Spatiotemporal Land-Use Dynamics in Continental Portugal 1995–2018
Abstract
:1. Introduction
- (i)
- Analyse multi-scalar variations and trends of the main LUCs in continental Portugal, from 1995 to 2018;
- (ii)
- Assess and quantify the most relevant spatiotemporal patterns of LUT with cross-tabulation matrices;
- (iii)
- Classify municipalities by their LUD, with cluster analysis.
2. Study Area
3. Data and Methods
3.1. Land-Use Data
3.2. COS Production and Specifications
3.3. Methods
4. Results
4.1. Variations and Trends of Land-Use Dynamics from 1995 to 2018 in Continental Portugal
4.1.1. Dynamics at the National Level
4.1.2. Dynamics in Regions and Municipalities
- The distribution of artificial surfaces evidences an unbalanced and bipolar settlement model preferably near the coastline, which coexists between agricultural and forested areas. Urban areas dominate the landscape in the metropolitan areas of Lisbon and Oporto and the Algarve coast, and are also evident in some urban systems of regional importance (e.g., Aveiro, Braga, Coimbra and the majority of regional capitals);
- Agricultural areas present several clusters across the country in proximity to water bodies, and are most represented in Alentejo and the Lisbon metropolitan area (LMA);
- Pastures and agroforestry areas have a very concentrated distribution marking the landscape of the Alentejo and a residual part of the inland Centro region;
- Forest land is the LUC that occupies the largest proportion of area in all NUTS II, dominating the landscape in the Centro region, where it occupies around 50%, and in the Atlantic coastline of Alentejo;
- Shrublands are mostly distributed in areas of more rugged orography, and are more common in the Norte and Algarve regions.
4.2. Transitions and Trajectories
- Artificial surfaces increased mostly converting agricultural areas (42%), forest land (33%), and shrubland (14%).
- New agricultural areas appeared from pastures (40%), shrubland (28%) and forests (26%). In contrast, they were converted mostly to forest land (35%), and pastures (34%).
- Reductions in agroforestry resulted from conversions to forests (51%) and pastures (29%), but gains were mainly from forests (83%).
- New areas of forest land resulted mostly from shrubland (38%), agriculture (34%) and pastures (19%). Losses resulted in forest transited to shrubland (43%), artificial surfaces (21%), agriculture (20%) and agroforestry (12%).
4.3. Typology of Land-Use Dynamics
5. Discussion
5.1. Urban Dynamics
5.2. Agricultural Dynamics
5.3. Forest Dynamics
5.4. Typology
5.5. Discussion Summary: Dynamics, Specificities and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Meyer, W.B.; Turner, B. Changes in Land Use and Land Cover: A Global Perspective; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Long, H.; Zhang, Y.; Ma, L.; Tu, S. Land Use Transitions: Progress, Challenges and Prospects. Land 2021, 10, 903. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Land Use Transitions: Socio-Ecological Feedback versus Socio-Economic Change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Antrop, M.; Van Eetvelde, V. Landscape Dynamics and Evolution. In Landscape Perspectives: The Holistic Nature of Landscape; Antrop, M., Van Eetvelde, V., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 141–176. ISBN 978-94-024-1183-6. [Google Scholar]
- Golub, A.; Hertel, T.W. Global Economic Integration and Land Use Change. J. Econ. Integr. 2008, 23, 463–488. [Google Scholar]
- Lambin, E.F.; Meyfroidt, P. Global Land Use Change, Economic Globalization, and the Looming Land Scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [Green Version]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of Land Use Change on Ecosystem Services: A Review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The Emergence of Land Change Science for Global Environmental Change and Sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [Green Version]
- Brondizio, E.S.; Settele, J.; Díaz, S.; Ngo, H.T. (Eds.) IPBES Global Assessment Report on Biodiversity and Ecosystem Services; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019; 1148p. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global Land Use Changes Are Four Times Greater than Previously Estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- UNDRR. United Nations Office for Disaster Risk Reduction Global Assessment Report on Disaster Risk Reduction 2022: Our World at Risk: Transforming Governance for a Resilient Future; UNDRR: Geneva, Switzerland, 2022; ISBN 978-92-1-232028-1. [Google Scholar]
- Biermann, F.; Hickmann, T.; Sénit, C.-A.; Beisheim, M.; Bernstein, S.; Chasek, P.; Grob, L.; Kim, R.E.; Kotzé, L.J.; Nilsson, M.; et al. Scientific Evidence on the Political Impact of the Sustainable Development Goals. Nat. Sustain. 2022, 5, 795–800. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R.; Flanagan, D.; Tejero, I.G.; Fernández, J.L.M. Sustainable Land Use and Agricultural Soil. In Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 107–192. ISBN 978-94-007-0186-1. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Jin, X.; Ren, J.; Gu, Z.; Zhou, Y. A Research Framework of Land Use Transition in Suzhou City Coupled with Land Use Structure and Landscape Multifunctionality. Sci. Total Environ. 2020, 737, 139932. [Google Scholar] [CrossRef]
