The Coupling Coordination Degree and Spatial Correlation Analysis of the Digital Economy and Sports Industry in China
Abstract
:1. Introduction
2. Indicator Selection, Data Sources, and Research Methods
2.1. Selection of Indicators
2.2. Data Sources
2.3. Research Methodology
2.3.1. Entropy Weight Method
2.3.2. Coupling Coordination Evaluation Method
2.3.3. Spatiotemporal Coupling Coordination Model
2.3.4. Exploratory Spatial Data Analysis (ESDA)
- (1)
- The global Moran index (GMI) is mainly used to reflect the average spatial differences and spatial correlations in the coupling coordination degree of the digital economy and sports industry in different provinces; it is calculated as follows:
- (2)
- The local Moran index (LMI) can make up for the shortcoming of the result of the global Moran’s I test being too general. The LMI was mainly used to evaluate the difference in the spatial association of the coupled development of the digital economy and sports industry in provinces and to characterize the local spatial aggregation of the digital economy and sports industry in different provinces. The equation is as follows:
3. Spatial and Temporal Differences in the Coupling and Coordination of the Digital Economy and Sports Industry in China
3.1. Digital Economy and Comprehensive Development Level of the Sports Industry
3.1.1. Analysis of the Evolution of the Integrated Level of the Digital Economy
3.1.2. Analysis of the Evolution of the Comprehensive Level of the Sports Industry
3.1.3. Digital Economy and Sports Industry: Comprehensive Level Analysis
3.2. Spatial and Temporal Differentiation of the Integration and Coordination of the Digital Economy and Sports Industry
3.2.1. Temporal Evolutionary Trend of the Coupling and Coordination Degrees of the Digital Economy and Sports Industry
3.2.2. Spatially Divergent Characteristics of the Coupling Coordination Degree between the Digital Economy and Sports Industry
4. Spatial Correlation Patterns of the Integration and Development of the Digital Economy and Sports Industry in China
4.1. Global Spatial Analysis
4.2. Local Spatial Autocorrelation Analysis
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Recommendations
5.3. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- China Academy of Information and Communication Technology. White Paper on China’s Digital Economy Development (2020). 2020. Available online: http://www.caict.ac.cn/kxyj/qwfb/bps/202007/t20200702_285535.htm (accessed on 2 July 2020).
- Jinping, X. Building a Well-off Society across the Board and Winning the Great Victory of Socialism with Chinese Characteristics in the New Era: Report at the 19th National Congress of the Communist Party of China; People’s Publishing House: Beijing, China, 2017; p. 29. [Google Scholar]
- National Development and Reform Commission. On the Promotion of “on the Cloud to Use the Data to Empower Intelligence” Action to Foster the Development of New Economic Implementation Plan. Available online: http://www.gov.cn/zhengce/zhengceku/2020-04/10/content_5501163.htm (accessed on 10 April 2020).
- Xinhua News Agency. Proposal of the Central Committee of the Communist Party of China on Formulating the Fourteenth Five-Year Plan for National Economic and Social Development and the Visionary Goals for 2035. Available online: http://www.gov.cn/zhengce/2020-11/03/content_5556991.htm (accessed on 3 November 2020).
- Xinhua News Agency. Xi Jinping Stressed during the 34th Collective Study of the Political Bureau of the CPC Central Committee to Grasp the Development Trend and Laws of the Digital Economy to Promote the Healthy Development of China’s Digital Economy. Available online: https://guancha.gmw.cn/2021-10/21/content_35249050.htm (accessed on 21 October 2021).
- State Council. General Office of the State Council on the Promotion of National Fitness and Sports Consumption to Promote the High-Quality Development of Sports Industry Views. Available online: http://www.gov.cn/zhengce/content/2019-09/17/content_5430555.htm (accessed on 17 September 2019).
