Modified RMR Rock Mass Classification System for Preliminary Selection of Potential Sites of High-Level Radioactive Waste Disposal Engineering
Abstract
:1. Introduction
2. Introduction to Traditional RMR System
3. Modification of RMR System
3.1. Rating Modification of Uniaxial Compressive Strength σc
3.1.1. Modification of Groundwater Weakening
3.1.2. Modification of Temperature Weakening
3.2. Continuously Modification of Scoring Values
3.3. Modification of RMR System Index
3.3.1. The Strength–Stress Ratio Index
3.3.2. The Rock Mass Permeability Index
3.3.3. The Groundwater Chemistry Index
3.4. Modified Rock Classification System RMRHLW for HLW Geological Disposal
4. Applications of Modified RMR Rock Mass Classification Systems in China
4.1. Determination of Evaluation Parameters for Each Site
4.1.1. Determination of
4.1.2. Determination of
4.1.3. Determination of
4.1.4. Determination of R4
4.1.5. Determination of R5
4.1.6. Determination of R6
4.1.7. Determination of R7
4.1.8. Determination of R8
4.1.9. Determination of R9
4.2. Evaluation of Rock Mass Quality of Each Candidate Site
5. Conclusions
- (1)
- Considering the constructability and long-term safety of HLW disposal engineering, the proposed RMRHLW system ulteriorly incorporates the weakening of groundwater and temperature on the uniaxial compressive strength, the geostress, the rock permeability, and the groundwater chemical properties. Meanwhile, in order to avoid the jumping motions of the RMR rating value, the scoring values related to the uniaxial comprehensive strength, the rock quality index, and the joint spacing are revised in a continuous way.
- (2)
- The proposed RMRHLW system is applied to thoroughly assess the rock quality of nine candidate sites for HLW disposal in China. The evaluation results show that Xinchang has the best rock quality, followed by Nuorigong, Shazaoyuan, etc., while Jiujing is the worst.
- (3)
- Compared with the traditional RMR system, the proposed RMRHLW system can reflect the differences in the rock mass quality of the individual sites more objectively. The proposed modified RMR system can be used to more comprehensively evaluate the rock quality of the HLW geological disposal engineering and has a higher reference value for similar construction projects worldwide.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J. High-level radioactive waste disposal in China: Update 2010. J. Rock Mech. Geotech. Eng. 2010, 2, 1–11. [Google Scholar]
- Alwaeli, M.; Mannheim, V. Investigation into the current state of nuclear energy and nuclear waste management—A state-of-the-art review. Energies 2022, 15, 4275. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.; Zong, Z.H.; Liu, J.; Su, R.; Guo, Y.H.; Jin, Y.X.; Chen, W.M.; Ji, R.L.; Zhao, H.G.; et al. A new rock mass classification system QHLW for high-level radioactive waste disposal. Eng. Geol. 2015, 190, 33–51. [Google Scholar] [CrossRef]
- Zhang, C.L. Thermo-hydro-mechanical behavior of clay rock for deep geological disposal of high-level radioactive waste. J. Rock Mech. Geotech. Eng. 2018, 10, 992–1008. [Google Scholar] [CrossRef]
- Plúa, C.; Vu, M.N.; Seyedi, D.M.; Gilles, A. Effects of inherent spatial variability of rock properties on the thermo-hydro-mechanical responses of a high-level radioactive waste repository. Int. J. Rock Mech. Min. Sci. 2021, 145, 104682. [Google Scholar] [CrossRef]