- Asadolahi, Z.; Salmanmahiny, A.; Sakieh, Y.; Mirkarimi, S.H.; Baral, H.; Azimi, M. Dynamic Trade-off Analysis of Multiple Ecosystem Services under Land Use Change Scenarios: Towards Putting Ecosystem Services into Planning in Iran. Ecol. Complex. 2018, 36, 250–260. [Google Scholar] [CrossRef]
- Long, H.; Qu, Y. Land Use Transitions and Land Management: A Mutual Feedback Perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Rindfuss, R.R.; Walsh, S.J.; Turner, B.L.; Fox, J.; Mishra, V. Developing a Science of Land Change: Challenges and Methodological Issues. Proc. Natl. Acad. Sci. USA 2004, 101, 13976–13981. [Google Scholar] [CrossRef] [Green Version]
- Pedroli, G.B.M.; Meiner, A. Landscapes in Transition an Account of 25 Years of Land Cover Change in Europe; EEA Report No 10/2017; EEA-European Environment Agency: Copenhagen, Denmark, 2017. [Google Scholar]
- Gómez, J.M.N.; Loures, L.C.; Castanho, R.A.; Fernández, J.C.; Fernández-Pozo, L.; Lousada, S.A.N.; Escórcio, P. Assessing Land-Use Changes in European Territories: A Retrospective Study from 1990 to 2012. In Land Use; IntechOpen: Rijeka, Croatia, 2018; Chapter 8; pp. 131–163. ISBN 978-1-78985-704-7. [Google Scholar]
- Verburg, P.H.; van Berkel, D.B.; van Doorn, A.M.; van Eupen, M.; van den Heiligenberg, H.A.R.M. Trajectories of Land Use Change in Europe: A Model-Based Exploration of Rural Futures. Landsc. Ecol. 2010, 25, 217–232. [Google Scholar] [CrossRef]
- Auch, R.F.; Wellington, D.F.; Taylor, J.L.; Stehman, S.V.; Tollerud, H.J.; Brown, J.F.; Loveland, T.R.; Pengra, B.W.; Horton, J.A.; Zhu, Z.; et al. Conterminous United States Land-Cover Change (1985–2016): New Insights from Annual Time Series. Land 2022, 11, 298. [Google Scholar] [CrossRef]
- Cheng, C.; Yang, X.; Cai, H. Analysis of Spatial and Temporal Changes and Expansion Patterns in Mainland Chinese Urban Land between 1995 and 2015. Remote Sens. 2021, 13, 2090. [Google Scholar] [CrossRef]
- Kupková, L.; Bičík, I.; Jeleček, L. At the Crossroads of European Landscape Changes: Major Processes of Landscape Change in Czechia since the Middle of the 19th Century and Their Driving Forces. Land 2021, 10, 34. [Google Scholar] [CrossRef]
- Abrantes, P.; da Costa, E.M.; Queirós, M.; Padeiro, M.; Mousselin, G. Lezíria do Tejo: Agriculture and urban sprawl on the Lisbon metropolitan fringes. Cah. Agric. 2013, 22, 526–534. [Google Scholar] [CrossRef] [Green Version]
- Faria de Deus, R.; Tenedório, J.A. Coastal Land-Use and Land-Cover Change Trajectories: Are They Sustainable? Sustainability 2021, 13, 8840. [Google Scholar] [CrossRef]
- Guo, L.; Xi, X.; Yang, W.; Liang, L. Monitoring Land Use/Cover Change Using Remotely Sensed Data in Guangzhou of China. Sustainability 2021, 13, 2944. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected Land-Use Change Impacts on Ecosystem Services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land Use and Climate Change Impacts on Global Soil Erosion by Water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar]
- Yang, S.; Zhao, W.; Pereira, P. Determinations of Environmental Factors on Interactive Soil Properties across Different Land-Use Types on the Loess Plateau, China. Sci. Total Environ. 2020, 738, 140270. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Dinar, A. Land Use and Climate Change Interactions. Annu. Rev. Resour. Econ. 2009, 1, 309–332. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skeg, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, S.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Mora, O.; Le Mouël, C.; de Lattre-Gasquet, M.; Donnars, C.; Dumas, P.; Réchauchère, O.; Brunelle, T.; Manceron, S.; Marajo-Petitzon, E.; Moreau, C.; et al. Exploring the Future of Land Use and Food Security: A New Set of Global Scenarios. PLoS ONE 2020, 15, e0235597. [Google Scholar] [CrossRef]
- Szabo, S. Urbanization and Food Insecurity Risks: Assessing the Role of Human Development. Oxf. Dev. Stud. 2016, 44, 28–48. [Google Scholar]
- Azevedo, J.C.; Moreira, C.; Castro, J.P.; Loureiro, C. Agriculture Abandonment, Land-Use Change and Fire Hazard in Mountain Landscapes in Northeastern Portugal. In Landscape Ecology in Forest Management and Conservation: Challenges and Solutions for Global Change; Li, C., Lafortezza, R., Chen, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 329–351. ISBN 978-3-642-12754-0. [Google Scholar]
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The Human Dimension of Fire Regimes on Earth: The Human Dimension of Fire Regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [Green Version]
- Houghton, R.A.; Joos, F.; Asner, G.P. The Effects of Land Use and Management on the Global Carbon Cycle. In Land Change Science: Observing, Monitoring and Understanding Trajectories of Change on the Earth’s Surface; Gutman, G., Janetos, A.C., Justice, C.O., Moran, E.F., Mustard, J.F., Rindfuss, R.R., Skole, D., Turner, B.L., Cochrane, M.A., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 237–256. ISBN 978-1-4020-2562-4. [Google Scholar]
- Morabito, M.; Crisci, A.; Messeri, A.; Orlandini, S.; Raschi, A.; Maracchi, G.; Munafò, M. The Impact of Built-up Surfaces on Land Surface Temperatures in Italian Urban Areas. Sci. Total Environ. 2016, 551–552, 317–326. [Google Scholar] [CrossRef]
- Cutsinger, J.; Galster, G. There Is No Sprawl Syndrome: A New Typology of Metropolitan Land Use Patterns. Urban Geogr. 2006, 27, 228–252. [Google Scholar] [CrossRef] [Green Version]
