Analyzing the Effects of Renewable and Nonrenewable Energy Usage and Technological Innovation on Environmental Sustainability: Evidence from QUAD Economies
Abstract
:1. Introduction
2. Literature Review
2.1. Greenhouse Gases and Economic Growth
2.2. The Association between EG, EC, and GHG
2.3. Greenhouse Gases and TECH
3. Data and Methods
Data Description
4. Econometric Analyses
4.1. Slope Heterogeneity and Cross-Sectional Dependency Tests
4.2. CIPS and Westerland Cointegration Tests
4.3. Method of Moments Quantile Regression (MMQR)
5. Results and Discussions
6. Conclusions and Policy Implication
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- US EPA. Global Greenhouse Gas Emissions Data. Available online: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data (accessed on 25 February 2021).
- Transforming Our World: The 2030 Agenda for Sustainable Development|Department of Economic and Social Affairs. Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 5 March 2021).
- EDGAR-The Emissions Database for Global Atmospheric Research. Available online: https://edgar.jrc.ec.europa.eu (accessed on 5 March 2021).
- WTO|Trade Statistics-World Trade Statistical Review 2016. World Trade Organization-Global Trade. Available online: https://www.wto.org/english/res_e/statis_e/wts2016_e/wts16_toc_e.htm (accessed on 5 March 2021).
- Peters, G.P.; Davis, S.J.; Andrew, R. A synthesis of carbon in international trade. Biogeosciences 2012, 9, 3247–3276. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Chen, N.; Chen, Z. Will China make a difference in its carbon intensity reduction targets by 2020 and 2030? Appl. Energy 2017, 203, 874–882. [Google Scholar] [CrossRef]
- Abbasi, K.R.; Shahbaz, M.; Zhang, J.; Irfan, M.; Alvarado, R. Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy. Renew. Energy 2018, 187, 390–402. [Google Scholar] [CrossRef]
- Abbasi, K.R.; Adedoyin, F.F.; Abbas, J.; Hussain, K. The impact of energy depletion and renewable energy on CO2 emissions in Thailand: Fresh evidence from the novel dynamic ARDL simulation. Renew. Energy 2021, 180, 1439–1450. [Google Scholar] [CrossRef]
- Abbasi, K.; Jiao, Z.; Shahbaz, M.; Khan, A. Asymmetric impact of renewable and non-renewable energy on economic growth in Pakistan: New evidence from a nonlinear analysis. Energy Explor. Exploit. 2020, 38, 1946–1967. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. Assessment of contribution of Australia’s energy production to CO2 emissions and environmental degradation using statistical dynamic approach. Sci. Total Environ. 2018, 639, 888–899. [Google Scholar] [CrossRef]
- Shahwan, Y.; Hamza, M.; Al-Fasfus, F.; Al-Ramahi, N.; Almubaydeen, T.H. Social responsibility accounting, disclosure and real practice: Evidence from Jordan. Asian Econ. Financ. Rev. 2022, 12, 164–182. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Huang, W.; Tian, J.; Liu, S.; Yang, B.; Zheng, W. Haze grading using the Convolutional neural networks. Atmosphere 2022, 13, 522. [Google Scholar] [CrossRef]
- Imran, M.; Kaleem, M.; Ul Haq, Z. Evaluation of students perception regarding educational environment and future prospects: A comparative study of Bacha Khan University and Abdul wali Khan University. SJESR 2019, 2, 81–99. [Google Scholar] [CrossRef]
- Machado, J.A.; Santos Silva, J. Quantiles via moments. J. Econom. 2019, 213, 145–173. [Google Scholar] [CrossRef]