- Ye, H.B. Research on Digital Economy Driving the High-quality Development of Sports Industry at New Stage of Development. J. Sport Res. 2021, 35, 9–18. [Google Scholar]
- Ren, B.; Huang, H.Y. The Power, Mechanism and Mode of the Integration of Chinese Digital Economy and Sports Industry. J. Sport Res. 2020, 34, 55–66. [Google Scholar]
- Dong, B. Dynamic Modeling of High-Quality Development of Sports Industry Driven by Big Data Digital Economy. Mob. Inf. Syst. 2022, 2022, 9131081. [Google Scholar] [CrossRef]
- Chen, J.M.; Xu, S. Research on the Development of Digital Creative Sports Industry Based on Deep Learning. Comput. Intel. Neurosc. 2022, 2022, 7760263. [Google Scholar] [CrossRef] [PubMed]
- Li, H.J.; Zhan, K.; Zhang, Y. Construction of Intelligent Sports Resort Towns in Digital Economy Era: Logic, Mechanism and Path. J. Wuhan Sport Univ. 2021, 55, 5–12. [Google Scholar]
- Ci, Z.H.; Li, Z.G.; Sheng, K.Y. Driving Force Mechanism and Promotion of High Quality Development of Sports Goods Manufacturing Industry: In View Anta Sports Products Limited. J. Wuhan Sport Univ. 2020, 54, 53–60. [Google Scholar]
- Luo, Y.X.; Li, S.J.; Shen, K.Y. The Digital Revolution of Sports Competition Performance Industry: The Era Dilemma and Future Prospect of E-Sports Professionalizatio. China Sport Sci. Tech. 2021, 57, 93–97. [Google Scholar]
- Liu, C.; Chen, X.L. High-Quality Development of Ice and Snow Sports Industry in China: Opportunity. Trend Path. Sport. Cult. Guide 2021, 11, 19–25. [Google Scholar]
- Shen, K.Y.; Kou, M.Y.; Wang, J.X.; Zhang, W.J. The Value Dimension, Scenario Model and Strategy of Sports Service Industry Digitalization. J. Sport Res. 2020, 34, 53–63. [Google Scholar]
- Pan, W.; Shen, K.Y. Theoretical basis, power mechanism and implementation path of digital economy promoting the high-quality development of sports industry. J. Sport Res. 2022, 29, 59–66. [Google Scholar]
- Wei, Y.; Cheng, C.Y.; Han, X. Internal Function, Practical Dilemma and Solution of Sports Industrial Structure Upgrading Driven by Digital Economy. China Sport Sci. 2021, 9, 73–78+85. [Google Scholar]
- Chai, W.J.; Li, Y.F.; Li, G.; Liu, Z.C. The Logic, Dilemma and Relief Path of Digital Technology Enabling High Quality Development of Sports Industry. J. Xian Phys. Educ. 2022, 39, 292–300. [Google Scholar]
- Shahbaz, M.; Wang, J.D.; Dong, K.Y.; Zhao, J. The impact of digital economy on energy transition across the globe: The mediating role of government governance. Renew. Sustain. Energy Rev. 2022, 166, 112620. [Google Scholar] [CrossRef]
- Li, H.L.; Yuan, Y.; Tian, W.M. Coupling Measurement of Digital Economy and Real Economy in China—An Analysis Based on Grey Correlation, Coupling Coordination and Spatial Correlation Network. J. Ind. Technol. 2022, 41, 27–35. [Google Scholar]
- Li, X.Y.; Chen, J.Y.; Fan, L. The Coupling Relationship between Digital Economy and High-quality Development of Economy. Econ. Problems 2022, 9, 34–40. [Google Scholar]