- Palmstrom, A.; Stille, H. Ground behavior and rock engineering tools for underground excavations. Tunn. Undergr. Space Technol. 2007, 22, 363–376. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Engineering Rock Mass Classification; Wiley Inter Science: New York, NY, USA, 1989. [Google Scholar]
- Barton, N. Some new Q-value correlations to assist in site characterisation and tunnel design. Int. J. Rock Mech. Min. Sci. 2002, 39, 185–216. [Google Scholar] [CrossRef]
- GB/T50218-2014; Standard for Engineering Classification of Rock Masses. CRSRI: Wuhan, China; China Planning Press: Beijing, China, 2014. (In Chinese)
- He, M.C.; Xie, H.P.; Peng, S.P.; Jiang, Y.D. Study on rock mechanics in deep mining engineering. Chin. J. Rock Mech. Eng. 2005, 24, 2803–2813. (In Chinese) [Google Scholar]
- Sen, Z.; Sadagah, B.H. Modified rock mass classification system by continuous rating. Eng. Geol. 2003, 67, 269–280. [Google Scholar] [CrossRef]
- Xie, B.X.; Chen, Y.J.; Shi, X.Z. IRMR method for evaluation of surrounding rock quality in deep rock mass engineering. J. Cent. South Univ. Sci. Technol. 2007, 38, 987–992. (In Chinese) [Google Scholar]
- Liu, Y.K.; Cao, P.; Yi, Y.L.; Zhang, X.Y.; Chen, R. Revised RMR system on underground deep engineering rock mass property. J. Cent. South Univ. Sci. Technol. 2010, 41, 1497–15057. (In Chinese) [Google Scholar]
- Äikäs, K.; Riekkola, R. Locating of the High Level Waste Repository; Report YJT-95-19; Nuclear Waste Commission of Finish Power Companies: Helsinki, Finland, 2000. [Google Scholar]
- Hagros, A. Host Rock Classification (HRC) System for Nuclear Waste Disposal in Crystalline Bedrock. Ph.D. Thesis, Faculty of Science of the University of Helsinki, Helsinki, Finland, 2006. [Google Scholar]
- McEwen, T.; Aro, S.; Kosunen, P.; Mattila, J.; Pere, T.; Käpyaho, A.; Hellä, P. Rock Suitability Classification RSC 2012; Posiva Report; Posiva: Helsinki, Finland, 2012. [Google Scholar]
- Lin, Q.X.; Liu, Y.M.; Tham, L.G.; Tang, C.A.; Lee, P.K.K.; Wang, J. Time-dependent strength degradation of granite. Int. J. Rock Mech. Min. Sci. 2009, 46, 1103–1114. [Google Scholar] [CrossRef]
- Kang, H.P. Water damage to rocks. Hrdro. Eng. Geol. 1994, 3, 39–41. (In Chinese) [Google Scholar]
- Liu, Z.; Dang, W. Rock quality classification and stability evaluation of undersea deposit based on M-IRMR. Tunn. Undergr. Space Technol. 2014, 40, 95–101. [Google Scholar] [CrossRef]
- Kwon, S.; Park, B.Y.; Kang, C.H.; Chang, K. Structural stability analysis for a high-level underground nuclear waste repository in granite. In Proceedings of the 4th North American Rock Mechanics Symposium, Seattle, WA, USA, 31 July–3 August 2000. [Google Scholar]
- Liu, Y.M.; Wang, J.; Tham, L.G.; Cai, M.F. Basic physico-mechanical properties and time-temperature effect of deep intact rock from beishan preselected area for high-level radioactive waste disposal. Chin. J. Rock Mech. Eng. 2007, 26, 2034–2042. (In Chinese) [Google Scholar]
- Kranz, R.L.; Harris, W.J.; Carter, N.L. Static fatigue of granite at 200 °C. Geophys. Res. Lett. 1982, 9, 1–4. [Google Scholar] [CrossRef]
- Kinoshita, N.; Inada, Y. Effects of high temperature on strength, deformation, thermal properties and creep of rocks. J. Soc. Mater. Sci. 2006, 55, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Liu, J.F.; Wang, C.P.; Liu, J.; Wang, J. Creeping behavior of beishan granite under different temperatures and stress conditions. Chin. J. Rock Mech. Eng. 2015, 34, 1228–1235. (In Chinese) [Google Scholar]