- Sebri, M.; Ben-Salha, O. On the causal dynamics between economic growth, renewable energy consumption, CO2 emissions and trade openness: Fresh evidence from BRICS countries. Renew. Sustain. Energy Rev. 2014, 39, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Hsu, I.; Lin, T.; Tung, L.; Ling, Y. After the epidemic, is the smart traffic management system a key factor in creating a green leisure and tourism environment in the move towards sustainable urban development? Sustainability 2022, 14, 3762. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, M.; Li, M.; Lu, S.; Yuan, X.; Li, J. Experimental study on evolution of fracture network and permeability characteristics of bituminous coal under repeated mining effect. Nat. Resour. Res. 2021, 31, 463–486. [Google Scholar] [CrossRef]
- Han, Y.; Tan, S.; Zhu, C.; Liu, Y. Research on the emission reduction effects of carbon trading mechanism on power industry: Plant-level evidence from China. Int. J. Clim. Chang. Strateg. Manag. 2022, 49, 254–266. [Google Scholar] [CrossRef]
- Mohammed, S.; Alsafadi, K.; Takács, I.; Harsányi, E. Contemporary changes of greenhouse gases emission from the agricultural sector in the EU-27. Geol. Ecol. Landsc. 2020, 4, 282–287. [Google Scholar] [CrossRef] [Green Version]
- Si, D.; Li, X.; Huang, S. Financial deregulation and operational risks of energy enterprise: The shock of liberalization of bank lending rate in China. Energy Econ. 2021, 93, 105047. [Google Scholar] [CrossRef]
- Azam, M.; Khan, A.Q.; Abdullah, H.B.; Qureshi, M.E. The impact of CO2 emissions on economic growth: Evidence from selected higher CO2 emissions economies. Environ. Sci. Pollut. Res. 2015, 23, 6376–6389. [Google Scholar] [CrossRef]
- Özbuğday, F.C.; Erbas, B.C. How effective are energy efficiency and renewable energy in curbing CO2 emissions in the long run? A heterogeneous panel data analysis. Energy 2015, 82, 734–745. [Google Scholar] [CrossRef]
- Liu, S.; Durani, F.; Syed, Q.R.; Haseeb, M.; Shamim, J.; Li, Z. Exploring the dynamic relationship between energy efficiency, trade, economic growth, and CO2 emissions: Evidence from novel fourier ARDL approach. Front. Environ. Sci. 2022, 10, 945091. [Google Scholar] [CrossRef]
- Yousefi-Sahzabi, A.; Sasaki, K.; Yousefi, H.; Sugai, Y. CO2 emission and economic growth of Iran. Mitig. Adapt. Strateg. Glob. Chang. 2010, 16, 63–82. [Google Scholar] [CrossRef]
- Bouznit, M.; Pablo-Romero, M.D. CO2 emission and economic growth in Algeria. Energy Policy 2016, 96, 93–104. [Google Scholar] [CrossRef]
- Magazzino, C. Energy use and GDP in Israel. J. Sustain. Dev. 2015, 8, 89. [Google Scholar] [CrossRef]
- Kluschke, P.; Gnann, T.; Plötz, P.; Wietschel, M. Market diffusion of alternative fuels and powertrains in heavy-duty vehicles: A literature review. Energy Rep. 2019, 5, 1010–1024. [Google Scholar] [CrossRef]
- Kasman, A.; Duman, Y.S. CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis. Econ. Model. 2015, 44, 97–103. [Google Scholar] [CrossRef]
- Begum, R.A.; Sohag, K.; Abdullah, S.M.; Jaafar, M. CO2 emissions, energy consumption, economic and population growth in Malaysia. Renew. Sustain. Energy Rev. 2015, 41, 594–601. [Google Scholar] [CrossRef]
- Long, X.; Naminse, E.Y.; Du, J.; Zhuang, J. Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012. Renew. Sustain. Energy Rev. 2015, 52, 680–688. [Google Scholar] [CrossRef]
- Niu, S.; Ding, Y.; Niu, Y.; Li, Y.; Luo, G. Economic growth, energy conservation and emissions reduction: A comparative analysis based on panel data for 8 Asian-Pacific countries. Energy Policy 2011, 39, 2121–2131. [Google Scholar] [CrossRef]
- Wahab, S. Does technological innovation limit trade-adjusted carbon emissions? Environ. Sci. Pollut. Res. 2021, 28, 38043–38053. [Google Scholar] [CrossRef]
- Ang, J.B. CO2 emissions, energy consumption, and output in France. Energy Policy 2007, 35, 4772–4778. [Google Scholar] [CrossRef]