- Han, Z.A.; Wu, H.Z.; Zhao, J.F. Coupling Coordination measurement and Evaluation of Digital Economy and High-quality Development. J. Stat. Inform. 2022, 37, 22–34. [Google Scholar]
- Liu, J.; Yang, Y.Y.; Zhang, S.F. Research on the Measurement and Driving Factors of China’s Digital Economy. Shanghai J. Econ. 2020, 6, 81–96. [Google Scholar]
- Yang, S.; Hou, Y.Y. Theoretical and Empirical Research on the Coupling and Synergy Between China’s Sports Industry and Electronic Information Industry in the Digital Econom. J Shandong Sport Univ. 2022, 38, 62–68+76. [Google Scholar]
- Wang, Y.Z.; Zhang, Q.M.; Shao, Y.M. Situation Measurement and Influencing Factors of the Coupling and Coordination Between Sports Industry and Tourism Industry in China. J Shandong Sport Univ. 2022, 38, 43–53. [Google Scholar]
- Yao, S.B.; Liu, Y. An Empirical Analysis of the Impact of Sports Industry Agglomeration on Regional Economic Growth—Based on Static and Dynamic Panel Data Model. China Sport Sci. 2017, 37, 21–29. [Google Scholar]
- Xu, J.F.; Chen, H.C. Coupling measurement and spatial correlation on sports industry and tourism industry. J. Shandong Sport Univ. 2020, 36, 9–16. [Google Scholar]
- Ren, J. The Development of Chinese Marathon Time and Space Distribution and Influencing Factors of Research. Master’s Thesis, Shanghai Normal University, Shanhai, China, 2019. [Google Scholar]
- Wang, Y.; Ning, L.; Duan, L. A Study of the Evaluation on the BTH Regional Coordinative Development in Mass Sports and Economy. J. Yanshan Univ. Philos. S 2017, 18, 85–91. [Google Scholar]
- Zhao, Y.; Li, R. Coupling and Coordination Analysis of Digital Rural Construction from the Perspective of Rural Revitalization: A Case Study from Zhejiang Province of China. Sustainability 2022, 14, 3638. [Google Scholar] [CrossRef]
- Weng, G.; Li, L. The Coupling Coordination Degree and Spatial Correlation Analysis on Integrational Development of Tourism Industry and Cultural Industry in China. Econ. Geogr. 2016, 36, 178–185. [Google Scholar]
- Li, G.; Zhang, B.; Zhao, M. Integrated and Coordinated Development of Regional Economy, Sports Industry and Mass Sports in China. J. Tianjing Univ Sport 2015, 30, 87–92. [Google Scholar]
- Shen, W.; Xia, W.; Li, S. Dynamic Coupling Trajectory and Spatial-Temporal Characteristics of High-Quality Economic Development and the Digital Economy. Sustainability 2022, 14, 4543. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, C.; Mao, J.; Sun, D.; Li, H.; Lu, C. Spatial–Temporal Heterogeneity and the Related Influencing Factors of Tourism Efficiency in China. Sustainability 2021, 13, 5825. [Google Scholar] [CrossRef]
- Liu, X.; Huang, F.; Wang, P.; Liu, Z. The GIS Spatial Analysis Principle and Method; Science Press: Beijing, China, 2005. [Google Scholar]
- Dong, W.; Wang, C.; Zhang, Z. The Spatiotemporal Evolution and Spatial Correlation Pattern of the Coupled Development of China’s Cultural Industry and Tourism Industry. J. Sw. Minzu Univ. Humanit. 2022, 43, 23–33. [Google Scholar]