- Martin, C.D.; Chandler, N.A. The progressive fracture of Lac du Bonnet granite. Int. J. Rock Mech. Min. Sci. 1994, 31, 643–659. [Google Scholar] [CrossRef]
- Zhou, H.W.; Xie, H.P.; Zuo, J.P. Developments in researches on mechanical behaviors of rocks under the condition of high ground pressure in the depths. Adv. Mech. 2005, 35, 91–99. (In Chinese) [Google Scholar]
- Barton, N.; Lien, R.; Lunde, J. Engineering classification of rock masses for the design of tunnel support. Rock Mech. 1974, 6, 189–236. [Google Scholar] [CrossRef]
- Grimstad, E.; Barton, N. Updating the Q-system for NMT. In Proceedings of the International Symposium on Sprayed Concrete—Modern Use of Wet Mix Sprayed Concrete for Underground Support, Fagernes, Norway, 22–26 October 1993. [Google Scholar]
- Zhang, J.J.; Fu, B.J. Rockburst and its criteria and control. Chin. J. Rock Mech. Eng. 2008, 27, 2034–2042. (In Chinese) [Google Scholar]
- SKB (Swedish Nuclear Fuel and Waste Management Company). SR97-Processes in the Repository Evolution; SKB Report TR-99-07; SKB: Stockholm, Sweden, 1999. [Google Scholar]
- SKB. Interim Main Report of the Safety Assessment SR-Can; SKB: Stockholm, Sweden, 2004. [Google Scholar]
- Nagra, K.I. Safety Assessment Report; Nagra Technical Report NTB-93-22; Nagra: Wettingen, Sweden, 1994. [Google Scholar]
- Andersson, J.; Ström, A.; Svemar, C.; Almen, K.E.; Ericsson, L.O. What Requirements Does the KBS-3 Repository Make on the Host Rock? Geoscientific Suitability Indicators and Criteria for Siting and Site Evaluation; SKB Report TR-00-12; SKB: Stockholm, Sweden, 2000. [Google Scholar]
- Hagros, A.; Äikäs, K.; McEwen, T.; Anttila, P. Host Rock Classification, Phase 2: Influence of Host Rock Properties; Posiva Working Report; Posiva: Olkiluoto, Finland, 2003. [Google Scholar]
- Posiva. Disposal of Spent Fuel in Olkiluoto Bedrock-Programme for Research, Development, and Technical Design for the Pre-Construction Phase; Posiva: Helsinki, Finland, 2000. [Google Scholar]
- SKB. R&D-Programme 2004-Programme for Research, Development, and Demonstration of Methods for the Management and Disposal of Nuclear Waste, Including Social Science Research; SKB Report TR-04-21; SKB: Stockholm, Sweden, 2004. [Google Scholar]
- Vieno, T. Groundwater Salinity at Olkiluoto and Its Effects on a Spent Fuel Repository; POSIVA-00-11; Posiva: Helsinki, Finland, 2000. [Google Scholar]
- Andersson, J. Preliminary Safety Evaluation for the Forsmark Area. Based on Data and Site Descriptions after the Initial Site Investigation Stage; SKB: Stockholm, Sweden, 2005. [Google Scholar]
- Beijing Research Institute of Uranium Geology. Technical Report on Site Screening of Underground Laboratory for Geological Disposal of High Level Radioactive Waste in China; Beijing Research Institute of Uranium Geology: Beijing, China, 2016. [Google Scholar]
- Beijing Research Institute of Uranium Geology. Research on Geological Disposal Technology in China-Underground Laboratory Construction Project Proposal; Beijing Research Institute of Uranium Geology: Beijing, China, 2016. [Google Scholar]
- Chen, P.P. Experimental Research of Mechanical Properties of Granite under Water-Rock Interaction. Master’s Thesis, Liaoning Technical University, Fuxin, China, 2013. (In Chinese). [Google Scholar]
- Gao, W. Rock Mechanics; Peking University Press: Beijing, China, 2010; ISBN 978-730-117-593-4. [Google Scholar]
- Wang, C.P.; Chen, L.; Liang, J.W.; Liu, J.; Liu, Y.M.; Liu, J.F. Creep constitutive model for full creep process of granite considering thermal effect. Rock Soil Mech. 2014, 35, 2493–2500. (In Chinese) [Google Scholar]
