, 25300. [Google Scholar] [CrossRef] [PubMed]
Statistical Indices | Infections | Deaths | International Travel-Associated | Incidence Rate † | Hospitalizations | Outbreak-Associated |
---|---|---|---|---|---|---|
Mean | 659.9 | 2.1 | 62.5 | 1.4 | 114.1 | 37.7 |
Standard Error | 150.6 | 0.6 | 12.0 | 0.3 | 28.6 | 12.1 |
Standard Deviation | 706.6 | 2.8 | 56.2 | 1.5 | 134.0 | 56.5 |
Sample Variance | 499,295.7 | 7.6 | 3156.6 | 2.1 | 17,957.8 | 3196.3 |
Kurtosis | −1.6 | −0.7 | −0.5 | −1.7 | −1.8 | 7.3 |
Skewness | 0.4 | 0.9 | 0.6 | 0.4 | 0.5 | 2.5 |
Infections | Deaths | International Travel—Associated | Incidence Rate † | Hospitalizations | Outbreak-Associated | |
---|---|---|---|---|---|---|
Infections | 1.00 | |||||
Deaths | 0.83 | 1.00 | ||||
International travel-associated | 0.93 | 0.65 | 1.00 | |||
Incidence rate † | 1.00 | 0.85 | 0.92 | 1.00 | ||
Hospitalizations | 0.98 | 0.89 | 0.86 | 0.98 | 1.00 | |
Outbreak-associated | 0.38 | 0.10 | 0.56 | 0.37 | 0.21 | 1.00 |
Cronbach’s Alpha (CA) | rho_A | Composite Reliability (CR) | Average Variance Extracted (AVE) | |
---|---|---|---|---|
Treshold | >0.7 | >0.7 | >0.7 | >0.5 |
Impact | 1 | |||
Zoonoses | 1 |
Variable | VIF |
---|---|
Deaths | 2.796 |
Hospital | 1.045 |
Outbreak | 1.045 |
Pathogen | 2.407 |
Travel | 1.777 |
Original Sample (O) | Sample Mean (M) | Standard Deviation (STDEV) | T-Test Statistics (|O/STDEV|) | p-Values | |
---|---|---|---|---|---|
Zoonozes-> Impact | 0.987 | 0.991 | 0.004 | 223.330 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urdes, L.; Simion, V.-E.; Talaghir, L.-G.; Mindrescu, V. An Integrative Approach to Healthy Social-Ecological System to Support Increased Resilience of Resource Management in Food-Producing Systems. Sustainability 2022, 14, 14830. https://doi.org/10.3390/su142214830
Urdes L, Simion V-E, Talaghir L-G, Mindrescu V. An Integrative Approach to Healthy Social-Ecological System to Support Increased Resilience of Resource Management in Food-Producing Systems. Sustainability. 2022; 14(22):14830. https://doi.org/10.3390/su142214830
Chicago/Turabian StyleUrdes, Laura, Violeta-Elena Simion, Laurentiu-Gabriel Talaghir, and Veronica Mindrescu. 2022. "An Integrative Approach to Healthy Social-Ecological System to Support Increased Resilience of Resource Management in Food-Producing Systems" Sustainability 14, no. 22: 14830. https://doi.org/10.3390/su142214830
APA StyleUrdes, L., Simion, V. -E., Talaghir, L. -G., & Mindrescu, V. (2022). An Integrative Approach to Healthy Social-Ecological System to Support Increased Resilience of Resource Management in Food-Producing Systems. Sustainability, 14(22), 14830. https://doi.org/10.3390/su142214830