- Liu, C.; Sun, W.; Li, P. Characteristics of spatiotemporal variations in coupling coordination between integrated carbon emission and sequestration index: A case study of the Yangtze River Delta, China. Ecol. Indic. 2022, 135, 108520. [Google Scholar] [CrossRef]
- Cai, S.H.; Gu, C.; Zhang, Z.J. Research on Temporal and Spatial Characteristics and Influencing Factors of China’s Provincial Digital Economy. E China Econ. Manag. 2022, 36, 1–9. [Google Scholar]
Main Indicators | Tier 1 Indicators | Code Name | Secondary Indicators | Weights | Indicator Units | Direction |
---|---|---|---|---|---|---|
Digital economy indicators D | Informatization development indicators | D1 | Fiber-optic cable density | 0.0715 | Million meters/square meter | + |
D2 | Density of cellphone base stations | 0.0715 | Million/million square kilometers | + | ||
D3 1 | Percentage of information technology practitioners | 0.0713 | % | + | ||
D4 | Total telecommunications business | 0.0715 | Billion CNY | + | ||
D5 | Software business revenue | 0.0715 | Billion CNY | + | ||
Internet development indicators | D6 | Internet access port density | 0.0714 | pcs/10,000 | + | |
D7 | Mobile phone penetration rate | 0.0175 | Department/100 People | + | ||
D8 | Number of broadband Internet users as a percentage | 0.0175 | % | + | ||
D9 | Percentage of mobile Internet users | 0.0714 | % | + | ||
Digital trading development indicators | D10 | Percentage of corporate websites | 0.0175 | % | + | |
D11 | Number of computers used by enterprises | 0.0712 | % | + | ||
D12 | E-commerce share | 0.0713 | % | + | ||
D13 | E-commerce sales | 0.0714 | Billion CNY | + | ||
D14 | Online retail sales | 0.0715 | Billion CNY | + | ||
Sports industry development indicators standard S | Industrial economy indicators | S1 2 | Culture, sports, and entertainment industry enterprise legal person unit business income | 0.1666 | Billion CNY | + |
S2 2 | Main business income of culture, education, industrial arts, sports, and entertainment goods manufacturing industry | 0.1665 | Billion CNY | + | ||
S3 | Sports lottery sales | 0.1666 | Million CNY | + | ||
S4 | Number of marathon events | 0.1662 | Times | + | ||
Market size indicators | S5 | Number of legal persons in culture, sports, and entertainment | 0.1679 | Individual | + | |
S6 | Number of employed persons in culture, sports, and entertainment urban units | 0.1663 | Million people | + |
Level | Degree of Coupling Coordination | Coupling Coordination Degree Value |
---|---|---|
10 | Quality coordination | [0.9, 1] |
9 | Good coordination | [0.8, 0.9) |
8 | Intermediate coordination | [0.7, 0.8) |
7 | Primary coordination | [0.6, 0.7) |
6 | Barely coordinated | [0.5, 0.6) |
5 | Nearly out of tune | [0.4, 0.5) |
4 | Mildly out of tune | [0.3, 0.4) |
3 | Moderate dissonance | [0.2, 0.3) |
2 | Severe dissonance | [0.1, 0.2) |
1 | Extremely dysfunctional | [0, 0.1) |
Year | 2015 | 2016 | 2017 | 2018 | 2019 | Average Score | Development Level | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Province | Score | Rank | Score | Rank | Score | Rank | Score | Rank | Score | Rank | Score | Rank | ||