- Tonon, F.; Chen, S. Closed-form and numerical solutions for the probability distribution function of fracture diameters. Int. J. Rock Mech. Min. Sci. 2007, 44, 332–350. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, D.; Pitilakis, K.; Tsinidis, G.; Huang, H.; Zhang, D.; Argyroudis, S. Resilience assessment of tunnels: Framework and application for tunnels in alluvial deposits exposed to seismic hazard. Soil Dyn. Earthq. Eng. 2022, 162, 107456. [Google Scholar] [CrossRef]
- Huang, Z.; Argyroudis, S.; Zhang, D.; Pitilakis, K.; Huang, H.; Zhang, D. Time-dependent fragility functions for circular tunnels in soft soils. ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A Civ. Eng. 2022, 8, 04022030. [Google Scholar] [CrossRef]
Score (RMR) | 81–100 | 61–80 | 41–60 | 21–40 | <20 |
---|---|---|---|---|---|
Grade | I | II | III | IV | V |
Rock Mass Quality | Excellent | Good | Fair | Poor | Very poor |
Rock Burst Grade | The Corresponding Numerical Points for Regression Curves | |||||
---|---|---|---|---|---|---|
/MPa | 3 | 15 | 37.5 | 75 | 175 | 250 |
lg() | 0.477 | 1.176 | 1.574 | 1.875 | 2.243 | 2.398 |
R1 | 1 | 2 | 4 | 7 | 12 | 15 |
lg(R1) | 0.000 | 0.301 | 0.602 | 0.845 | 1.079 | 1.176 |
RQD/% | 12.5 | 37.5 | 62.5 | 82.5 | 100 | - |
R2 | 3 | 8 | 13 | 17 | 20 | - |
Joint spacing S/m | 0.03 | 0.13 | 0.4 | 1.3 | 2 | - |
lg(S) | −1.523 | −0.886 | −0.398 | 0.114 | 0.301 | - |
R3 | 5 | 8 | 10 | 15 | 20 | - |
lg(R3) | 0.699 | 0.903 | 1.000 | 1.176 | 1.301 | - |
Rock Burst Grade | Rock Burst Intensity | Criteria | Ri |
---|---|---|---|
I | No rock burst | /σ1 > 7 | 0 |
II | Slight rock burst | /σ1 > 5 | −4 |
III | Moderate rock burst | /σ1 ≥ 2.5 | −8 |
IV | Severe rock burst | /σ1 < 2.5 | −12 |
Groundwater Chemical Characteristics | Ri |
---|---|
6 < pH < 10, TDS < 50 g/L, Cl− < 20 g/L; all three conditions are met | 0 |
6 < pH < 10, TDS < 50 g/L, Cl− < 20 g/L; only one condition cannot be met | −4 |
6 < pH < 10, TDS < 50 g/L, Cl− < 20 g/L; two or three conditions cannot be met | −8 |
Candidate Sites | σc/MPa | λw | λt | /MPa | |
---|---|---|---|---|---|
Jiujing | 141.7 | 0.84 | 0.88 | 104.7 | 8.3 |
Xinchang | 183.8 | 0.84 | 0.83 | 128.1 | 9.4 |
Shazaoyuan | 169.8 | 0.84 | 0.85 | 121.2 | 9.1 |
Suanjingzi | 169.8 | 0.84 | 0.85 | 121.2 | 9.1 |
Yamansu | 173.2 | 0.84 | 0.85 | 123.7 | 9.4 |
Tianhu | 182.1 | 0.84 | 0.85 | 130.0 | 9.6 |
Aqishan | 120.4 | 0.84 | 0.85 | 86.0 | 7.3 |
Tamusu | 107.8 | 0.84 | 0.85 | 77.0 | 6.8 |
Nuorigong | 140.0 | 0.84 | 0.85 | 100.0 | 8.0 |
Candidate Sites | RQD | |
---|---|---|
Jiujing | 76.7 | 15.7 |
Xinchang | 97.6 | 19.8 |
Shazaoyuan | 96.5 | 19.5 |
Suanjingzi | 80.4 | 16.4 |
Yamansu | 95.2 | 19.3 |
Tianhu | 79.9 | 16.3 |
Aqishan | 98.4 | 19.9 |
Tamusu | 89.6 | 18.2 |
Nuorigong | 94.1 | 19.1 |
Candidate Sites | Average Crack Spacing/m | |
---|---|---|
Jiujing | 0.5 | 10.3 |
Xinchang | 1.4 | 16.0 |
Shazaoyuan | 1.5 | 16.7 |
Suanjingzi | 0.8 | 12.4 |
Yamasu | 0.7 | 11.6 |
Tianhu | 0.2 | 8.9 |
Aqishan | 1.2 | 14.4 |
Tamusu | 0.9 | 13.0 |
Nuorigong | 2.0 | 19.9 |
Candidate Sites | Descriptions of Joint Conditions | R4 |
---|---|---|
Jiujing | Rough joint surface; Slight metamorphism; Joint opening < 1 mm | 25 |
Xinchang | The joint surface is closed tightly; Unweathered; Discontinuity | 30 |
Shazaoyuan | The joint surface is closed tightly; Unweathered; Discontinuity | 30 |