- Chen, G.Q.; Zhang, B. Greenhouse gas emissions in China 2007: Inventory and input–output analysis. Energy Policy 2010, 38, 6180–6193. [Google Scholar] [CrossRef]
- Soytas, U.; Sari, R.; Ewing, B.T. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 2007, 62, 482–489. [Google Scholar] [CrossRef]
- Halicioglu, F. An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. Energy Policy 2009, 37, 1156–1164. [Google Scholar] [CrossRef] [Green Version]
- Cowan, W.N.; Chang, T.; Inglesi-Lotz, R.; Gupta, R. The nexus of electricity consumption, economic growth and CO2 emissions in the BRICS countries. Energy Policy 2014, 66, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Moubarak, M. Renewable energy consumption—Economic growth nexus for China. Renew. Sustain. Energy Rev. 2014, 40, 111–117. [Google Scholar] [CrossRef]
- Iftikhar, Y.; He, W.; Wang, Z. Energy and CO2 emissions efficiency of major economies: A non-parametric analysis. J. Clean. Prod. 2016, 139, 779–787. [Google Scholar] [CrossRef]
- Wu, F.; Fan, L.; Zhou, P.; Zhou, D. Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis. Energy Policy 2012, 49, 164–172. [Google Scholar] [CrossRef]
- Zhou, N.; Khanna, N.; Feng, W.; Ke, J.; Levine, M. Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050. Nat. Energy 2018, 3, 978–984. [Google Scholar] [CrossRef]
- Rahman, Z.U.; Ahmad, M. Modeling the relationship between gross capital formation and CO2 (a)symmetrically in the case of Pakistan: An empirical analysis through NARDL approach. Environ. Sci. Pollut. Res. 2019, 26, 8111–8124. [Google Scholar] [CrossRef]
- Khan, Z.; Sisi, Z.; Siqun, Y. Environmental regulations an option: Asymmetry effect of environmental regulations on carbon emissions using non-linear ARDL. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 41, 137–155. [Google Scholar] [CrossRef]
- Liddle, B. Consumption-driven environmental impact and age structure change in OECD countries. Demogr. Res. 2011, 24, 749–770. [Google Scholar] [CrossRef]
- Liddle, B. Population, affluence, and environmental impact across development: Evidence from panel cointegration modeling. Environ. Model. Softw. 2013, 40, 255–266. [Google Scholar] [CrossRef]
- Liddle, B. Urban density and climate change: A STIRPAT analysis using city-level data. J. Transp. Geogr. 2013, 28, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Liddle, B. What are the carbon emissions elasticities for income and population? Bridging STIRPAT and EKC via robust heterogeneous panel estimates. Glob. Environ. Chang. 2015, 31, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Liddle, B. Urbanization and inequality/Poverty. Urban Sci. 2017, 1, 35. [Google Scholar] [CrossRef] [Green Version]
- Liddle, B.; Sadorsky, P. How much does increasing non-fossil fuels in electricity generation reduce carbon dioxide emissions? Appl. Energy 2017, 197, 212–221. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, Y. Do energy technology innovations contribute to CO2 emissions abatement? A spatial perspective. Sci. Total Environ. 2020, 726, 138574. [Google Scholar] [CrossRef]
- Wahab, S.; Imran, M.; Safi, A.; Wahab, Z.; Kirikkaleli, D. Role of financial stability, technological innovation, and renewable energy in achieving sustainable development goals in BRICS countries. Environ. Sci. Pollut. Res. 2022, 29, 48827–48838. [Google Scholar] [CrossRef]
- Su, C.; Naqvi, B.; Shao, X.; Li, J.; Jiao, Z. Trade and technological innovation: The catalysts for climate change and way forward for COP21. J. Environ. Manag. 2020, 269, 110774. [Google Scholar] [CrossRef]