Beijing | 0.723 | 1 | 0.736 | 1 | 0.729 | 1 | 0.728 | 1 | 0.732 | 1 | 0.730 | 1 | High development level | |
Shanghai | 0.663 | 2 | 0.600 | 3 | 0.619 | 2 | 0.619 | 2 | 0.654 | 2 | 0.631 | 2 | ||
Guangdong | 0.606 | 3 | 0.606 | 2 | 0.580 | 3 | 0.596 | 3 | 0.597 | 3 | 0.597 | 3 | ||
Zhejiang | 0.541 | 4 | 0.557 | 4 | 0.524 | 4 | 0.518 | 4 | 0.520 | 4 | 0.532 | 4 | ||
Jiangsu | 0.477 | 5 | 0.491 | 5 | 0.476 | 5 | 0.471 | 5 | 0.484 | 5 | 0.480 | 5 | ||
Fujian | 0.316 | 6 | 0.321 | 6 | 0.297 | 7 | 0.301 | 7 | 0.295 | 7 | 0.306 | 6 | ||
Shandong | 0.272 | 7 | 0.308 | 7 | 0.302 | 6 | 0.316 | 6 | 0.313 | 6 | 0.302 | 7 | Medium development level | |
Hainan | 0.268 | 8 | 0.296 | 8 | 0.269 | 8 | 0.260 | 10 | 0.259 | 10 | 0.270 | 8 | ||
Sichuan | 0.247 | 10 | 0.278 | 9 | 0.264 | 9 | 0.271 | 8 | 0.291 | 8 | 0.270 | 9 | ||
Chongqing | 0.219 | 13 | 0.251 | 12 | 0.246 | 10 | 0.262 | 9 | 0.269 | 9 | 0.249 | 10 | ||
Shaanxi | 0.235 | 11 | 0.275 | 10 | 0.242 | 11 | 0.240 | 11 | 0.240 | 12 | 0.246 | 11 | ||
Liaoning | 0.254 | 9 | 0.273 | 11 | 0.239 | 12 | 0.211 | 12 | 0.214 | 14 | 0.238 | 12 | ||
Tianjin | 0.221 | 12 | 0.237 | 13 | 0.213 | 13 | 0.210 | 14 | 0.245 | 11 | 0.225 | 13 | ||
Hebei | 0.184 | 16 | 0.223 | 14 | 0.209 | 14 | 0.201 | 15 | 0.214 | 15 | 0.206 | 14 | ||
Anhui | 0.201 | 14 | 0.210 | 16 | 0.198 | 16 | 0.199 | 16 | 0.216 | 13 | 0.205 | 15 | ||
Hubei | 0.200 | 15 | 0.222 | 15 | 0.200 | 15 | 0.193 | 17 | 0.206 | 16 | 0.204 | 16 | ||
Ningxia | 0.167 | 17 | 0.193 | 17 | 0.193 | 17 | 0.210 | 13 | 0.199 | 17 | 0.192 | 17 | Low development level | |
Henan | 0.166 | 18 | 0.188 | 18 | 0.176 | 18 | 0.174 | 18 | 0.169 | 18 | 0.175 | 18 | ||
Qinghai | 0.159 | 21 | 0.177 | 19 | 0.170 | 19 | 0.169 | 19 | 0.161 | 19 | 0.167 | 19 | ||
Inner Mongolia | 0.148 | 23 | 0.171 | 22 | 0.166 | 20 | 0.157 | 20 | 0.147 | 22 | 0.158 | 20 | ||
Hunan | 0.151 | 22 | 0.173 | 21 | 0.149 | 21 | 0.148 | 21 | 0.148 | 21 | 0.154 | 21 | ||
Shanxi | 0.161 | 20 | 0.170 | 23 | 0.148 | 22 | 0.138 | 22 | 0.133 | 26 | 0.150 | 22 | ||
Jiangxi | 0.161 | 19 | 0.148 | 26 | 0.139 | 25 | 0.136 | 24 | 0.146 | 23 | 0.146 | 23 | ||
Yunan | 0.146 | 24 | 0.174 | 20 | 0.144 | 23 | 0.125 | 26 | 0.124 | 27 | 0.143 | 24 | ||
Guizhou | 0.119 | 28 | 0.148 | 25 | 0.138 | 26 | 0.136 | 23 | 0.149 | 20 | 0.138 | 25 | ||
Gansu | 0.126 | 27 | 0.146 | 27 | 0.133 | 27 | 0.130 | 25 | 0.144 | 24 | 0.136 | 26 | ||
Jilin | 0.136 | 26 | 0.155 | 24 | 0.144 | 24 | 0.124 | 27 | 0.118 | 28 | 0.135 | 27 | ||
Xinjiang | 0.138 | 25 | 0.144 | 29 | 0.114 | 29 | 0.110 | 30 | 0.116 | 29 | 0.124 | 28 | ||
Heilongjiang | 0.115 | 29 | 0.145 | 28 | 0.126 | 28 | 0.112 | 29 | 0.107 | 30 | 0.121 | 29 | ||
Guangxi | 0.103 | 30 | 0.124 | 30 | 0.107 | 30 | 0.117 | 28 | 0.135 | 25 | 0.117 | 30 | ||
Average score | 0.254 | 0.271 | 0.255 | 0.253 | 0.258 |
Year | 2016 | 2016 | 2017 | 2018 | 2019 | Average Score | Development Level | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Province | Score | Rank | Score | Rank | Score | Rank | Score | Rank | Score | Rank | Score | Rank | ||