Suanjingzi | The joint surface is closed tightly; Unweathered; Discontinuity | 30 |
Yamansu | Rough joint surface; Slight metamorphism; Joint opening < 1 mm | 25 |
Tianhu | Rough joint surface; Slight metamorphism; Joint opening < 1 mm | 25 |
Aqishan | Rough joint surface; Slight metamorphism; Joint opening < 1 mm | 25 |
Tamusu | The joint surface is closed tightly; Unweathered; Discontinuity | 30 |
Nuorigong | The joint surface is closed tightly; Unweathered; Discontinuity | 30 |
Candidate Sites | Per(i)/% (i = I, II, III, IV) | R7 | |||
---|---|---|---|---|---|
I | II | III | IV | ||
Jiujing | 100.0 | - | - | - | 0 |
Xinchang | 100.0 | - | - | - | 0 |
Shazaoyuan | 33.3 | 66.7 | - | - | −2.7 |
Suanjingzi | 58.3 | 41.7 | - | - | −1.7 |
Yamansu | 72.2 | 11.1 | 16.7 | - | −1.8 |
Tianhu | 90.9 | 9.1 | - | - | −0.4 |
Aqishan | 100.0 | - | - | - | 0 |
Tamusu | 50.0 | 50.0 | - | - | −2.0 |
Nuorigong | 33.3 | 66.7 | - | - | −2.7 |
Candidate Sites | Per (≤10−9 m/s) | R8 |
---|---|---|
Jiujing | 0 | −12.00 |
Xinchang | 100% | 0 |
Shazaoyuan | 69% | −3.72 |
Suanjingzi | 100% | 0 |
Yamasu | 95% | −0.60 |
Tianhu | 56% | −5.28 |
Aqishan | 67% | −3.96 |
Tamusu | 30% | −8.40 |
Nuorigong | 60% | −4.80 |
Candidate Sites | pH | TDS/(g·L−1) | Cl−/(g·L−1) | R9 |
---|---|---|---|---|
Jiujing | 9.55 | 3.96 | 1.31 | 0 |
Xinchang | 7.65 | 3.33 | 0.99 | 0 |
Shazaoyuan | 8.60 | 3.46 | 1.06 | 0 |
Suanjingzi | 8.60 | 3.46 | 1.06 | 0 |
Yamansu | 8.53 | 14.63 | 5.00 | 0 |
Tianhu | 8.87 | 7.66 | 2.54 | 0 |
Aqishan | 8.18 | 21.60 | 7.46 | 0 |
Tamusu | 7.95 | 2.80 | 1.21 | 0 |
Nuorigong | 8.23 | 0.57 | 0.18 | 0 |
Candidate Sites | R4 | R5 | R6 | R7 | R8 | R9 | RMRHLW | |||
---|---|---|---|---|---|---|---|---|---|---|
Jiujing | 8.3 | 15.7 | 10.3 | 25 | 10 | −5 | 0 | −12.0 | 0 | 52.3 |
Xinchang | 9.4 | 19.8 | 16.0 | 30 | 10 | −5 | 0 | 0.0 | 0 | 80.2 |
Shazaoyuan | 9.1 | 19.5 | 16.7 | 30 | 10 | −5 | −2.7 | −3.7 | 0 | 73.9 |
Suanjingzi | 9.1 | 16.4 | 12.4 | 30 | 10 | −5 | −1.7 | 0.0 | 0 | 71.2 |
Yamansu | 9.4 | 19.3 | 11.6 | 25 | 10 | −5 | −1.8 | −0.6 | 0 | 67.9 |
Tianhu | 9.6 | 16.3 | 8.9 | 25 | 10 | −5 | −0.4 | −5.3 | 0 | 59.1 |
Aqishan | 7.3 | 19.9 | 14.4 | 25 | 10 | −5 | 0 | −4.0 | 0 | 67.6 |
Tamusu | 6.8 | 18.2 | 13.0 | 30 | 10 | −5 | −2.0 | −8.4 | 0 | 62.6 |
Nuorigong | 8.0 | 19.1 | 19.9 | 30 | 10 | −5 | −2.7 | −4.8 | 0 | 74.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Y.; Yue, Y.; Huang, Z.; Zhu, L.; Li, Z.; Zhang, W. Modified RMR Rock Mass Classification System for Preliminary Selection of Potential Sites of High-Level Radioactive Waste Disposal Engineering. Sustainability 2022, 14, 15596. https://doi.org/10.3390/su142315596
Tong Y, Yue Y, Huang Z, Zhu L, Li Z, Zhang W. Modified RMR Rock Mass Classification System for Preliminary Selection of Potential Sites of High-Level Radioactive Waste Disposal Engineering. Sustainability. 2022; 14(23):15596. https://doi.org/10.3390/su142315596
Chicago/Turabian StyleTong, Yue, Yao Yue, Zhongkai Huang, Liping Zhu, Zhihou Li, and Wei Zhang. 2022. "Modified RMR Rock Mass Classification System for Preliminary Selection of Potential Sites of High-Level Radioactive Waste Disposal Engineering" Sustainability 14, no. 23: 15596. https://doi.org/10.3390/su142315596
APA StyleTong, Y., Yue, Y., Huang, Z., Zhu, L., Li, Z., & Zhang, W. (2022). Modified RMR Rock Mass Classification System for Preliminary Selection of Potential Sites of High-Level Radioactive Waste Disposal Engineering. Sustainability, 14(23), 15596. https://doi.org/10.3390/su142315596