- Malek, Ž.; Verburg, P. Mediterranean Land Systems: Representing Diversity and Intensity of Complex Land Systems in a Dynamic Region. Landsc. Urban Plan. 2017, 165, 102–116. [Google Scholar] [CrossRef] [Green Version]
- Petrovici, N.; Bejinariu, V. A Typology of Shrinking Cities: The Social and Economic Dynamic of Romanian Urban Network 2010–2020. Stud. Univ. Babes-Bolyai Sociol. 2021, 66, 35–66. [Google Scholar] [CrossRef]
- Tian, Y.; Qian, J.; Wang, L. Village Classification in Metropolitan Suburbs from the Perspective of Urban-Rural Integration and Improvement Strategies: A Case Study of Wuhan, Central China. Land Use Policy 2021, 111, 105748. [Google Scholar] [CrossRef]
- Van Eetvelde, V.; Antrop, M. A Stepwise Multi-Scaled Landscape Typology and Characterisation for Trans-Regional Integration, Applied on the Federal State of Belgium. Landsc. Urban Plan. 2009, 91, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Von der Dunk, A.; Grêt-Regamey, A.; Dalang, T.; Hersperger, A.M. Defining a Typology of Peri-Urban Land-Use Conflicts—A Case Study from Switzerland. Landsc. Urban Plan. 2011, 101, 149–156. [Google Scholar] [CrossRef]
- Meneses, B.; Vale, M.J.; Reis, R. Uso e Ocupação Do Solo [Land Use and Land Cover]. In Uso e Ocupação do Solo em Portugal Continental: Avaliação e Cenários Futuros; Projeto LANDYN [Land Use and Land Cover of Portugal: Assessment and Future Scenarios. LANDYN Project]; Directorate-General for Territory: Lisbon, Portugal, 2014; pp. 16–52. ISBN 978-989-98477-7-4. [Google Scholar]
- Caetano, M.; Igreja, C.; Marcelino, F.; Costa, H. Estatísticas e Dinâmicas Territoriais Multiescala de Portugal Continental 1995-2007–2010 Com Base Na Carta de Uso e Ocupação Do Solo (COS) [Statistics and Multiscale Territorial Dynamics of Mainland Portugal 1995-2007-2010 Based on the Land Use and Cover Map (COS)]; Technical Report; Directorate-General for Territory (DGT): Lisbon, Portugal, 2017. [Google Scholar]
- Meneses, B.; Reis, E.; Pereira, S.; Vale, M.; Reis, R. Understanding Driving Forces and Implications Associated with the Land Use and Land Cover Changes in Portugal. Sustainability 2017, 9, 351. [Google Scholar] [CrossRef] [Green Version]
- Caetano, M.; Carrão, H.; Painho, M. Alterações Da Ocupação Do Solo Em Portugal Continental: 1985 e 2000 [Land Use and Cover Change in Portugal: 1985 e 2000]; Technical Report; Universidade Nova de Lisboa e Instituto do Ambiente: Lisbon, Portugal, 2005. [Google Scholar]
- Meneses, B.; Reis, E.; Vale, M.J.; Reis, R. Modelling the Land Use and Land Cover Changes in Portugal: A Multi-Scale and Multi-Temporal Approach. Finisterra 2018, 53, 3–26. [Google Scholar] [CrossRef]
- Castanho, R.A.; Lousada, S.; Gómez, J.M.; Escórcio, P.; Cabezas, J.; Fernandez, L.; Loures, L. Dynamics of the Land Use Changes and the Associated Barriers and Opportunities for Sustainable Development on Peripheral and Insular Territories: The Madeira Island (Portugal). In Land Use—Assessing the Past, Envisioning the Future (2019); IntechOpen: London, UK, 2019; pp. 1–13. ISBN 978-953-51-6945-1. [Google Scholar]
- Ferrão, J. Dinâmicas Territoriais e Trajectórias de Desenvolvimento: Portugal 1991 a 2006 [Spatial Dynamics and Development Trends]. Rev. De Estud. Demográficos 2002, 34, 17–25. [Google Scholar]
- Abrantes, P.; Rocha, J.; Marques da Costa, E.; Gomes, E.; Morgado, P.; Costa, N. Modelling Urban Form: A Multidimensional Typology of Urban Occupation for Spatial Analysis. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 47–65. [Google Scholar] [CrossRef]
- Oliveira, T.M.; Guiomar, N.; Baptista, F.O.; Pereira, J.M.C.; Claro, J. Is Portugal’s Forest Transition Going up in Smoke? Land Use Policy 2017, 66, 214–226. [Google Scholar] [CrossRef]
- Moreira, F.; Fontes, I.; Dias, S.; Silva, J.B.; Loupa-Ramos, I. Contrasting Static versus Dynamic-Based Typologies of Land Cover Patterns in the Lisbon Metropolitan Area: Towards a Better Understanding of Peri-Urban Areas. Appl. Geogr. 2016, 75, 49–59. [Google Scholar] [CrossRef]
- García-Álvarez, D.; Camacho Olmedo, M.T.; Mas, J.-F.; Paegelow, M. Land Use Cover Mapping, Modelling and Validation. A Background. In Land Use Cover Datasets and Validation Tools: Validation Practices with QGIS; García-Álvarez, D., Camacho Olmedo, M.T., Paegelow, M., Mas, J.F., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 21–33. ISBN 978-3-030-90998-7. [Google Scholar]
- DGT-Direção-Geral do Território Carta de Uso e Ocupação Do Solo 1995, 2007 & 2018. Available online: https://snig.dgterritorio.gov.pt/ (accessed on 6 May 2022).
- Ramos, C.; Ramos-Pereira, A. Landscapes of Portugal: Paleogeographic Evolution, Tectonics and Geomorphology. In Landscapes and Landforms of Portugal; Vieira, G., Zêzere, J.L., Mora, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–31. ISBN 978-3-319-03641-0. [Google Scholar]
- Mora, C.; Vieira, G. The Climate of Portugal. In Landscapes and Landforms of Portugal; Vieira, G., Zêzere, J.L., Mora, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 33–46. ISBN 978-3-319-03641-0. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Statistics Portugal INE—Plataforma de Divulgação Dos Censos 2021–Resultados Provisórios. Available online: https://www.ine.pt/scripts/db_censos_2021.html (accessed on 4 August 2022).