Jiangsu | 0.685 | 1 | 0.755 | 1 | 0.749 | 1 | 0.656 | 2 | 0.639 | 2 | 0.697 | 1 | High development level | |
Guangdong | 0.632 | 3 | 0.733 | 2 | 0.575 | 4 | 0.758 | 1 | 0.764 | 1 | 0.692 | 2 | ||
Beijing | 0.642 | 2 | 0.704 | 3 | 0.601 | 3 | 0.641 | 3 | 0.612 | 3 | 0.640 | 3 | ||
Zhejiang | 0.507 | 5 | 0.517 | 5 | 0.607 | 2 | 0.583 | 4 | 0.604 | 4 | 0.564 | 4 | ||
Shandong | 0.537 | 4 | 0.600 | 4 | 0.484 | 5 | 0.502 | 5 | 0.469 | 5 | 0.518 | 5 | ||
Henan | 0.357 | 6 | 0.366 | 6 | 0.364 | 6 | 0.380 | 6 | 0.384 | 6 | 0.370 | 6 | Medium development level | |
Fujian | 0.294 | 7 | 0.333 | 7 | 0.353 | 7 | 0.330 | 7 | 0.343 | 7 | 0.331 | 7 | ||
Hubei | 0.216 | 12 | 0.277 | 11 | 0.290 | 9 | 0.311 | 8 | 0.298 | 8 | 0.279 | 8 | ||
Hunan | 0.250 | 10 | 0.289 | 9 | 0.303 | 8 | 0.273 | 10 | 0.261 | 11 | 0.275 | 9 | ||
Hebei | 0.247 | 11 | 0.309 | 8 | 0.272 | 10 | 0.273 | 9 | 0.259 | 12 | 0.272 | 10 | ||
Shanghai | 0.261 | 8 | 0.260 | 13 | 0.262 | 11 | 0.272 | 11 | 0.294 | 9 | 0.270 | 11 | ||
Sichuan | 0.254 | 9 | 0.282 | 10 | 0.250 | 12 | 0.259 | 12 | 0.293 | 10 | 0.267 | 12 | ||
Anhui | 0.200 | 14 | 0.272 | 12 | 0.245 | 13 | 0.228 | 13 | 0.234 | 13 | 0.236 | 13 | ||
Yunnan | 0.176 | 16 | 0.187 | 15 | 0.205 | 14 | 0.195 | 14 | 0.201 | 14 | 0.193 | 14 | ||
Shaanxi | 0.177 | 15 | 0.186 | 16 | 0.196 | 15 | 0.191 | 15 | 0.177 | 15 | 0.186 | 15 | Low development level | |
Liaoning | 0.209 | 13 | 0.214 | 14 | 0.175 | 16 | 0.151 | 18 | 0.157 | 18 | 0.181 | 16 | ||
Jiangxi | 0.157 | 17 | 0.168 | 17 | 0.165 | 18 | 0.165 | 16 | 0.159 | 17 | 0.163 | 17 | ||
Chongqing | 0.138 | 18 | 0.163 | 18 | 0.168 | 17 | 0.153 | 17 | 0.165 | 16 | 0.157 | 18 | ||
Shanxi | 0.109 | 21 | 0.123 | 22 | 0.137 | 19 | 0.136 | 19 | 0.126 | 19 | 0.126 | 19 | ||
Heilongjiang | 0.135 | 19 | 0.160 | 19 | 0.119 | 21 | 0.098 | 23 | 0.089 | 19 | 0.120 | 20 | ||
Tianjin | 0.122 | 20 | 0.126 | 21 | 0.137 | 20 | 0.094 | 24 | 0.084 | 26 | 0.113 | 21 | ||
Guangxi | 0.106 | 22 | 0.115 | 23 | 0.116 | 22 | 0.114 | 20 | 0.109 | 21 | 0.112 | 22 | ||
Inner Mongolia | 0.094 | 26 | 0.130 | 20 | 0.111 | 23 | 0.104 | 22 | 0.107 | 22 | 0.109 | 23 | ||
Guizhou | 0.095 | 25 | 0.106 | 25 | 0.109 | 24 | 0.109 | 21 | 0.116 | 20 | 0.107 | 24 | ||
Jilin | 0.103 | 23 | 0.109 | 24 | 0.086 | 27 | 0.089 | 25 | 0.082 | 27 | 0.094 | 25 | ||
Gansu | 0.096 | 24 | 0.094 | 26 | 0.099 | 25 | 0.081 | 27 | 0.087 | 25 | 0.091 | 26 | ||
Xinjiang | 0.066 | 27 | 0.078 | 27 | 0.095 | 26 | 0.088 | 26 | 0.102 | 23 | 0.086 | 27 | ||
Hainan | 0.048 | 28 | 0.060 | 28 | 0.034 | 28 | 0.033 | 28 | 0.028 | 28 | 0.041 | 28 | ||
Ningxia | 0.017 | 29 | 0.018 | 29 | 0.017 | 29 | 0.019 | 29 | 0.019 | 29 | 0.018 | 29 | ||
Qinghai | 0.011 | 30 | 0.012 | 30 | 0.012 | 30 | 0.010 | 30 | 0.014 | 30 | 0.012 | 30 | ||
Average score | 0.231 | 0.258 | 0.244 | 0.243 | 0.243 |
Year | 2015 | 2016 | 2017 | 2018 | 2019 | Average Value | |
---|---|---|---|---|---|---|---|
Province | |||||||
Eastern region | Beijing | 0.584 | 0.600 | 0.575 | 0.585 | 0.578 | 0.584 |
