Cultivating Talents for Reporting Environmental News on China’s Carbon Neutrality Policy
Abstract
:1. Introduction
1.1. Background
1.2. Research Motivation and Contributions
2. Material and Methods
2.1. A process of Data Collection
2.2. Scale Values of Saaty
3. Empirical Framework
3.1. Hierarchical Ordering
3.2. Consistency Test
4. Results and Discussion
4.1. Construction of Judgment Matrix
4.1.1. Judgment Matrix of the First-Level Indicators
4.1.2. Judgment Matrix of Secondary Indicators
4.1.3. Judgment Matrices of Third-Level Indicators
4.1.4. An Establishment of the Combined Weights of the Integrated Indicator System
4.2. Evaluation of the Current Situation
5. Conclusions and Policy Implications
6. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fushuai, W.; Wenxia, C.; Ehsan, E. Do Green Finance and Environmental Regulation Play a Crucial Role in the Reduction of CO2 Emissions? An Empirical Analysis of 126 Chinese Cities. Sustainability 2021, 13, 13014. [Google Scholar]
- Pinto, J.; Vigón, M.; Chavez, M.; Takahashi, B. The Future of Environmental Communication and Journalism in Latin America and the Caribbean. In News Media Coverage of Environmental Challenges in Latin America and the Caribbean; Palgrave Macmillan: Cham, Switzerland, 2018; pp. 177–185. [Google Scholar]
- Deegan, C.; Rankin, M. Do Australian companies report environmental news objectively? An analysis of environmental disclosures by firms prosecuted successfully by the Environmental Protection Authority. Account. Audit. Account. J. 1996, 9, 50–67. [Google Scholar] [CrossRef]
- Neely-Sardon, A.; Tignor, M. Focus on the facts: A news and information literacy instructional program. Ref. Libr. 2018, 59, 108–121. [Google Scholar] [CrossRef]
- Andreu, A.; Caterina, C.; Annalisa, L. What is at stake without high-stakes exams? Students’ evaluation and admission to college at the time of COVID-19. Econ. Educ. Rev. 2020, 83, 102143. [Google Scholar]
- Mercedes, A. The environmental, social, and governance (ESG) dimension of firms in which social responsible investment (SRI) and conventional pension funds invest: The mainstream SRI and the ESG inclusion. J. Clean. Prod. 2021, 298, 126812. [Google Scholar]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2021, 117, 102255. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Zhang, Z. Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Appl. Energy 2022, 309, 118459. [Google Scholar] [CrossRef]
- Elahi, E.; Zhang, H.; Lirong, X.; Khalid, Z.; Xu, H. Understanding cognitive and socio -psychological factors determining farmers’ intentions to use improved grassland: Implications of land use policy for sustainable pasture production. Land Use Policy 2021, 102, 105250. [Google Scholar] [CrossRef]
- Yi Fang, L.; Shuching, Y.; Seokmin, K. New media literacy and news trustworthiness: An application of importance-performance analysis. Comput. Educ. 2022, 185, 104529. [Google Scholar]
- Taleb, W.; Le Guenedal, T.; Lepetit, F.; Mortier, V.; Sekine, T.; Stagnol, L. Corporate ESG News and the Stock Market; SSRN 3723799; SSRN: Rochester, NY, USA, 2020. [Google Scholar]
- de Filippo, D.; Casani, F.; Sanz-Casado, E. University excellence initiatives in Spain, a possible strategy for optimising resources and improving local performance. Technol. Forecast. Soc. Change 2016, 113, 185–194. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z. Estimating smart energy inputs packages using hybrid optimisation technique to mitigate environmental emissions of commercial fish farms. Appl. Energy 2022, 326, 119602. [Google Scholar] [CrossRef]
- Elahi, E.; Weijun, C.; Zhang, H.; Abid, M. Use of artificial neural networks to rescue agrochemical-based health hazards: A resource optimisation method for cleaner crop production. J. Clean. Prod. 2019, 238, 117900. [Google Scholar] [CrossRef]