- Fernandes, J.A.R.; Seixas, J. Cities and Urbanisation in Democratic Portugal. Mediterranee 2018, 130. [Google Scholar] [CrossRef]
- Statistics Portugal Censos—Resultados Definitivos. Portugal-2011. Available online: https://censos.ine.pt/xportal/xmain?xpid=CENSOS&xpgid=ine_censos_publicacao_det&contexto=pu&PUBLICACOESpub_boui=73212469&PUBLICACOESmodo=2&selTab=tab1&pcensos=61969554 (accessed on 4 October 2022).
- Simões, V.; Melchor Fernandez, L.; Krieger, K. Science for Policy in Portugal; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Fernandes, P.M.; Guiomar, N.; Rossa, C.G. Analysing Eucalypt Expansion in Portugal as a Fire-Regime Modifier. Sci. Total Environ. 2019, 666, 79–88. [Google Scholar] [CrossRef]
- Silveira, A.; Ferrão, J.; Muñoz-Rojas, J.; Pinto-Correia, T.; Guimarães, M.; Schmidt, L. The Sustainability of Agricultural Intensification in the Early 21st Century: Insights from the Olive Oil Production in Alentejo (Southern Portugal). In Changing Societies: Legacies and Challenges; Imprensa de Ciências Sociais: Lisbon, Portugal, 2018; pp. 247–275. ISBN 978-972-671-505-4. [Google Scholar]
- Costa, H.; Benevides, P.; Moreira, F.D.; Moraes, D.; Caetano, M. Spatially Stratified and Multi-Stage Approach for National Land Cover Mapping Based on Sentinel-2 Data and Expert Knowledge. Remote Sens. 2022, 14, 1865. [Google Scholar] [CrossRef]
- Loperfido, N.; Tarpey, T. Some Remarks on the R2 for Clustering. Stat. Anal. Data Min. ASA Data Sci. J. 2018, 11, 135–148. [Google Scholar] [CrossRef]
- Dunn, J.C. Well-Separated Clusters and Optimal Fuzzy Partitions. J. Cybern. 1974, 4, 95–104. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Milligan, G.W. A Monte Carlo Study of Thirty Internal Criterion Measures for Cluster Analysis. Psychometrika 1981, 46, 187–199. [Google Scholar] [CrossRef]
- Caliński, T.; Harabasz, J. A Dendrite Method for Cluster Analysis. Commun. Stat.-Theory Methods 1974, 3, 1–27. [Google Scholar] [CrossRef]
- Freire, S.; Santos, T.; Tenedório, J. Recent Urbanization and Land Use/Land Cover Change in Portugal–the Influence of Coastline and Coastal Urban Centers. J. Coast. Res. 2009, II, 1499–1503. [Google Scholar]
- Gaspar, J.; Brito Henriques, E.; Vale, M. Economic Restructuring, Social Re-Composition and Recent Urban Changes in Portugal. GeoJournal 1998, 46, 63. [Google Scholar] [CrossRef]
- Cuadrado-Roura, J.R.; Martin, R.; Rodríguez-Pose, A. The Economic Crisis in Europe: Urban and Regional Consequences. Camb. J. Reg. Econ. Soc. 2016, 9, 3–11. [Google Scholar] [CrossRef]
- Correia, L.; Ribeiro, M.J. Macroeconomics and the Construction Sector: Evidence from Portugal. Athens J. Bus. Econ. 2021, 8, 17. [Google Scholar]
- Tavares, A.O.; Monteiro, M.; Barros, J.L.; Santos, P.P. Long-Term Land-Use Changes in Small/Medium-Sized Cities. Enhancing the General Trends and Local Characteristics. Eur. Plan. Stud. 2019, 27, 1432–1459. [Google Scholar] [CrossRef] [Green Version]
- Aguilera-Benavente, F.; Botequilha-Leitão, A.; Díaz-Varela, E. Detecting Multi-Scale Urban Growth Patterns and Processes in the Algarve Region (Southern Portugal). Appl. Geogr. 2014, 53, 234–245. [Google Scholar] [CrossRef]
- Asarpota, K.; Nadin, V. Energy Strategies, the Urban Dimension, and Spatial Planning. Energies 2020, 13, 3642. [Google Scholar] [CrossRef]
- Camagni, R.; Gibelli, M.C.; Rigamonti, P. Urban Mobility and Urban Form: The Social and Environmental Costs of Different Patterns of Urban Expansion. Ecol. Econ. 2002, 40, 199–216. [Google Scholar] [CrossRef]
- Pinto, T.C.; Guerra, I. Housing Policies, Market and Home Ownership in Portugal. CIDADES Comunidades E Territ. 2019, 39, 17. [Google Scholar]
- Kasanko, M.; Barredo, J.I.; Lavalle, C.; McCormick, N.; Demicheli, L.; Sagris, V.; Brezger, A. Are European Cities Becoming Dispersed? A Comparative Analysis of 15 European Urban Areas. Landsc. Urban Plan. 2006, 77, 111–130. [Google Scholar] [CrossRef]
- Nicolau, R.; David, J.; Caetano, M.; Pereira, J. Ratio of Land Consumption Rate to Population Growth Rate—Analysis of Different Formulations Applied to Mainland Portugal. ISPRS Int. J. Geo-Inf. 2018, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Qureshi, S.; Li, Q.; Chen, F.; Shu, L. Monitoring and Projecting Sustainable Transitions in Urban Land Use Using Remote Sensing and Scenario-Based Modelling in a Coastal Megacity. Ocean. Coast. Manag. 2022, 224, 106201. [Google Scholar] [CrossRef]