- Akram, R.; Majeed, M.T.; Fareed, Z.; Khalid, F.; Ye, C. Asymmetric effects of energy efficiency and renewable energy on carbon emissions of BRICS economies: Evidence from nonlinear panel autoregressive distributed lag model. Environ. Sci. Pollut. Res. 2020, 27, 18254–18268. [Google Scholar] [CrossRef]
- Anwar, A.; Siddique, M.; Dogan, E.; Sharif, A. The moderating role of renewable and non-renewable energy in environment-income nexus for ASEAN countries: Evidence from method of moments Quantile regression. Renew. Energy 2021, 164, 956–967. [Google Scholar] [CrossRef]
- Álvarez-Herránz, A.; Balsalobre, D.; Cantos, J.M.; Shahbaz, M. Energy Innovations-GHG emissions nexus: Fresh empirical evidence from OECD countries. Energy Policy 2017, 101, 90–100. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Shahbaz, M.; Roubaud, D.; Farhani, S. How economic growth, renewable electricity and natural resources contribute to CO2 emissions? Energy Policy 2018, 113, 356–367. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Kang, J.; Yu, C.; Hu, Z. Energy conservation and emissions reduction in China—Progress and prospective. Renew. Sustain. Energy Rev. 2011, 15, 4334–4347. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, Y.; Hu, Z.; Zhao, C.; Xiong, M.; Guo, J. Peak energy consumption and CO2 emissions in China. Energy Policy 2014, 68, 508–523. [Google Scholar] [CrossRef]
- Shahbaz, M.; Balsalobre-Lorente, D.; Sinha, A. Foreign direct Investment–CO2 emissions nexus in Middle East and North African countries: Importance of biomass energy consumption. J. Clean. Prod. 2019, 217, 603–614. [Google Scholar] [CrossRef] [Green Version]
- Wahab, S.; Zhang, X.; Safi, A.; Wahab, Z.; Amin, M. Does energy productivity and technological innovation limit trade-adjusted carbon emissions? Econ. Res.-Ekon. Istraživanja 2020, 34, 1896–1912. [Google Scholar] [CrossRef]
- Wong, J.K.; Li, H.; Wang, H.; Huang, T.; Luo, E.; Li, V. Toward low-carbon construction processes: The visualisation of predicted emission via virtual prototyping technology. Autom. Constr. 2013, 33, 72–78. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Zheng, W.; Ge, L.; Tian, J.; Liu, Y.; Yang, B.; Liu, S. Evaluation of empirical atmospheric models using Swarm-C satellite data. Atmosphere 2022, 13, 294. [Google Scholar] [CrossRef]
- Pesaran, M.H. Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica 2006, 74, 967–1012. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Pesaran, M.H. Testing weak cross-sectional dependence in large panels. Econom. Rev. 2014, 34, 1089–1117. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, M.H.; Ullah, A.; Yamagata, T. A bias-adjusted LM test of error cross-section independence. Econom. J. 2008, 11, 105–127. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Yamagata, T. Testing slope homogeneity in large panels. J. Econom. 2008, 142, 50–93. [Google Scholar] [CrossRef] [Green Version]
- Koenker, R.; Bassett, G. Regression Quantiles. Econometrica 1978, 46, 33. [Google Scholar] [CrossRef]
- Qiao, G.; Xu, J.; Ding, L.; Chen, Q. The impact of volunteer interaction on the tourism experience of people with visual impairment based on a mixed approach. Curr. Issues Tour. 2022, 1–18. [Google Scholar] [CrossRef]
- Binder, M.; Coad, A. From average Joe’s happiness to miserable Jane and cheerful John: Using quantile regressions to analyze the full subjective well-being distribution. J. Econ. Behav. Organ. 2011, 79, 275–290. [Google Scholar] [CrossRef]
- Kumar, J.; Xi, C.; Imran, M.; Kumari, J. Cross border project in China-Pakistan economic corridor and its influence on women empowerment perspectives. PLoS ONE 2022, 17, e0269025. [Google Scholar] [CrossRef]