- Elahi, E.; Weijun, C.; Zhang, H.; Nazeer, M. Agricultural intensification and damages to human health in relation to agrochemicals: Application of artificial intelligence. Land Use Policy 2019, 83, 461–474. [Google Scholar] [CrossRef]
- Elahi, E.; Zhang, Z.; Khalid, Z.; Xu, H. Application of an artificial neural network to optimise energy inputs: An energy-and cost-saving strategy for commercial poultry farms. Energy 2022, 244, 123169. [Google Scholar] [CrossRef]
- Juho, R. Scanning the shape of journalism—Emerging trends, changing culture? Futures 2018, 104, 14–24. [Google Scholar]
- Ruichao, S. Unexpected pressure? The effect of a curriculum reform on household educational investments and student outcomes. J. Econ. Behav. Organ. 2021, 190, 730–746. [Google Scholar]
- Dos Santos, P.H.; Neves, S.M.; Sant’Anna, D.O.; de Oliveira, C.H.; Carvalho, H.D. The analytic hierarchy process supporting decision making for sustainable development: An overview of applications. J. Clean. Prod. 2019, 212, 119–138. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Weijun, C.; Zhang, H. The public policy of agricultural land allotment to agrarians and its impact on crop productivity in Punjab province of Pakistan. Land Use Policy 2020, 90, 104324. [Google Scholar] [CrossRef]
- Iggers, J. Good News, Bad News: Journalism Ethics and the Public Interest; Routledge: London, UK, 2018. [Google Scholar]
- Harter, C.; Asarta, C.J. Teaching methods in undergraduate intermediate theory, statistics and econometrics, and other upper-division economics courses: Results from a sixth national quinquennial survey. Am. Econ. 2022, 67, 132–146. [Google Scholar] [CrossRef]
- Lim, K.F. Social Responsibility as Part of Professional Ethics: The Australian Curriculum in Primary and Secondary School. In International Ethics in Chemistry: Developing Common Values across Cultures; American Chemical Society: Washington, WA, USA, 2021; pp. 13–40. [Google Scholar]
- Razzaq, A.; Qing, P.; Abid, M.; Anwar, M.; Javed, I. Can the informal groundwater markets improve water use efficiency and equity? Evidence from a semi-arid region of Pakistan. Sci. Total Environ. 2019, 666, 849–857. [Google Scholar] [CrossRef]
- Razzaq, A.; Tang, Y.; Qing, P. Towards Sustainable Diets: Understanding the Cognitive Mechanism of Consumer Acceptance of Biofortified Foods and the Role of Nutrition Information. Int. J. Environ. Res. Public Health 2021, 18, 1175. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, A.; Xiao, M.; Zhou, Y.; Liu, H.; Abbas, A.; Liang, W.; Naseer, M.A.U.R. Impact of Participation in Groundwater Market on Farmland, Income, and Water Access: Evidence from Pakistan. Water 2022, 14, 1832. [Google Scholar] [CrossRef]
- Heo, C.Y.; Kim, B.; Park, K.; Back, R.M. A comparison of Best-Worst Scaling and Likert Scale methods on peer-to-peer accommodation attributes. J. Bus. Res. 2022, 148, 68–377. [Google Scholar] [CrossRef]
- Thirumurthy, S.; Jayanthi, M.; Samynathan, M.; Duraisamy, M.; Kabiraj, S.; Anbazhahan, N. Multi-criteria coastal environmental vulnerability assessment using analytic hierarchy process based uncertainty analysis integrated into GIS. J. Environ. Manag. 2022, 313, 114941. [Google Scholar] [CrossRef]
- Parag, C.P. Characterization of aggregate fuzzy membership functions using Saaty’s eigenvalue approach. Comput. Oper. Res. 2003, 30, 199–212. [Google Scholar]
- Wu, Z.; Jin, B.; Fujita, H.; Xu, J. Consensus analysis for AHP multiplicative preference relations based on consistency control: A heuristic approach. Knowl. -Based Syst. 2020, 191, 105317. [Google Scholar] [CrossRef]
- Kwiesielewicz, M. A note on the fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 1998, 95, 161–172. [Google Scholar] [CrossRef]
- Dominika, K.; Iveta, K.; Juraj, F. Proposal for a change in the type of devices used for submitting of postal items by using the Saaty’s method, a case study for the postal sector. Transp. Res. Procedia 2021, 55, 236–243. [Google Scholar]
