Wetland Loss in Coastal Louisiana Drives Significant Resident Population Declines
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Regression Analysis
areas of intensive use with much of the land covered with structures (e.g., high-density residential, commercial, industrial, mining, or transportation), or less intensive uses where the land cover matrix includes vegetation, bare ground, and structures (e.g., low-density residential, recreational facilities, cemeteries, transportation/utility corridors, etc.), including any land functionality related to the developed or built-up activity.[25], p.4
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AP News. Louisiana Parishes among Top in the U.S. for Population Loss. Available online: https://apnews.com/article/population-decrease-parish-county-louisiana-06b3a604e96ffeea56d4dce0975365ed (accessed on 30 March 2023).
- Mosbrucker, K. Louisiana’s Population Continues to Shrink: Stats Show Nearly 13K Decline between 2019, 2020. The Advocate. Available online: https://www.theadvocate.com/baton_rouge/news/business/louisianas-population-continues-to-shrink-stats-show-nearly-13k-decline-between-2019-2020/article_3833634c-5cdc-11eb-951d-b39a30651d28.html (accessed on 29 January 2021).
- Hemmerling, S.A. Eroding communities and diverting populations: Historical population dynamics in coastal Louisiana. In Mississippi Delta Restoration: Pathways to a Sustainable Future; Springer: Berlin/Heidelberg, Germany, 2018; pp. 201–230. [Google Scholar]
- U.S. Census Bureau. Growth in the Nation’s Largest Counties Rebounds in 2022; U.S. Census Bureau: Washington, DC, USA, 2023. Available online: https://www.census.gov/newsroom/press-releases/2023/population-estimates-counties.html (accessed on 30 March 2023).
- Blanchard, T.C. Population Projections of Louisiana Parishes through 2030; Office of Electronic Services, Division of Administration, State of Louisiana: Baton Rouge, LA, USA, 2010.
- Hauer, M.E.; Hardy, R.D.; Mishra, D.R.; Pippin, J.S. No landward movement: Examining 80 years of population migration and shoreline change in Louisiana. Popul. Environ. 2019, 40, 369–387. [Google Scholar] [CrossRef]
- Cohen, D.T. 60 Million Live in the Path of Hurricanes. U.S. Census Bureau. Available online: https://www.census.gov/library/stories/2018/08/coastal-county-population-rises.html (accessed on 6 August 2018).
- Wilson, S.G.; Fischetti, T.R. Coastline Population Trends in the United States 1960 to 2008; US Department of Commerce, Economics and Statistics Administration, US Census Bureau: Washington, DC, USA, 2010; pp. 1–28.
- United States Census Bureau Data. Available online: https://www.census.gov/data.html (accessed on 24 March 2023).
- Roberts, H.H. Dynamic changes of the Holocene Mississippi River delta plain: The delta cycle. J. Coast. Res. 1997, 13, 605–627. [Google Scholar]
- Twilley, R.R.; Bentley, S.J.; Chen, Q.; Edmonds, D.A.; Hagen, S.C.; Lam, N.S.N.; Willson, C.S.; Xu, K.; Braud, D.; Hampton Peele, R.; et al. Co-evolution of wetland landscapes, flooding, and human settlement in the Mississippi River Delta Plain. Sustain. Sci. 2016, 11, 711–731. [Google Scholar] [CrossRef] [PubMed]
- Day, J.W.; Boesch, D.F.; Clairain, E.J.; Kemp, G.P.; Laska, S.B.; Mitsch, W.J.; Orth, K.; Mashriqui, H.; Reed, D.J.; Shabman, L.; et al. Restoration of the Mississippi Delta: Lessons from hurricanes Katrina and Rita. Science 2007, 315, 1679–1684. [Google Scholar] [CrossRef] [PubMed]
- Couvillion, B.R.; Beck, H.; Schoolmaster, D.; Fischer, M. Land Area Change in Coastal Louisiana (1932 to 2016); US Geological Survey: Reston, VA, USA, 2017.