- Safi, A.; Chen, Y.; Wahab, S.; Ali, S.; Yi, X.; Imran, M. Financial instability and consumption-based carbon emission in E-7 countries: The role of trade and economic growth. Sustain. Prod. Consum. 2021, 27, 383–391. [Google Scholar] [CrossRef]
- Koenker, R. Quantile regression for longitudinal data. J. Multivar. Anal. 2004, 91, 74–89. [Google Scholar] [CrossRef] [Green Version]
- Mavrakakis, M.C.; Penzer, J. Probability and Statistical Inference: From Basic Principles to Advanced Models; Chapman & Hall/CRC Texts in Statistical Science; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2021; pp. 223–250. [Google Scholar]
- Imran, M.; HuSen, A.; Kaleem, M.; Bangash, A.K.; Din, N.U.; Sobia. Effect of regional factor productivity on manufacturing sector: The case of sino-pak economic ties. Financ. Innov. 2020, 6, 5. [Google Scholar] [CrossRef]
- Imran, M.; Rafiq, M.; Imranullah. A spatiotemporal approach to measure impact of factors of production on innovations. J. Appl. Econ. Bus. Stud. 2019, 3, 61–78. [Google Scholar] [CrossRef]
- Imran, M.; Zhang, G.; An, H. Erratum to: Impact of market access and comparative advantage on regional distribution of manufacturing sector. China Financ. Econ. Rev. 2017, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Canay, I.A. A simple approach to quantile regression for panel data. Econom. J. 2011, 14, 368–386. [Google Scholar] [CrossRef]
- Dumitrescu, E.; Hurlin, C. Testing for Granger non-causality in heterogeneous panels. Econ. Model. 2012, 29, 1450–1460. [Google Scholar] [CrossRef] [Green Version]
- Chang, M. Room for improvement in low carbon economies of G7 and BRICS countries based on the analysis of energy efficiency and environmental Kuznets curves. J. Clean. Prod. 2015, 99, 140–151. [Google Scholar] [CrossRef]
- Danish; Ulucak, R.; Khan, S.U.; Baloch, M.A.; Li, N. Mitigation pathways toward sustainable development: Is there any trade-off between environmental regulation and carbon emissions reduction? Sustain. Dev. 2019, 28, 813–822. [Google Scholar] [CrossRef]
- Jin, C.; Tsai, F.; Gu, Q.; Wu, B. Does the porter hypothesis work well in the emission trading schema pilot? Exploring moderating effects of institutional settings. Res. Int. Bus. Financ. 2022, 62, 101732. [Google Scholar] [CrossRef]
- Zheng, L.; Abbasi, K.R.; Salem, S.; Irfan, M.; Alvarado, R.; Lv, K. How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach. Technol. Forecast. Soc. Chang. 2022, 183, 121900. [Google Scholar] [CrossRef]
- Khan, Y.; Hassan, T.; Tufail, M.; Marie, M.; Imran, M.; Xiuqin, Z. The nexus between CO2 emissions, human capital, technology transfer, and renewable energy: Evidence from Belt and Road countries. Environ. Sci. Pollut. Res. 2022, 29, 59816–59834. [Google Scholar] [CrossRef]
- Peters, G.P.; Minx, J.C.; Weber, C.L.; Edenhofer, O. Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl. Acad. Sci. USA 2011, 108, 8903–8908. [Google Scholar] [CrossRef]
- Garrone, P.; Grilli, L. Is there a relationship between public expenditures in energy R&D and carbon emissions per GDP? An empirical investigation. Energy Policy 2010, 38, 5600–5613. [Google Scholar] [CrossRef]
- Hassan, T.; Song, H.; Kirikkaleli, D. International trade and consumption-based carbon emissions: Evaluating the role of composite risk for RCEP economies. Environ. Sci. Pollut. Res. 2021, 29, 3417–3437. [Google Scholar] [CrossRef] [PubMed]
- Hassan, T.; Song, H.; Khan, Y.; Kirikkaleli, D. Energy efficiency a source of low carbon energy sources? Evidence from 16 high-income OECD economies. Energy 2022, 243, 123063. [Google Scholar] [CrossRef]
- United Nations Paris Agreement. 2021. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 25 February 2021).