- Sakhardande, M.J.; Gaonkar, R.S.P. On solving large data matrix problems in Fuzzy AHP. Expert Syst. Appl. 2022, 194, 116488. [Google Scholar] [CrossRef]
- Maretto, L.; Faccio, M.; Battini, D. A Multi-Criteria Decision-Making Model Based on Fuzzy Logic and AHP for the Selection of Digital Technologies. IFAC-PapersOnLine 2022, 55, 319–324. [Google Scholar] [CrossRef]
- Zoe, M. Academic perceptions of barriers and facilitators of creative pedagogies in higher education: A cross-cultural study between the UK and China. Think. Ski. Creat. 2021, 41, 100923. [Google Scholar]
- Julio, B.; Silvia, C.; Antonella, C.; Joaquín, I. Constrained consistency enforcement in AHP. Appl. Math. Comput. 2020, 380, 125273. [Google Scholar]
- Jiří, F.; Aleš, K. Judgment Scales and Consistency Measure in AHP. Procedia Econ. Financ. 2014, 12, 164–173. [Google Scholar]
- Garris, C.P.; Fleck, B. Student evaluations of transitioned-online courses during the COVID-19 pandemic. Scholarsh. Teach. Learn. Psychol. 2022, 8, 119. [Google Scholar] [CrossRef]
- Eva, G.-G.; José-Luis, M.-V. The content aspect of validity in a rubric-based assessment system for course syllabuses. Stud. Educ. Eval. 2021, 68, 100971. [Google Scholar]
- Najmah, T. An analysis of program evaluation course content in CSHSE–accredited human services baccalaureate programs. Stud. Educ. Eval. 2018, 59, 187–194. [Google Scholar]
- Joachim, S.; Sofia, M.; Philip, J.C. Perfectionism in students and positive career planning attitudes. Personal. Individ. Differ. 2016, 97, 256–259. [Google Scholar]
- James, M.H.; Nan, L.; Keith, R.; Karen, H.-M. Helping students make progress in their careers: An attribute analysis of effective vs ineffective student development plans. Int. J. Manag. Educ. 2017, 15, 397–408. [Google Scholar]
- Kerckhoff, A.C. Building conceptual and empirical bridges between studies of educational and labor force careers. In Generating Social Stratification; Routledge: London, UK, 2018; pp. 37–56. [Google Scholar]
- Drummond, C.; Siegrist, M.; Árvai, J. Limited effects of exposure to fake news about climate change. Environ. Res. Commun. 2020, 2, 081003. [Google Scholar] [CrossRef]
- Angelito, C.; Valeria, C.-B. Assessing critical thinking in business education: Key issues and practical solutions. Int. J. Manag. Educ. 2021, 19, 100531. [Google Scholar]
- Schäfer, M.S.; Painter, J. Climate journalism in a changing media ecosystem: Assessing the production of climate change-related news around the world. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e675. [Google Scholar] [CrossRef]
- Lukina, M.; Demaske, C. Skills, careers and cross-cultural understanding: How Russian-American journalism education collaboration works. J. Appl. Journal. Media Stud. 2019, 8, 231–249. [Google Scholar] [CrossRef] [PubMed]
- Katarzyna, M.-K. Popularity-driven science journalism and climate change: A critical discourse analysis of the unsaid. Discourse Context Media 2018, 21, 73–81. [Google Scholar]
- Fushuai, W.; Ruichao, X.; Wenxia, C. Research on the Impact of Financial Development on TFP—DEA-Malmquist Index and Hansen Threshold Model Based on Panel Data of Shandong Province, China. J. Financ. Res. 2020, 2, 71–79. [Google Scholar] [CrossRef]
- Jhonattan, M.; Christelle, N.; Julieta, N.; José-Martin, M.-E.; María-Soledad, R.-M.; Sergio, A.N.-T.; Martín-Rogelio, B.-B.; José-Bernardo, R.-F.; Arturo, M. The core components of education 4.0 in higher education: Three case studies in engineering education. Comput. Electr. Eng. 2021, 93, 107278. [Google Scholar]
- Maria, G.; Karolina, W. Newcomers conserving the old: Transformation processes in the field of news journalism. Scand. J. Manag. 2012, 28, 65–76. [Google Scholar]
- Lu, H.; Elahi, E.; Sun, Z. Empirical Decomposition and Forecast of Carbon Neutrality for High-End Equipment Manufacturing Industries. Front. Environ. Sci. 2022, 757, 926365. [Google Scholar] [CrossRef]