- Marraccini, E.; Debolini, M.; Moulery, M.; Abrantes, P.; Bouchier, A.; Chéry, J.-P.; Sanz Sanz, E.; Sabbatini, T.; Napoleone, C. Common Features and Different Trajectories of Land Cover Changes in Six Western Mediterranean Urban Regions. Appl. Geogr. 2015, 62, 347–356. [Google Scholar] [CrossRef]
- Abrantes, P.; Fontes, I.; Gomes, E.; Rocha, J. Compliance of Land Cover Changes with Municipal Land Use Planning: Evidence from the Lisbon Metropolitan Region (1990–2007). Land Use Policy 2016, 51, 120–134. [Google Scholar] [CrossRef]
- Padeiro, M. Conformance in Land-Use Planning: The Determinants of Decision, Conversion and Transgression. Land Use Policy 2016, 55, 285–299. [Google Scholar] [CrossRef]
- Mantas, V.M.; Marques, J.C.; Pereira, A.J.S.C. A Geospatial Approach to Monitoring Impervious Surfaces in Watersheds Using Landsat Data (the Mondego Basin, Portugal as a Case Study). Ecol. Indic. 2016, 71, 449–466. [Google Scholar] [CrossRef]
- Adger, W.; Hughes, T.; Folke, C.; Carpenter, S.; Rockström, J. Social-Ecological Resilience to Coastal Disasters. Science 2005, 309, 1036–1039. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Bell, V.A.; Davies, H.N.; Heinemeyer, A.; Armsworth, P.R.; Gaston, K.J. The Impact of Projected Increases in Urbanization on Ecosystem Services. Proc. R. Soc. B. 2011, 278, 3201–3208. [Google Scholar] [CrossRef] [Green Version]
- Guillard-Gonçalves, C.; Cutter, S.L.; Emrich, C.T.; Zêzere, J.L. Application of Social Vulnerability Index (SoVI) and Delineation of Natural Risk Zones in Greater Lisbon, Portugal. J. Risk Res. 2015, 18, 651–674. [Google Scholar] [CrossRef]
- McGrane, S.J. Impacts of Urbanisation on Hydrological and Water Quality Dynamics, and Urban Water Management: A Review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yue, W.; Xu, H.; Wu, J.; He, Y. Environmental Consequences of Rapid Urbanization in Zhejiang Province, East China. Int. J. Environ. Res. Public Health 2014, 11, 7045–7059. [Google Scholar] [CrossRef]
- Brito-Henriques, E.; Morgado, P.; Cruz, D. Morphology of the perforated city: Spatial patterns of ruins and vacant land in portuguese cities. Finisterra 2018, 53, 111–133. [Google Scholar] [CrossRef]
- Melchiorri, M.; Florczyk, A.; Freire, S.; Schiavina, M.; Pesaresi, M.; Kemper, T. Unveiling 25 Years of Planetary Urbanization with Remote Sensing: Perspectives from the Global Human Settlement Layer. Remote Sens. 2018, 10, 768. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K. On Why Agriculture Declines with Economic Growth. Agric. Econ. 1987, 1, 195–207. [Google Scholar] [CrossRef]
- MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Gutierrez Lazpita, J.; Gibon, A. Agricultural Abandonment in Mountain Areas of Europe: Environmental Consequences and Policy Response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Strijker, D. Marginal Lands in Europe—Causes of Decline. Basic Appl. Ecol. 2005, 6, 99–106. [Google Scholar] [CrossRef]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J. Evolution of Agricultural Production in Portugal during 1850–2018: A Geographical and Historical Perspective. Land 2021, 10, 776. [Google Scholar] [CrossRef]
- DGT-Direção-Geral do Território. Uso e Ocupação Do Solo Em Portugal Continental: Avaliação e Cenários Futuros. Projecto LANDYN; Direção Geral do Território: Lisbon, Portugal, 2014. [Google Scholar]
- Nitsch, H.; Osterburg, B.; Roggendorf, W.; Laggner, B. Cross Compliance and the Protection of Grassland—Illustrative Analyses of Land Use Transitions between Permanent Grassland and Arable Land in German Regions. Land Use Policy 2012, 29, 440–448. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Gil-Ribes, J.A.; Quesada-Moraga, E.; Trapero, A.; Msallem, M. Evolution and Sustainability of the Olive Production Systems. Options Mediterr. 2013, 106, 11–42. [Google Scholar]
- Debonne, N.; Bürgi, M.; Diogo, V.; Helfenstein, J.; Herzog, F.; Levers, C.; Mohr, F.; Swart, R.; Verburg, P. The Geography of Megatrends Affecting European Agriculture. Glob. Environ. Chang. 2022, 75, 102551. [Google Scholar] [CrossRef]
- Gomes, E.; Abrantes, P.; Banos, A.; Rocha, J.; Buxton, M. Farming under Urban Pressure: Farmers’ Land Use and Land Cover Change Intentions. Appl. Geogr. 2019, 102, 58–70. [Google Scholar] [CrossRef]
- FAO; UNEP. The State of the World’s Forests 2020; Forests, Biodiversity and People: Rome, Italy, 2020. [Google Scholar]
- Oliveira, R.; Palma, L. The Southern Portugal Greenbelt-Forest Landscape Restoration; WWF: New York, NY, USA, 2004; ISBN 972-97208. [Google Scholar]