- Song, D.; Xu, J. CO2 Emission comparison between direct and feeder liner services: A case study of Asia–Europe services interfacing with the UK. Int. J. Sustain. Transp. 2012, 6, 214–237. [Google Scholar] [CrossRef]
Variable | Explanation and Unit | Source |
---|---|---|
GHG | Greenhouse Gases in kilogram | Global Carbon Atlas |
EG | Economic growth as GDP of the country at constant 2015 US$ | WDI |
FEC | Fossil-fuel energy consumption as % of total energy consumption (Thousand tonnes oil equivalent) | WDI |
REG | Renewable energy generation as % of total energy consumption (Thousand tonnes oil equivalent) | WDI |
TECH | As number of patents registered by the locals and non-local residents of particular country | WDI |
GHG | EG | FEC | REG | TECH | |
---|---|---|---|---|---|
Mean | 6.691685 | 13.45143 | 2.415808 | 1.993511 | 5.107022 |
Median | 6.744789 | 13.35257 | 2.425058 | 1.828813 | 5.023638 |
Maximum | 7.575724 | 14.3998 | 2.532649 | 2.541893 | 6.750405 |
Minimum | 5.859555 | 12.90218 | 2.271724 | 1.643493 | 4.096854 |
Std. Dev. | 1.04142 | 1.589474 | 0.650556 | 0.872234 | 1.16586 |
Skewness | 0.701301 | 2.331835 | 0.424857 | 1.523995 | 1.686952 |
Kurtosis | 2.74927 | 4.886113 | 2.047683 | 2.637125 | 4.722404 |
Jarque-Bera | 4.100074 | 26.34848 | 11.91718 | 22.38961 | 31.25287 |
Probability | 0.175524 | 0.005004 | 0.008422 | 0.005018 | 0.005 |
14.261 *** | 15.823 *** | |
7.923 *** | 16.501 *** | 10.831 *** |
- | ||
1.126 ** | −1.757 ** | - |
−2.412 | −4.9973 *** | |
−2.252 | −4.0573 *** | |
−1.832 | −6.2673 *** | |
−2.872 | −6.7373 *** | |
−3.092 | −5.8173 *** |
-Value | ||
---|---|---|
−8.894 *** | 0.004 | |
−15.589 *** | 0.084 | |
−16.347 *** | 0.004 | |
−16.115 *** | 0.008 |
GHG | Location | Scale | Q0.25 | Q0.50 | Q0.75 |
---|---|---|---|---|---|
FEC | 3.14854 *** [0.937] | 0.8524 ** [0.796] | 4.87234 *** [1.567] | 4.68132 *** [1.098] | 4.25732 *** [0.550] |
REG | −1.040446 * [0.098] | −1.05154 [0.084] | −1.0507 *** [0.166] | −1.06393 ** [0.116] | −1.0763 *** [0.058] |
EG | 0.99654 ** [0.399] | 0.5959 ** [0.339] | 2.48234 *** [0.682] | 2.46132 *** [0.477] | 2.41332 *** [0.236] |
TECH | −0.89146 * [0.289] | −0.6254 [0.246] | −0.6214 *** [0.495] | −0.58032 * [0.346] | −0.4903 *** [0.171] |
−16.68946 [4.721] | 0.7216 [4.762] | −16.423 *** [7.978] | −15.57568 * [5.583] | −13.68868 * [2.779] |
-Value | |||
---|---|---|---|
2.69772 ** | 2.040 | 0.0413 | |
5.41761 *** | 5.553 | 0.0000 | |
5.05789 *** | 4.214 | 0.000 | |
4.66936 *** | 4.586 | 0.000 | |
4.83730 *** | −4.803 | 0.000 | |
3.99679 *** | 3.718 | 0.0002 | |
2.57801 * | −1.885 | 0.0593 | |
5.58773 *** | 5.772 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imran, M.; Ali, S.; Shahwan, Y.; Zhang, J.; Al-Swiety, I.A. Analyzing the Effects of Renewable and Nonrenewable Energy Usage and Technological Innovation on Environmental Sustainability: Evidence from QUAD Economies. Sustainability 2022, 14, 15552. https://doi.org/10.3390/su142315552
Imran M, Ali S, Shahwan Y, Zhang J, Al-Swiety IA. Analyzing the Effects of Renewable and Nonrenewable Energy Usage and Technological Innovation on Environmental Sustainability: Evidence from QUAD Economies. Sustainability. 2022; 14(23):15552. https://doi.org/10.3390/su142315552
Chicago/Turabian StyleImran, Muhammad, Sajid Ali, Yousef Shahwan, Jijian Zhang, and Issa Ahmad Al-Swiety. 2022. "Analyzing the Effects of Renewable and Nonrenewable Energy Usage and Technological Innovation on Environmental Sustainability: Evidence from QUAD Economies" Sustainability 14, no. 23: 15552. https://doi.org/10.3390/su142315552
APA StyleImran, M., Ali, S., Shahwan, Y., Zhang, J., & Al-Swiety, I. A. (2022). Analyzing the Effects of Renewable and Nonrenewable Energy Usage and Technological Innovation on Environmental Sustainability: Evidence from QUAD Economies. Sustainability, 14(23), 15552. https://doi.org/10.3390/su142315552