- Elahi, E.; Weijun, C.; Jha, S.K.; Zhang, H. Estimation of realistic renewable and non-renewable energy use targets for livestock production systems utilising an artificial neural network method: A step towards livestock sustainability. Energy 2019, 183, 191–204. [Google Scholar] [CrossRef]
- Yue, Z.; Bu, Z.; Fan, Y. When algorithms meet journalism: The user perception to automated news in a cross-cultural context. Comput. Hum. Behav. 2018, 86, 266–275. [Google Scholar]
- Kong, Y.; Kong, Y. Research and Reference on Professional Ethics Development of American College Teachers. In Proceedings of the 2019 3rd International Conference on Education, Management Science and Economics (ICEMSE 2019), Singapore, 29–31 August 2019; Atlantis Press: Amsterdam, The Netherlands, 2019; pp. 499–503. [Google Scholar]
- Everette, E.D. Challenges for content creation in media, communication and journalism education. Stud. Commun. Sci. 2013, 13, 95–96. [Google Scholar]
- Lee, A.M.; Coleman, R. ‘We’re more ethical than they are’: Third-person and first-person perceptions of the ethical climate of American journalists. Journalism 2020, 21, 1157–1174. [Google Scholar] [CrossRef]
- Uy, P.S.; Kim, S.J.; Khuon, C. College and career readiness of Southeast Asian American college students in New England. J. Coll. Stud. Retent. Res. Theory Pract. 2019, 20, 414–436. [Google Scholar] [CrossRef]
Type | Area | Quantity |
---|---|---|
Province | Hebei Province | 2 |
Shanxi Province (whose capital is Taiyuan) | 2 | |
Liaoning Province | 2 | |
Jilin Province | 2 | |
Heilongjiang Province | 1 | |
Jiangsu Province | 2 | |
Zhejiang Province | 2 | |
Anhui Province | 2 | |
Fujian Province | 2 | |
Jiangxi Province | 2 | |
Shandong Province | 2 | |
Henan Province | 2 | |
Hubei Province | 2 | |
Hunan Province | 2 | |
Guangdong Province | 2 | |
Hainan Province | 1 | |
Sichuan Province | 2 | |
Yunnan Province | 2 | |
Shanxi Province (whose capital is Xian) | 2 | |
Gansu Province | 2 | |
Autonomous Region | Inner Mongolia Autonomous Region | 1 |
Guangxi Zhuang Autonomous Region | 2 | |
Ningxia Hui Autonomous Region | 1 | |
Municipality | Beijing Municipality | 2 |
Tianjin Municipality | 2 | |
Shanghai Municipality | 2 | |
Chongqing Municipality | 2 | |
Grand Total | 27 | 50 |
Tier 1 Indicator | Tier 2 Indicator | Tier 3 Indicator |
---|---|---|
Course Content (F1) | Popularization of dual-carbon policy to students (F1,1) | Timeliness of policy explanation (F1,1,1) |
The comprehensiveness of policy explanation (F1,1,2) | ||
Depth of policy interpretation (F1,1,3) | ||
Extension of policy interpretation (F1,1,4) | ||
Feedback from students on their understanding of the policy (F1,2) | The basic perception of policy understanding (F1,2,1) | |
Connection of policy and journalism (F1,2,2) | ||
Expansion of knowledge of other related policies (F1,2,3) | ||
Self-motivated participation of students (F1,3) | Case-based and problem-based teaching models (F1,3,1) | |
“Dual-carbon + Media” interactive Q&A during class time (F1,3,2) | ||
Flipped classes with the dual-carbon theme (F1,3,3) | ||
Appraisal method (F2) | Theoretical assessment (F2,1) | Attendance of related courses (F2,1,1) |
Completion quality of dual-carbon theme assignments (F2,1,2) | ||
Reflective summary of the assignment (F2,1,3) | ||
Practical assessment (F2,2) | News writing and production on the topic of dual carbon policy (F2,2,1) | |
The practice of a dual-carbon theme with multiple communication tools (F2,2,2) | ||
Participation in professional events on the theme of dual-carbon journalism (F2,2,3) | ||
Exploratory assessment (F2,3) | Dimensional assessment of the selection of carbon target (F2,3,1) | |
The assessment of the depth of the selected topic of the dual-carbon (F2,3,2) | ||
Cooperative assessment (F2,4) | Collaboration on interdisciplinary carbon theme in practice (F2,4,1) | |
The penetrating application of multiple media tools (F2,4,2) | ||