Tianjin | 0.287 | 0.294 | 0.292 | 0.265 | 0.268 | 0.281 | |
Hebei | 0.327 | 0.362 | 0.345 | 0.342 | 0.343 | 0.344 | |
Liaoning | 0.339 | 0.348 | 0.320 | 0.299 | 0.303 | 0.322 | |
Shanghai | 0.456 | 0.444 | 0.449 | 0.453 | 0.468 | 0.454 | |
Jiangsu | 0.535 | 0.552 | 0.546 | 0.527 | 0.527 | 0.537 | |
Zhejiang | 0.512 | 0.518 | 0.531 | 0.524 | 0.529 | 0.523 | |
Fujian | 0.390 | 0.404 | 0.402 | 0.397 | 0.399 | 0.398 | |
Shandong | 0.437 | 0.464 | 0.437 | 0.446 | 0.438 | 0.444 | |
Guangdong | 0.556 | 0.577 | 0.537 | 0.580 | 0.581 | 0.566 | |
Hainan | 0.238 | 0.258 | 0.218 | 0.215 | 0.207 | 0.227 | |
Central region | Shanxi | 0.257 | 0.269 | 0.267 | 0.262 | 0.254 | 0.262 |
Jilin | 0.243 | 0.255 | 0.236 | 0.229 | 0.222 | 0.237 | |
Heilongjiang | 0.250 | 0.276 | 0.247 | 0.229 | 0.221 | 0.245 | |
Anhui | 0.317 | 0.346 | 0.332 | 0.326 | 0.335 | 0.331 | |
Jiangxi | 0.282 | 0.281 | 0.275 | 0.273 | 0.276 | 0.277 | |
Henan | 0.349 | 0.362 | 0.356 | 0.358 | 0.357 | 0.357 | |
Hubei | 0.323 | 0.352 | 0.347 | 0.350 | 0.352 | 0.345 | |
Hunan | 0.312 | 0.334 | 0.326 | 0.317 | 0.313 | 0.320 | |
Western region | Sichuan | 0.354 | 0.374 | 0.358 | 0.364 | 0.382 | 0.366 |
Chongqing | 0.295 | 0.318 | 0.319 | 0.316 | 0.325 | 0.315 | |
Guizhou | 0.230 | 0.250 | 0.247 | 0.247 | 0.256 | 0.246 | |
Yunnan | 0.283 | 0.300 | 0.293 | 0.279 | 0.281 | 0.287 | |
Shaanxi | 0.319 | 0.336 | 0.330 | 0.327 | 0.321 | 0.327 | |
Gansu | 0.234 | 0.242 | 0.240 | 0.227 | 0.237 | 0.236 | |
Qinghai | 0.146 | 0.150 | 0.152 | 0.145 | 0.155 | 0.150 | |
Ningxia | 0.162 | 0.171 | 0.170 | 0.177 | 0.175 | 0.171 | |
Xinjiang | 0.218 | 0.230 | 0.228 | 0.222 | 0.233 | 0.226 | |
Guangxi | 0.229 | 0.244 | 0.236 | 0.240 | 0.247 | 0.239 | |
Inner Mongolia | 0.243 | 0.273 | 0.260 | 0.253 | 0.251 | 0.256 | |
Average score | 0.324 | 0.340 | 0.329 | 0.326 | 0.328 |
Year | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|
Moran’s I | 0.254 | 0.299 | 0.256 | 0.307 | 0.313 |
p-value | 0.012 | 0.022 | 0.015 | 0.027 | 0.028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Geng, Y.; Lin, Q.; Li, G.; Wang, B.; Wang, D. The Coupling Coordination Degree and Spatial Correlation Analysis of the Digital Economy and Sports Industry in China. Sustainability 2022, 14, 16147. https://doi.org/10.3390/su142316147
Wang Y, Geng Y, Lin Q, Li G, Wang B, Wang D. The Coupling Coordination Degree and Spatial Correlation Analysis of the Digital Economy and Sports Industry in China. Sustainability. 2022; 14(23):16147. https://doi.org/10.3390/su142316147
Chicago/Turabian StyleWang, Yawei, Yuanwen Geng, Qinqin Lin, Guoqiang Li, Baihui Wang, and Dapeng Wang. 2022. "The Coupling Coordination Degree and Spatial Correlation Analysis of the Digital Economy and Sports Industry in China" Sustainability 14, no. 23: 16147. https://doi.org/10.3390/su142316147
APA StyleWang, Y., Geng, Y., Lin, Q., Li, G., Wang, B., & Wang, D. (2022). The Coupling Coordination Degree and Spatial Correlation Analysis of the Digital Economy and Sports Industry in China. Sustainability, 14(23), 16147. https://doi.org/10.3390/su142316147