- Doelman, J.C.; Stehfest, E.; van Vuuren, D.P.; Tabeau, A.; Hof, A.F.; Braakhekke, M.C.; Gernaat, D.E.H.J.; van den Berg, M.; van Zeist, W.-J.; Daioglou, V.; et al. Afforestation for Climate Change Mitigation: Potentials, Risks and Trade-Offs. Glob. Chang. Biol. 2020, 26, 1576–1591. [Google Scholar] [CrossRef]
- Domke, G.M.; Oswalt, S.N.; Walters, B.F.; Morin, R.S. Tree Planting Has the Potential to Increase Carbon Sequestration Capacity of Forests in the United States. Proc. Natl. Acad. Sci. USA 2020, 117, 24649–24651. [Google Scholar] [CrossRef]
- Rejmánek, M.; Richardson, D. Eucalypts. In Encyclopedia of Biological Invasions; University of California Press: Berkeley, CA, USA, 2011; pp. 203–209. ISBN 978-0-520-26421-2. [Google Scholar]
- Nunes, L.J.R.; Meireles, C.I.R.; Pinto Gomes, C.J.; Almeida Ribeiro, N.M.C. Historical Development of the Portuguese Forest: The Introduction of Invasive Species. Forests 2019, 10, 974. [Google Scholar] [CrossRef] [Green Version]
- Nichiforel, L.; Deuffic, P.; Thorsen, B.J.; Weiss, G.; Hujala, T.; Keary, K.; Lawrence, A.; Avdibegović, M.; Dobšinská, Z.; Feliciano, D.; et al. Two Decades of Forest-Related Legislation Changes in European Countries Analysed from a Property Rights Perspective. For. Policy Econ. 2020, 115, 102146. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Oom, D.; Artes, T.; Viegas, D.; Fernandes, P.; Faivre, N.; Freire, S.; Moore, P.; Rego, F.; Castellnou, M. Forest Fires in Portugal in 2017. In Science for Disaster Risk Management 2020: Acting Today, Protecting Tomorrow; Publications Office of the European Unio: Luxembourg, 2020; ISBN 978-92-76-18182-8. [Google Scholar]
- Turnbull, J.W. Eucalypt Plantations. New For. 1999, 17, 37–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X. Geographical Spatial Distribution and Productivity Dynamic Change of Eucalyptus Plantations in China. Sci. Rep. 2021, 11, 19764. [Google Scholar] [CrossRef]
- Moreira, F.; Vaz, P.; Catry, F.; Silva, J.S. Regional Variations in Wildfire Susceptibility of Land-Cover Types in Portugal: Implications for Landscape Management to Minimize Fire Hazard. Int. J. Wildland Fire 2009, 18, 563–574. [Google Scholar]
- Mantas, V.; Fonseca, L.; Baltazar, E.; Canhoto, J.; Abrantes, I. Detection of Tree Decline (Pinus Pinaster Aiton) in European Forests Using Sentinel-2 Data. Remote Sens. 2022, 14, 2028. [Google Scholar] [CrossRef]
- Costa, A.; Madeira, M.; Lima Santos, J.; Oliveira, Â. Change and Dynamics in Mediterranean Evergreen Oak Woodlands Landscapes of Southwestern Iberian Peninsula. Landsc. Urban Plan. 2011, 102, 164–176. [Google Scholar] [CrossRef]
- Teixido, A.L.; Quintanilla, L.G.; Carreño, F.; Gutiérrez, D. Impacts of Changes in Land Use and Fragmentation Patterns on Atlantic Coastal Forests in Northern Spain. J. Environ. Manag. 2010, 91, 879–886. [Google Scholar] [CrossRef]
- Cannell, M.G.R. Environmental Impacts of Forest Monocultures: Water Use, Acidification, Wildlife Conservation, and Carbon Storage. In Planted Forests: Contributions to the Quest for Sustainable Societies; Boyle, J.R., Winjum, J.K., Kavanagh, K., Jensen, E.C., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 239–262. ISBN 978-94-017-2689-4. [Google Scholar]
- Ganteaume, A.; Lampin-Maillet, C.; Guijarro, M.; Hernando, C.; Jappiot, M.; Fonturbel, T.; Pérez-Gorostiaga, P.; Vega, J.A. Spot Fires: Fuel Bed Flammability and Capability of Firebrands to Ignite Fuel Beds. Int. J. Wildland Fire 2009, 18, 951–969. [Google Scholar]
- Goded, S.; Ekroos, J.; Domínguez, J.; Azcárate, J.G.; Guitián, J.A.; Smith, H.G. Effects of Eucalyptus Plantations on Avian and Herb Species Richness and Composition in North-West Spain. Glob. Ecol. Conserv. 2019, 19, e00690. [Google Scholar] [CrossRef]
- Mattos, T.S.; de Oliveira, P.T.S.; Lucas, M.C.; Wendland, E. Groundwater Recharge Decrease Replacing Pasture by Eucalyptus Plantation. Water 2019, 11, 1213. [Google Scholar] [CrossRef] [Green Version]
- Benali, A.; Sá, A.C.L.; Pinho, J.; Fernandes, P.M.; Pereira, J.M.C. Understanding the Impact of Different Landscape-Level Fuel Management Strategies on Wildfire Hazard in Central Portugal. Forests 2021, 12, 522. [Google Scholar] [CrossRef]
- Ferreira-Leite, F.; Bento-Gonçalves, A.; Vieira, A.; Nunes, A.; Lourenço, L. Incidence and Recurrence of Large Forest Fires in Mainland Portugal. Nat. Hazards 2016, 84, 1035–1053. [Google Scholar] [CrossRef]