Career development planning (F3) | Code of Ethics and Professionalism (F3,1) | Control of reporting strength and public opinion guidance (F3,1,1) |
Construction of ideology and value (F3,1,2) | ||
Popularization of news industry regulations and self-exemplification (F3,1,3) | ||
Development of social responsibility for carbon reduction (F3,1,4) | ||
Information dissemination on the social employment gap of the dual-carbon target (F3,2) | The need for diversified competencies in “Media + Dual-carbon (F3,2,1) | |
Guidance on demand for talents with dual carbon themes from industry (F3,2,2) | ||
The practice of environmental journalism application (F3,3) | Content creation of dual-carbon policy news (F3,3,1) | |
Internship in traditional journalism positions (F3,3,2) | ||
The practice of new media applications (F3,3,3) | ||
The application of full-flow self-publishing media (F3,3,4) | ||
Teaching research (F4) | Regional carbon emission reduction research and theoretical exploration at the site (F4,1) | University-resident integration and university feeding of the resident media industry(F4,1,1) |
Local media development is driven by “production-study-research” drives (F4,1,2) | ||
Collaboration of scholars from related cross-disciplines (F4,2) | Construction of cross-cutting topics (F4,2,1) | |
The interpenetration of theories from different disciplines (F4,2,2) | ||
Innovation and expansion of the journalism theory (F4,2,3) | ||
Interpreting the time-sensitive dual-carbon policy (F4,3) | A multi-dimensional interpretation of the dual-carbon target (F4,3,1) | |
The guidance of dual-carbon policy to research perspectives (F4,3,2) | ||
Research on teaching methods of environmental news reporting (F4,4) | Dual-teacher teaching with multidisciplinary integration (F4,4,1) | |
Classic case-based teaching on the topic of carbon reduction (F4,4,2) | ||
Teaching with a combination of real and virtual scenarios (F4,4,3) |
Numerical Value | Meaning of the Options |
---|---|
1 | Indicator i is as important as indicator j |
3 | Indicator i is slightly more important than indicator j |
5 | Indicator i is significantly more important than indicator j |
7 | Indicator i is intensively more important than indicator j |
9 | Indicator i is extremely more important than indicator j |
2, 4, 6, 8 | The middle values of 1–3, 3–5, 5–7 and 7–9 |
If aij denotes the importance of indicator i compared to indicator j, then aji is the importance of indicator j compared to indicator i. |
Order of Matrix | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | … |
---|---|---|---|---|---|---|---|---|---|---|
Value of RI | 0.00 | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | … |
Indicator | F1 | F2 | F3 | F4 | Weight |
---|---|---|---|---|---|
F1 | 1.000 | 0.927 | 1.920 | 2.191 | 0.3184 |
F2 | 1.078 | 1.000 | 2.631 | 2.575 | 0.3732 |
F3 | 0.521 | 0.380 | 1.000 | 1.886 | 0.1806 |
F4 | 0.456 | 0.388 | 0.530 | 1.000 | 0.1278 |
Test | λmax = 4.047, CI = 0.016, CR = 0.018 |
Indicator | F1 | F2 | F3 | F4 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1,1 | F1,2 | F1,3 | Weight | F2,1 | F2,2 | F2,3 | F2,4 | Weight | F3,1 | F3,2 | F3,3 | Weight | F4,1 | F4,2 | F4,3 | F4,4 | Weight | ||
F1 | F1,1 | 1.000 | 1.828 | 2.265 | 0.4950 | ||||||||||||||
F1,2 | 0.547 | 1.000 | 1.920 | 0.3150 | |||||||||||||||
F1,3 | 0.441 | 0.521 | 1.000 | 0.1900 | |||||||||||||||
Test | λmax = 3.021, CI = 0.011, CR = 0.021 | ||||||||||||||||||
F2 | F2,1 | 1.000 | 2.650 | 2.894 | 2.973 | 0.4748 | |||||||||||||
F2,2 | 0.377 | 1.000 | 1.550 | 2.196 | 0.2320 | ||||||||||||||
F2,3 | 0.346 | 0.645 | 1.000 | 1.792 | 0.1738 | ||||||||||||||
F1,4 | 0.336 | 0.455 | 0.558 | 1.000 | 0.1194 | ||||||||||||||
Test | λmax = 4.059, CI = 0.020, CR = 0.022 | ||||||||||||||||||
F3 | F3,1 | 1.000 | 1.279 | 1.870 | 0.4320 | ||||||||||||||
F3,2 | 0.782 | 1.000 | 1.387 | 0.3320 | |||||||||||||||
F3,3 | 0.535 | 0.721 | 1.000 | 0.2350 | |||||||||||||||