- Edmonds, D.A.; Toby, S.C.; Siverd, C.G.; Twilley, R.; Bentley, S.J.; Hagen, S.; Xu, K. Land loss due to human-altered sediment budget in the Mississippi River Delta. Nat. Sustain. 2023, 1–8. [Google Scholar] [CrossRef]
- Day, J.W.; Hunter, R.G. Environmental Setting of the Mississippi River Delta. In Energy Production in the Mississippi River Delta: Impacts on Coastal Ecosystems and Pathways to Restoration; Springer: Berlin/Heidelberg, Germany, 2022; pp. 7–38. [Google Scholar]
- McClenachan, G.; Turner, R.E.; Tweel, A.W. Effects of oil on the rate and trajectory of Louisiana marsh shoreline erosion. Environ. Res. Lett. 2013, 8, 044030. [Google Scholar] [CrossRef]
- Day, J.W.; Clark, H.C.; Chang, C.; Hunter, R.; Norman, C.R. Life cycle of oil and gas fields in the Mississippi River Delta: A review. Water 2020, 12, 1492. [Google Scholar] [CrossRef]
- Barnes, S.; Bond, C.; Burger, N.; Anania, K.; Strong, A.; Weilant, S.; Virgets, S. Economic Evaluation of Coastal Land Loss in Louisiana; Coastal Protection and Restoration Authority: Baton Rouge, LA, USA, 2015.
- Barnes, S.R.; Virgets, S. Regional Impacts of Coastal Land Loss and Louisiana’s Opportunity for Growth; LSU EJ Ourso College of Business Economics and Policy Research Group, Environmental Defense Fund: Baton Rouge, LA, USA, 2017. [Google Scholar]
- Batker, D.; Briceno, T. The Impact of Oil and Gas Activities on the Value of Ecosystem Goods and Services of the Mississippi River Delta. In Energy Production in the Mississippi River Delta: Impacts on Coastal Ecosystems and Pathways to Restoration; Day, J.W., Hunter, R.G., Clark, H.C., Eds.; Springer International Publishing: New York, NY, USA, 2022; pp. 155–191. [Google Scholar] [CrossRef]
- Simms, J.R.Z.; Waller, H.L.; Brunet, C.; Jenkins, P. The long goodbye on a disappearing, ancestral island: A just retreat from Isle de Jean Charles. J. Environ. Stud. Sci. 2021, 11, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Colten, C.E.; Simms, J.R.; Grismore, A.A.; Hemmerling, S.A. Social justice and mobility in coastal Louisiana, USA. Reg. Environ. Change 2018, 18, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.C.; Rupasingha, A.; Cromartie, J.; Sanders, A. Rural America at a Glance: 2022 Edition; U.S. Department OF Agriculture: Washington, DC, USA, 2022. Available online: http://www.ers.usda.gov/publications/pub-details/?pubid=105154 (accessed on 1 April 2023).
- Pearl, J.; Glymour, M.; Jewell, N.P. Causal Inference in Statistics: A Primer; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- U.S. Geological Survey. Land Change Monitoring, Assessment, and Projection (LCMAP) Collection 1.3 Science Products for the Conterminous United States: USGS Data Release; U.S. Geological Survey: Reston, VA, USA, 2022. [CrossRef]
- Brown, J.F.; Tollerud, H.J.; Barber, C.P.; Zhou, Q.; Dwyer, J.L.; Vogelmann, J.E.; Loveland, T.R.; Woodcock, C.E.; Stehman, S.V.; Zhu, Z.; et al. Lessons learned implementing an operational continuous United States national land change monitoring capability: The Land Change Monitoring, Assessment, and Projection (LCMAP) approach. Remote Sens. Environ. 2020, 238, 111356. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Bond, S.; Leblebicioǧlu, A.; Schiantarelli, F. Capital accumulation and growth: A new look at the empirical evidence. J. Appl. Econom. 2010, 25, 1073–1099. [Google Scholar] [CrossRef]
- Dell, M.; Jones, B.F.; Olken, B.A. Temperature shocks and economic growth: Evidence from the last half century. Am. Econ. J. Macroecon. 2012, 4, 66–95. [Google Scholar] [CrossRef]
- Baltagi, B.H. Econometric Analysis of Panel Data, 6th ed.; Springer Nature: Berlin, Germany, 2021. [Google Scholar]
- Robert, C.P.; Casella, G. Monte Carlo Integration. In Introducing Monte Carlo Methods with R., Use R; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Morton, R.A.; Barras, J.A. Hurricane impacts on coastal wetlands: A half-century record of storm-generated features from southern Louisiana. J. Coast. Res. 2011, 27, 27–43. [Google Scholar] [CrossRef]
- Pallagst, K.; Al, E. The Future of Shrinking Cities: Problems, Patterns and Strategies of Urban Transformation in a Global Context; University of California: Oakland, CA, USA, 2009; Available online: https://escholarship.org/uc/item/7zz6s7bm (accessed on 1 April 2023).