- Mateus, P.; Fernandes, P.M. Forest Fires in Portugal: Dynamics, Causes and Policies. In Forest Context and Policies in Portugal: Present and Future Challenges; Reboredo, F., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 97–115. ISBN 978-3-319-08455-8. [Google Scholar]
- Oliveira, S.; Gonçalves, A.; Zêzere, J.L. Reassessing Wildfire Susceptibility and Hazard for Mainland Portugal. Sci. Total Environ. 2021, 762, 143121. [Google Scholar] [CrossRef]
- Marques, S.; Borges, J.G.; Garcia-Gonzalo, J.; Moreira, F.; Carreiras, J.M.B.; Oliveira, M.M.; Cantarinha, A.; Botequim, B.; Pereira, J.M.C. Characterization of Wildfires in Portugal. Eur. J. For. Res. 2011, 130, 775–784. [Google Scholar] [CrossRef]
- Meeus, J.H.A. Pan-European Landscapes. Landsc. Urban Plan. 1995, 31, 57–79. [Google Scholar] [CrossRef]
- Godinho, S.; Guiomar, N.; Machado, R.; Santos, P.; Sá-Sousa, P.; Fernandes, J.P.; Neves, N.; Pinto-Correia, T. Assessment of Environment, Land Management, and Spatial Variables on Recent Changes in Montado Land Cover in Southern Portugal. Agroforest Syst. 2016, 90, 177–192. [Google Scholar] [CrossRef]
- Spyratos, V.; Bourgeron, P.S.; Ghil, M. Development at the Wildland–Urban Interface and the Mitigation of Forest-Fire Risk. Proc. Natl. Acad. Sci. USA 2007, 104, 14272–14276. [Google Scholar] [CrossRef] [Green Version]
- Tonini, M.; Parente, J.; Pereira, M.G. Global Assessment of Rural–Urban Interface in Portugal Related to Land Cover Changes. Nat. Hazards Earth Syst. Sci. 2018, 18, 1647–1664. [Google Scholar] [CrossRef] [Green Version]
- Marín, A.I.; Abdul Malak, D.; Bastrup-Birk, A.; Chirici, G.; Barbati, A.; Kleeschulte, S. Mapping Forest Condition in Europe: Methodological Developments in Support to Forest Biodiversity Assessments. Ecol. Indic. 2021, 128, 107839. [Google Scholar] [CrossRef]
- Lazdinis, M.; Angelstam, P.; Pülzl, H. Towards Sustainable Forest Management in the European Union through Polycentric Forest Governance and an Integrated Landscape Approach. Landscape Ecol. 2019, 34, 1737–1749. [Google Scholar] [CrossRef] [Green Version]
- Jones, N.; de Graaff, J.; Rodrigo, I.; Duarte, F. Historical Review of Land Use Changes in Portugal (before and after EU Integration in 1986) and Their Implications for Land Degradation and Conservation, with a Focus on Centro and Alentejo Regions. Appl. Geogr. 2011, 31, 1036–1048. [Google Scholar] [CrossRef]
- Gomes, E.; Banos, A.; Abrantes, P.; Rocha, J.; Kristensen, S.B.P.; Busck, A. Agricultural Land Fragmentation Analysis in a Peri-Urban Context: From the Past into the Future. Ecol. Indic. 2019, 97, 380–388. [Google Scholar] [CrossRef]
- Soulard, C.-T.; Valette, E.; Perrin, C.; Abrantes, P.C.; Anthopoulou, T.; Benjaballah, O.; Bouchemal, S.; Dugué, P.; Amrani, M.E.; Lardon, S.; et al. Peri-Urban Agro-Ecosystems in the Mediterranean: Diversity, Dynamics, and Drivers. Reg. Environ. Chang. 2018, 18, 651–662. [Google Scholar] [CrossRef]
- Monteiro-Henriques, T.; Fernandes, P. Regeneration of Native Forest Species in Mainland Portugal: Identifying Main Drivers. Forests 2018, 9, 694. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, G.; Boumahdi, A.; Gómez, J.A. Expansion of Olive Orchards and Their Impact on the Cultivation and Landscape through a Case Study in the Countryside of Cordoba (Spain). Land Use Policy 2022, 116, 106065. [Google Scholar] [CrossRef]
- Schernewski, G.; Inácio, M.; Nazemtseva, Y. Expert Based Ecosystem Service Assessment in Coastal and Marine Planning and Management: A Baltic Lagoon Case Study. Front. Environ. Sci. 2018, 6, 19. [Google Scholar] [CrossRef]
- Aparício, B.A.; Nunes, J.P.; Bernard-Jannin, L.; Dias, L.F.; Fonseca, A.; Ferreira, T. Modelling the Role of Ground-True Riparian Vegetation for Providing Regulating Services in a Mediterranean Watershed. Int. Soil Water Conserv. Res. 2022, in press. [Google Scholar] [CrossRef]
- Almeida, D.; Neto, C.; Esteves, L.S.; Costa, J.C. The Impacts of Land-Use Changes on the Recovery of Saltmarshes in Portugal. Ocean. Coast. Manag. 2014, 92, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Lak, A.; Sharifi, A.; Khazaei, M.; Aghamolaei, R. Towards a Framework for Driving Sustainable Urban Regeneration with Ecosystem Services. Land Use Policy 2021, 111, 105736. [Google Scholar] [CrossRef]
- Haynes, K.E.; Kulkarni, R.; Sahay, H.; Stough, R.R. Limits on City Size and Related Topics. Land Use Policy 2021, 111, 104963. [Google Scholar] [CrossRef]