Test | λmax = 3.000, CI = 0.001, CR = 0.000 | ||||||||||||||||||
F4 | F4,1 | 1.000 | 1.939 | 1.838 | 1.733 | 0.3751 | |||||||||||||
F4,2 | 0.516 | 1.000 | 1.338 | 1.685 | 0.2461 | ||||||||||||||
F4,3 | 0.544 | 0.747 | 1.000 | 1.748 | 0.2188 | ||||||||||||||
F4,4 | 0.577 | 0.593 | 0.572 | 1.000 | 0.1601 | ||||||||||||||
Test | λmax = 4.064, CI = 0.021, CR = 0.024 |
F1 | F2 | F3 | F4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Indicator | Rank | Weight | Indicator | Rank | Weight | Indicator | Rank | Weight | Indicator | Rank | Weight |
F1,1 | 1 | 0.4950 | F2,1 | 1 | 0.4748 | F3,1 | 1 | 0.4320 | F4,1 | 1 | 0.3751 |
F1,2 | 2 | 0.3150 | F2,2 | 2 | 0.2320 | F3,2 | 2 | 0.3320 | F4,2 | 2 | 0.2461 |
F1,3 | 3 | 0.1900 | F2,3 | 3 | 0.1738 | F3,3 | 3 | 0.2350 | F4,3 | 3 | 0.2188 |
F1,4 | 4 | 0.1194 | F4,4 | 4 | 0.1601 |
Indicator | F1,1 | F1,2 | F1,3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1,1,1 | F1,1,2 | F1,1,3 | F1,1,4 | Weight | F1,2,1 | F1,2,2 | F1,2,3 | Weight | F1,3,1 | F1,3,2 | F1,3,3 | Weight | ||
F1,1 | F1,1,1 | 1.000 | 1.546 | 1.800 | 1.742 | 0.3545 | ||||||||
F1,1,2 | 0.647 | 1.000 | 1.790 | 1.456 | 0.2735 | |||||||||
F1,1,3 | 0.556 | 0.559 | 1.000 | 1.430 | 0.1976 | |||||||||
F1,1,4 | 0.574 | 0.687 | 0.699 | 1.000 | 0.1744 | |||||||||
Test | λmax = 4.045, CI = 0.015, CR = 0.017 | |||||||||||||
F1,2 | F1,2,1 | 1.000 | 1.984 | 1.629 | 0.4690 | |||||||||
F1,2,2 | 0.504 | 1.000 | 1.566 | 0.2960 | ||||||||||
F1,2,3 | 0.614 | 0.639 | 1.000 | 0.2350 | ||||||||||
Test | λmax = 3.047, CI = 0.023, CR = 0.045 | |||||||||||||
F1,3 | F1,3,1 | 1.000 | 1.960 | 1.495 | 0.4590 | |||||||||
F1,3,2 | 0.510 | 1.000 | 1.399 | 0.2890 | ||||||||||
F1,3,3 | 0.669 | 0.715 | 1.000 | 0.2530 | ||||||||||
Test | λmax = 3.041, CI = 0.021, CR = 0.040 |
F1,1 | F1,2 | F1,3 | ||||||
---|---|---|---|---|---|---|---|---|
Indicator | Rank | Weight | Indicator | Rank | Weight | Indicator | Rank | Weight |
F1,1,1 | 1 | 0.3545 | F1,2,1 | 1 | 0.4690 | F1,3,1 | 1 | 0.4590 |
F1,1,2 | 2 | 0.2735 | F1,2,2 | 2 | 0.2960 | F1,3,2 | 2 | 0.2890 |
F1,1,3 | 3 | 0.1976 | F1,2,3 | 3 | 0.2350 | F1,3,3 | 3 | 0.2530 |
F1,1,4 | 4 | 0.1744 |
Indicator | F2,1 | F2,2 | F2,3 | F2,4 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F2,1,1 | F2,1,2 | F2,1,3 | Weight | F2,2,1 | F2,2,2 | F2,2,3 | Weight | F2,3,1 | F2,3,2 | Weight | F2,4,1 | F2,4,2 | Weight | ||
F2,1 | F2,1,1 | 1.000 | 2.564 | 2.927 | 0.5740 | ||||||||||
F2,1,2 | 0.390 | 1.000 | 1.496 | 0.2460 | |||||||||||
F2,1,3 | 0.342 | 0.668 | 1.000 | 0.1800 | |||||||||||
Test | λmax = 3.008, CI = 0.004, CR = 0.008 | ||||||||||||||
F2,2 | F2,2,1 | 1.000 | 2.103 | 2.080 | 0.5050 | ||||||||||
F2,2,2 | 0.476 | 1.000 | 1.763 | 0.2930 | |||||||||||
F2,2,3 | 0.481 | 0.567 | 1.000 | 0.2020 | |||||||||||
Test | λmax = 3.037, CI = 0.019, CR = 0.071 | ||||||||||||||
F2,3 | F2,3,1 | 1.000 | 1.800 | 0.6430 | |||||||||||
F2,3,2 | 0.550 | 1.000 | 0.3570 | ||||||||||||
Test | λmax = 2.00, CI = 0.00, CR = 0.000 | ||||||||||||||
F2,4 | F2,4,1 | 1.000 | 2.440 | 0.7090 | |||||||||||
F2,4,2 | 0.410 | 1.000 | 0.2910 | ||||||||||||
Test | λmax = 2.00, CI = 0.00, CR = 0.00 |
F2,1 | F2,2 | F2,3 | F2,4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Indicator | Rank | Weight | Indicator | Rank | Weight | Indicator | Rank | Weight | Indicator | Rank | Weight |
F2,1,1 | 1 | 0.5740 | F2,2,1 | 1 | 0.5050 | F2,3,1 | 1 | 0.6430 | F2,4,1 | 1 | 0.7090 |
F2,1,2 | 2 | 0.2460 | F2,2,2 | 2 | 0.2930 | F2,3,2 | 2 | 0.3570 | F2,4,2 | 2 | 0.2910 |
F2,1,3 | 3 | 0.1800 | F2,2,3 | 3 | 0.2020 |
Indicator | F3,1 | F3,2 | F3,3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F3,1,1 | F3,1,2 | F3,1,3 | F3,1,4 | Weight | F3,2,1 | F3,2,2 | Weight | F3,3,1 | F3,3,2 | F3,3,3 | F3,3,4 | Weight | ||
F3,1 | F3,1,1 | 1.000 | 1.886 | 1.522 | 2.055 | 0.3670 | ||||||||
F3,1,2 | 0.530 | 1.000 | 1.837 | 1.533 | 0.2643 | |||||||||
F3,1,3 | 0.657 | 0.544 | 1.000 | 1.781 | 0.2155 | |||||||||