- Kim, H.; Marcouiller, D.W.; Woosnam, K.M. Rescaling social dynamics in climate change: The implications of cumulative exposure, climate justice, and community resilience. Geoforum 2018, 96, 129–140. [Google Scholar] [CrossRef]
- Li, X.; Bellerby, R.; Craft, C.; Widney, S.E. Coastal wetland loss, consequences, and challenges for restoration. Anthr. Coasts 2018, 1, 1–15. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Hoozemans, F.M.; Marchand, M. Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses. Glob. Environ. Change 1999, 9, S69–S87. [Google Scholar] [CrossRef]
- Bastien-Olvera, B.A.; Granella, F.; Moore, F.C. Persistent effect of temperature on GDP identified from lower frequency temperature variability. Environ. Res. Lett. 2022, 17, 084038. [Google Scholar] [CrossRef]
- Burke, M.; Hsiang, S.M.; Miguel, E. Global non-linear effect of temperature on economic production. Nature 2015, 527, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Newell, R.G.; Prest, B.C.; Sexton, S.E. The GDP-temperature relationship: Implications for climate change damages. J. Environ. Econ. Manag. 2021, 108, 102445. [Google Scholar] [CrossRef]
Dependent Variable | ||
---|---|---|
Population Growth (%) | ||
Variable: | Model 1 | Model 2 |
Wetland loss (%) | −1.749 ** (0.801) | −0.961 ** (0.316) |
Wetland loss lag (%) | −0.586 *** (0.066) | |
Fixed effects | Parish and year | Parish and year |
Covariates | Developed land loss and total “other land” cover | Developed land loss and total “other land” cover |
Observations | 403 | 403 |
R2 | 0.472 | 0.563 |
Adjusted R2 | 0.406 | 0.507 |
Residual std. error | 4.615 (df = 357) | 4.206 (df = 356) |
Parish | Mean Change in Population Growth by 1 Hectare of Lost Wetland (Percent Points) | Mean Loss of Population per Hectare of Lost Wetland (# of Persons) |
---|---|---|
Cameron | −0.64 | −6 |
Iberia | −4.14 | −29 |
Jefferson | −3.88 | −887 |
Lafourche | −1.14 | −19 |
Orleans | −11.59 | −9252 |
Plaquemines | −0.47 | −24 |
St. Bernard | −2.87 | −869 |
St. Charles | −5.70 | −92 |
St. John the Baptist | −34.79 | −582 |
St. Mary | −2.98 | −32 |
St. Tammany | −8.54 | −1377 |
Terrebonne | −0.44 | −31 |
Vermilion | −2.32 | −11 |
Mean value | −6.12 | −1016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastien-Olvera, B.A.; Batker, D.; Soares, J.; Day, J.; Boutwell, L.; Briceno, T. Wetland Loss in Coastal Louisiana Drives Significant Resident Population Declines. Sustainability 2023, 15, 8941. https://doi.org/10.3390/su15118941
Bastien-Olvera BA, Batker D, Soares J, Day J, Boutwell L, Briceno T. Wetland Loss in Coastal Louisiana Drives Significant Resident Population Declines. Sustainability. 2023; 15(11):8941. https://doi.org/10.3390/su15118941
Chicago/Turabian StyleBastien-Olvera, Bernardo A., David Batker, Jared Soares, John Day, Luke Boutwell, and Tania Briceno. 2023. "Wetland Loss in Coastal Louisiana Drives Significant Resident Population Declines" Sustainability 15, no. 11: 8941. https://doi.org/10.3390/su15118941
APA StyleBastien-Olvera, B. A., Batker, D., Soares, J., Day, J., Boutwell, L., & Briceno, T. (2023). Wetland Loss in Coastal Louisiana Drives Significant Resident Population Declines. Sustainability, 15(11), 8941. https://doi.org/10.3390/su15118941