- Garcia-Alvarez-Coque, J.-M.; Martinez-Gomez, V.; Tudela-Marco, L. Multi-Actor Arrangements for Farmland Management in Eastern Spain. Land Use Policy 2021, 111, 105738. [Google Scholar] [CrossRef]
- García-Llorente, M.; Martín-López, B.; Iniesta-Arandia, I.; López-Santiago, C.A.; Aguilera, P.A.; Montes, C. The Role of Multi-Functionality in Social Preferences toward Semi-Arid Rural Landscapes: An Ecosystem Service Approach. Environ. Sci. Policy 2012, 19–20, 136–146. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Effects of Thematic Resolution on Landscape Pattern Analysis. Landscape Ecol. 2007, 22, 7–13. [Google Scholar] [CrossRef]
- Jelinski, D.E.; Wu, J. The Modifiable Areal Unit Problem and Implications for Landscape Ecology. Landscape Ecol. 1996, 11, 129–140. [Google Scholar] [CrossRef]
- Openshaw, S. The Modifiable Areal Unit Problem; Geo Books: Norwich, UK, 1984. [Google Scholar]
- Wu, J. Effects of Changing Scale on Landscape Pattern Analysis: Scaling Relations. Landsc. Ecol. 2004, 19, 125–138. [Google Scholar] [CrossRef]
- Burnicki, A.C.; Brown, D.G.; Goovaerts, P. Propagating Error in Land-Cover-Change Analyses: Impact of Temporal Dependence under Increased Thematic Complexity. Int. J. Geogr. Inf. Sci. 2010, 24, 1043–1060. [Google Scholar] [CrossRef]
Level 1 | Level 4 |
---|---|
1. Artificial surfaces | |
2. Agricultural areas | 2.2.3.1. Olive groves |
3. Pastures | |
4. Agroforestry areas | |
5. Forest land | 5.1.1.5. Eucalyptus forests |
5.1.2.1. Maritime pine-forests | |
6. Shrubland | |
7. Open areas with little or no vegetation | |
8. Wetlands | |
9. Water bodies |
Region | MCC |
---|---|
Norte | 98.3 |
Centro | 98.4 |
Lisbon metropolitan area | 98.1 |
Alentejo | 97.9 |
Algarve | 98.3 |
Component | SS Loadings | % of Variance | Cumulative % |
---|---|---|---|
1 | 3.44 | 13.23 | 13.23 |
2 | 2.67 | 10.25 | 23.49 |
3 | 2.59 | 9.95 | 33.44 |
4 | 2.05 | 7.89 | 41.33 |
5 | 2.02 | 7.77 | 49.09 |
6 | 1.95 | 7.48 | 56.58 |
7 | 1.89 | 7.28 | 63.85 |
8 | 1.87 | 7.20 | 71.05 |
9 | 1.34 | 5.15 | 76.20 |
Clustering Methods | K-Medoids | Hierarchical | Fuzzy C-Means | Random Forest |
---|---|---|---|---|
Number of clusters * | 11 | 9 | 13 | 12 |
R2 | 0.611 ^ | 0.457 | 0.506 | 0.384 |
Silhouette coefficient | 0.190 | 0.330 ^ | 0.090 | 0.050 |
Classical entropy | 2.083 ^ | 2.086 | 2.195 | 2.383 |
Dunn index | 0.071 ^ | 0.050 | 0.037 | 0.045 |
Calinski–Harabasz index | 35.698 ^ | 28.276 | 22.837 | 15.052 |
Cluster | Population (Δ %) | Population Employed by Sector 2011 (%) | Gross Income per Capita | % Area Occupied (Mean Variation 1995–2018) | ||||
---|---|---|---|---|---|---|---|---|
# | 1995–2018 | 1st | 2nd | 3rd | 2018 (Mean) | Artificial Surfaces | Agricultural Areas | Forest Land |
1 | −2.4 | 3.4 | 37.4 | 59.2 | 7363 | 6.6 (1.9) | 19.2 (−2.8) | 60.1 (0.5) |
2 | −5.4 | 4.8 | 26.4 | 68.8 | 6865 | 4.1 (1.5) | 17.4 (−2.2) | 41.8 (1.3) |
3 | −15.1 | 9.1 | 20.7 | 70.2 | 7848 | 1.3 (0.5) | 20.0 (−2.8) | 29.5 (1.8) |
4 | 11.2 | 0.9 | 26.1 | 73.0 | 8979 | 24.8 (7.5) | 27.9 (−3.6) | 33.9 (−1.4) |
5 | 20.5 | 4.2 | 25.0 | 70.8 | 8456 | 9.9 (2.8) | 41.7 (−8.5) | 28.6 (2.6) |
6 | −7.2 | 1.2 | 15.7 | 83.1 | 10,062 | 19.5 (4.8) | 30.2 (−2.8) | 11.5 (−0.2) |
7 | −11.7 | 9.4 | 25.0 | 65.6 | 6892 | 1.7 (0.8) | 20.4 (−1.9) | 45.7 (8.4) |
8 | −10.5 | 8.5 | 23.9 | 67.7 | 6603 | 3.2 (1.0) | 37.4 (−0.7) | 29.5 (0.2) |
9 | −14.7 | 12.5 | 18.0 | 69.5 | 7476 | 1.6 (0.5) | 48.7 (−1.8) | 18.3 (2.7) |
10 | 8.5 | 2.1 | 33.2 | 64.7 | 8949 | 17.2 (3.0) | 22.4 (−3.1) | 32.5 (−0.5) |
11 | −14.2 | 13.7 | 19.3 | 67.0 | 7173 | 1.5 (0.6) | 32.0 (−4.5) | 11.0 (−2.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, A.; Marcelino, F.; Gomes, E.; Rocha, J.; Caetano, M. Spatiotemporal Land-Use Dynamics in Continental Portugal 1995–2018. Sustainability 2022, 14, 15540. https://doi.org/10.3390/su142315540
Alves A, Marcelino F, Gomes E, Rocha J, Caetano M. Spatiotemporal Land-Use Dynamics in Continental Portugal 1995–2018. Sustainability. 2022; 14(23):15540. https://doi.org/10.3390/su142315540
Chicago/Turabian StyleAlves, André, Filipe Marcelino, Eduardo Gomes, Jorge Rocha, and Mário Caetano. 2022. "Spatiotemporal Land-Use Dynamics in Continental Portugal 1995–2018" Sustainability 14, no. 23: 15540. https://doi.org/10.3390/su142315540
APA StyleAlves, A., Marcelino, F., Gomes, E., Rocha, J., & Caetano, M. (2022). Spatiotemporal Land-Use Dynamics in Continental Portugal 1995–2018. Sustainability, 14(23), 15540. https://doi.org/10.3390/su142315540