F3,1,4 | 0.487 | 0.652 | 0.561 | 1.000 | 0.1532 | |||||||||
Test | λmax = 4.092, CI = 0.031, CR = 0.060 | |||||||||||||
F3,2 | F3,2,1 | 1.000 | 1.540 | 0.6060 | ||||||||||
F3,2,2 | 0.650 | 1.000 | 0.3940 | |||||||||||
Test | λmax = 2.00, CI = 0.00, CR = 0.000 | |||||||||||||
F3,3 | F3,3,1 | 1.000 | 2.337 | 2.301 | 1.781 | 0.3992 | ||||||||
F3,3,2 | 0.428 | 1.000 | 2.499 | 1.874 | 0.2733 | |||||||||
F3,3,3 | 0.435 | 0.400 | 1.000 | 1.837 | 0.1784 | |||||||||
F3,3,4 | 0.561 | 0.534 | 0.544 | 1.000 | 0.1491 | |||||||||
Test | λmax = 4.206, CI = 0.069, CR = 0.077 |
F3,1 | F3,2 | F3,3 | ||||||
---|---|---|---|---|---|---|---|---|
Indicator | Rank | Weight | Indicator | Rank | Weight | Indicator | Rank | Weight |
F3,1,1 | 1 | 0.3670 | F3,2,1 | 1 | 0.6060 | F3,3,1 | 1 | 0.3992 |
F3,1,2 | 2 | 0.2643 | F3,2,2 | 2 | 0.3940 | F3,3,2 | 2 | 0.2733 |
F3,1,3 | 3 | 0.2155 | F3,3,3 | 3 | 0.1784 | |||
F3,1,4 | 4 | 0.1532 | F3,3,4 | 4 | 0.1491 |
Indicator | F4,1 | F4,2 | F4,3 | F4,4 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F4,1,1 | F4,1,2 | Weight | F4,2,1 | F4,2,2 | F4,2,3 | Weight | F4,3,1 | F4,3,2 | Weight | F4,4,1 | F4,4,2 | F4,4,3 | Weight | ||
F4,1 | F4,1,1 | 1.000 | 1.950 | 0.6610 | |||||||||||
F4,1,2 | 0.510 | 1.000 | 0.3390 | ||||||||||||
Test | λmax = 2.00, CI = 0.00, CR = 0.000 | ||||||||||||||
F4,2 | F4,2,1 | 1.000 | 1.891 | 1.250 | 0.4320 | ||||||||||
F4,2,2 | 0.529 | 1.000 | 1.350 | 0.2930 | |||||||||||
F4,2,3 | 0.800 | 0.741 | 1.000 | 0.2750 | |||||||||||
Test | λmax = 3.057, CI = 0.028, CR = 0.055 | ||||||||||||||
F4,3 | F4,3,1 | 1.000 | 1.820 | 0.6450 | |||||||||||
F4,3,2 | 0.550 | 1.000 | 0.3550 | ||||||||||||
Test | λmax = 2.00, CI = 0.00, CR = 0.000 | ||||||||||||||
F4,4 | F4,4,1 | 1.000 | 2.008 | 2.068 | 0.4920 | ||||||||||
F4,4,2 | 0.498 | 1.000 | 2.239 | 0.3210 | |||||||||||
F4,4,3 | 0.484 | 0.447 | 1.000 | 0.1870 | |||||||||||
Test | λmax = 3.068, CI = 0.034, CR = 0.065 |
F4,1 | F4,2 | F4,3 | F4,4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Indicator | Rank | Weight | Indicator | Rank | Weight | Indicator | Rank | Weight | Indicator | Rank | Weight |
F4,1,1 | 1 | 0.6610 | F4,2,1 | 1 | 0.4320 | F4,3,1 | 1 | 0.6450 | F4,4,1 | 1 | 0.4920 |
F4,1,2 | 2 | 0.3390 | F4,2,2 | 2 | 0.2930 | F4,3,2 | 2 | 0.3550 | F4,4,2 | 2 | 0.3210 |
F4,2,3 | 3 | 0.2750 | F4,4,3 | 3 | 0.1870 |
Tier 1 Indicator | Weight | Tier 2 Indicator | Weight | Tier 3 Indicator | Weight | Combined Weight |
---|---|---|---|---|---|---|
F1 | 0.3184 | F1,1 | 0.4950 | F1,1,1 | 0.3545 | 0.0559 |
F1,1,2 | 0.2735 | 0.0431 | ||||
F1,1,3 | 0.1976 | 0.0311 | ||||
F1,1,4 | 0.1744 | 0.0275 | ||||
F1,2 | 0.3150 | F1,2,1 | 0.4690 | 0.0470 | ||
F1,2,2 | 0.2960 | 0.0297 | ||||
F1,2,3 | 0.2350 | 0.0236 | ||||
F1,3 | 0.1900 | F1,3,1 | 0.4590 | 0.0278 | ||
F1,3,2 | 0.2890 | 0.0175 | ||||
F1,3,3 | 0.2530 | 0.0153 | ||||
F2 | 0.3732 | F2,1 | 0.4748 | F2,1,1 | 0.5740 | 0.1017 |
F2,1,2 | 0.2460 | 0.0436 | ||||
F2,1,3 | 0.1800 | 0.0319 | ||||
F2,2 | 0.2320 | F2,2,1 | 0.5050 | 0.0437 | ||
F2,2,2 | 0.2930 | 0.0254 | ||||
F2,2,3 | 0.2020 | 0.0175 | ||||
F2,3 | 0.1738 | F2,3,1 | 0.6430 | 0.0417 | ||
F2,3,2 | 0.3570 | 0.0232 | ||||
F2,4 | 0.1194 | F2,4,1 | 0.7090 | 0.0316 | ||
F2,4,2 | 0.2910 | 0.0130 | ||||
F3 | 0.1806 | F3,1 | 0.4320 | F3,1,1 | 0.3670 | 0.0286 |
F3,1,2 | 0.2643 | 0.0206 | ||||
F3,1,3 | 0.2155 | 0.0168 | ||||
F3,1,4 | 0.1532 | 0.0120 | ||||
F3,2 | 0.3320 | F3,2,1 | 0.6060 | 0.0363 | ||
F3,2,2 | 0.3940 | 0.0236 | ||||
F3,3 | 0.2360 | F3,3,1 | 0.3992 | 0.0170 | ||
F3,3,2 | 0.2733 | 0.0116 | ||||
F3,3,3 | 0.1784 | 0.0076 | ||||
F3,3,4 | 0.1491 | 0.0064 | ||||
F4 | 0.1278 | F4,1 | 0.3751 | F4,1,1 | 0.6610 | 0.0317 |
F4,1,2 | 0.3390 | 0.0163 | ||||
F4,2 | 0.2461 | F4,2,1 | 0.4320 | 0.0136 | ||
F4,2,2 | 0.2930 | 0.0092 | ||||
F4,2,3 | 0.2750 | 0.0086 | ||||
F4,3 | 0.2188 | F4,3,1 | 0.6450 | 0.0180 | ||
F4,3,2 | 0.3550 | 0.0099 | ||||
F4,4 | 0.1600 | F4,4,1 | 0.4920 | 0.0101 | ||
F4,4,2 | 0.3210 | 0.0066 | ||||
F4,4,3 | 0.1870 | 0.0038 |
Score | Grade | Symbol |
---|---|---|
7.5 ≤ S | Excellent | A |
5.00 ≤ S < 7.5 | Good | B |
2.50 ≤ S < 5.00 | Qualified | C |
S < 2.50 | Unqualified | D |
Overall | Grade | Tier 1 Indicator | Score | Grade | Tier 2 Indicator | Score | Grade | Tier 3 Indicator | Score | Grade | N | AVG | MAX | MIN | S.D. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.40 | A | F1 | 7.14 | B | F1,1 | 7.50 | A | F1,1,1 | 7.68 | A | 50 | 7.68 | 10 | 2 | 1.6904 |
F1,1,2 | 7.38 | B | 50 | 7.38 | 10 | 2 | 1.7192 | ||||||||
F1,1,3 | 7.36 | B | 50 | 7.36 | 10 | 2 | 1.7060 | ||||||||
F1,1,4 | 7.46 | B | 50 | 7.46 | 10 | 2 | 1.6877 | ||||||||
F1,2 | 6.80 | B | F1,2,1 | 7.08 | B | 50 | 7.08 | 10 | 2 | 1.7069 | |||||
F1,2,2 | 6.58 | B | 50 | 6.58 | 9 | 2 | 1.6136 | ||||||||
F1,2,3 | 6.50 | B | 50 | 6.5 | 9 | 2 | 1.5395 | ||||||||
F1,3 | 6.78 | B | F1,3,1 | 6.76 | B | 50 | 6.76 | 10 | 2 | 1.7036 | |||||
F1,3,2 | 6.82 | B | 50 | 6.82 | 10 | 1 | 1.8077 | ||||||||
F1,3,3 | 6.74 | B | 50 | 6.74 | 10 | 2 | 1.8200 | ||||||||
F2 | 7.49 | B | F2,1 | 7.59 | A | F2,1,1 | 7.62 | A | 50 | 7.62 | 10 | 3 | 1.5606 | ||
F2,1,2 | 7.64 | A | 50 | 7.64 | 10 | 2 | 1.4664 | ||||||||
F2,1,3 | 7.42 | B | 50 | 7.42 | 10 | 2 | 1.6011 | ||||||||
F2,2 | 7.43 | B | F2,2,1 | 7.54 | A | 50 | 7.54 | 10 | 3 | 1.4312 | |||||
F2,2,2 | 7.42 | B | 50 | 7.42 | 10 | 3 | 1.4979 | ||||||||
F2,2,3 | 7.16 | B | 50 | 7.16 | 10 | 2 | 1.6415 | ||||||||
F2,3 | 7.35 | B | F2,3,1 | 7.44 | B | 50 | 7.44 | 10 | 2 | 1.4444 | |||||
F2,3,2 | 7.20 | B | 50 | 7.2 | 10 | 2 | 1.4000 | ||||||||
F2,4 | 7.40 | B | F2,4,1 | 7.40 | B | 50 | 7.4 | 10 | 1 | 1.5875 | |||||
F2,4,2 | 7.40 | B | 50 | 7.4 | 10 | 2 | 1.4832 | ||||||||
F3 | 7.56 | A | F3,1 | 7.62 | A | F3,1,1 | 7.74 | A | 50 | 7.74 | 10 | 2 | 1.3973 | ||
F3,1,2 | 7.64 | A | 50 | 7.64 | 10 | 2 | 1.4389 | ||||||||
F3,1,3 | 7.68 | A | 50 | 7.68 | 10 | 3 | 1.2238 | ||||||||
F3,1,4 | 7.22 | B | 50 | 7.22 | 10 | 4 | 1.4462 | ||||||||
F3,2 | 7.57 | A | F3,2,1 | 7.52 | A | 50 | 7.52 | 10 | 3 | 1.3303 | |||||
F3,2,2 | 7.64 | A | 50 | 7.64 | 10 | 2 | 1.3529 | ||||||||
F3,3 | 7.43 | B | F3,3,1 | 7.38 | B | 50 | 7.38 | 10 | 1 | 1.4818 | |||||
F3,3,2 | 7.42 | B | 50 | 7.42 | 10 | 4 | 1.3869 | ||||||||
F3,3,3 | 7.60 | A | 50 | 7.6 | 10 | 2 | 1.2961 | ||||||||
F3,3,4 | 7.40 | B | 50 | 7.4 | 9 | 3 | 1.2166 | ||||||||
F4 | 7.54 | A | F4,1 | 7.53 | A | F4,1,1 | 7.60 | A | 50 | 7.6 | 10 | 3 | 1.3711 | ||
F4,1,2 | 7.38 | B | 50 | 7.38 | 10 | 4 | 1.2632 | ||||||||
F4,2 | 7.58 | A | F4,2,1 | 7.44 | B | 50 | 7.44 | 10 | 3 | 1.4023 | |||||
F4,2,2 | 7.62 | A | 50 | 7.62 | 10 | 2 | 1.4952 | ||||||||
F4,2,3 | 7.74 | A | 50 | 7.74 | 10 | 3 | 1.3537 | ||||||||
F4,3 | 7.62 | A | F4,3,1 | 7.56 | A | 50 | 7.56 | 10 | 2 | 1.3879 | |||||
F4,3,2 | 7.74 | A | 50 | 7.74 | 10 | 2 | 1.3684 | ||||||||
F4,4 | 7.41 | B | F4,4,1 | 7.34 | B | 50 | 7.34 | 10 | 1 | 1.5442 | |||||
F4,4,2 | 7.56 | A | 50 | 7.56 | 10 | 2 | 1.4165 | ||||||||
F4,4,3 | 7.32 | B | 50 | 7.32 | 10 | 3 | 1.4621 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, F.; Zhao, G.; Meng, L.; Tehseen, R.; Wang, F. Cultivating Talents for Reporting Environmental News on China’s Carbon Neutrality Policy. Sustainability 2022, 14, 16795. https://doi.org/10.3390/su142416795
Ji F, Zhao G, Meng L, Tehseen R, Wang F. Cultivating Talents for Reporting Environmental News on China’s Carbon Neutrality Policy. Sustainability. 2022; 14(24):16795. https://doi.org/10.3390/su142416795
Chicago/Turabian StyleJi, Feng, Guangyuan Zhao, Lun Meng, Rana Tehseen, and Fushuai Wang. 2022. "Cultivating Talents for Reporting Environmental News on China’s Carbon Neutrality Policy" Sustainability 14, no. 24: 16795. https://doi.org/10.3390/su142416795
APA StyleJi, F., Zhao, G., Meng, L., Tehseen, R., & Wang, F. (2022). Cultivating Talents for Reporting Environmental News on China’s Carbon Neutrality Policy. Sustainability, 14(24), 16795. https://doi.org/10.3390/su142416795